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Chapter

Three Dimensional Widefield
Imaging with Coherent Nonlinear
Scattering Optical Tomography
Lang Wang, Gabriel Murray, Jeff Field and Randy A. Bartels

Abstract

A full derivation of the recently introduced technique of Harmonic Optical
Tomography (HOT), which is based on a sequence of nonlinear harmonic holographic
field measurements, is presented. The rigorous theory of harmonic holography is
developed and the image transfer theory used for HOT is demonstrated. A novel
treatment of phase matching of homogeneous and in-homogeneous samples is
presented. This approach provides a simple and intuitive interpretation of coherent
nonlinear scattering. This detailed derivation is aimed at an introductory level to allow
anyone with an optics background to be able to understand the details of coherent
imaging of linear and nonlinear scattered fields, holographic image transfer models,
and harmonic optical tomography.

Keywords: nonlinear optics, tomography, computational imaging, nonlinear
scattering, nonlinear holography, optical holography, optical tomography,
phasematching

1. Introduction

Optical microscopy permits the noninvasive acquisition of information that is
revealed through light-matter interactions. These light-matter interactions are gener-
ally referred to as contrast mechanisms and come in many forms. The information
carried by an optical contrast mechanism depends on the properties of the illumina-
tion light, the properties of the light produced by the contrast mechanism, and the
details of the light detection. Most optical imaging systems rely on light that can be
described approximately as classical, although there is a steadily growing body of
work describing microscopy methods that exploit quantum correlations to enable the
extraction of new information from objects.

The coherence properties of the light used for illumination and detection are also
critical drivers of the properties of an optical imaging system. The classical theory of
optical coherence is concerned with the statistical properties of classical fields that are
treated as random variables. Although light is, in general, partially coherent, it is often
suitable to describe light in the limiting case of either fully coherent or fully incoher-
ent. Heuristically, we can describe coherent light as a field that is statistically similar
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across either temporal or spatial points on the field, whereas fully incoherent light
lacks any correlation either along temporal or spatial displacements. Consideration of
optical coherence is critical for understanding the broader context of optical micros-
copy and optical tomographic imaging.

While light propagation is not directly modified by optical coherence, field coher-
ence strongly impacts the observed signal from a detector. For our purposes, a semi-
classical model of light detection is suitable, where we consider generated
photocurrents in a photodiode or photo-generated electrons detected by a camera
chip. In all instances treated herein, we assume detector integration times are longer
than the temporal coherence times of the light fluctuations. As such, detected light
intensities are inferred from a long-time average of the incident optical field’s instan-
taneous intensity. To provide a consistent framework for our discussion of coherent
tomographic imaging, we briefly review optical imaging theory to ensure that the
reader is familiar with the notation used in this treatment.

In this chapter, we focus on imaging systems that can be described in a classical
optical formalism that uses coherent nonlinear scattering as a contrast mechanism.
Coherent nonlinear scattering exploits the microscopic properties of materials that
exhibit a nonlinear dipole in response to a sufficiently strong incident field [1–5].
While materials can produce higher-order responses than a nonlinear dipole, the high
field strength required generally precludes the use of higher-order terms to prevent
damage to the object under study. It is suitable to describe the sensitivity of the
nonlinear response as a nonlinear susceptibility tensor that is obtained from a Taylor
expansion of the dipole response to the applied electric field. While the tensorial
nature of nonlinear response depends on the incident fields and the distribution, we
will suppress the vectorial dependence of both the coherent nonlinear light-matter
interactions and the light scattering [3]. Within this approximation, coherent
nonlinear scattering is described by a scalar field. For the purposes of imaging and
tomography, we must then build a model for the propagation of the scattered scalar
field through an imaging system, the detection of that light, and the processing
required to obtain a microscopic or tomographic image.

This chapter is organized as follows. Coherent imaging theory is outlined and the
application to tomographic imaging using coherent scattering is described. This sec-
tion will show that while the imaging system permits spatial magnification of the field
to enable the observation of small features, this magnification comes at the cost of
low-pass filtering of the spatial frequency span of the collected coherent scattered
light. Next, the scalar model of the nonlinear scattered field is developed to produce
the working equations for the contrast signal that is collected by the imaging system.
Then, the physical implications of the scattering and image formation models are
discussed. Finally, the implications of the image transfer model for holographic optical
tomography (HOT) and the tomographic reconstruction algorithm for both second
harmonic generation (SHG) and third harmonic generation (THG) are discussed. We
conclude by discussing prospects for widefield HOT imaging.

2. Optical holography

Optical detectors respond to the incident optical intensity rather than the field. As
a result, all phase information is lost when making any direct optical measurement of a
field. However, we know that when the measured light has suitable coherence, we
may convert phase differences into intensity modulations through optical
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interference. Generally, we may have the desired signal field, Us, so that if we have a
well-characterized reference field, Ur, we may then recover the desired signal field
through suitable processing of the interference intensity. This imaging method that
recovers the complex wave, i.e., amplitude and phase, is referred to as holography [6].

Holography was first described as a linear scattering model where the scattering
object is much smaller than the extent of the incident wave [6]. In this in-line Gabor
holography, the unscattered (ballistic) part of the incident wave is treated as the
reference wave. The interference between the scattered and unscattered portions of
the field constitutes the hologram. In-line holography generated limited excitement
initially because the desired scattered field was contaminated by an unwanted conju-
gate (twin-image) field. This contamination significantly degraded the utility of early
holograms. Around the same time that Gabor was working on in-line holography,
Leith and co-workers were working in a secret US government program to process
synthetic aperture radar films optically. Leith and Upatnieks independently discov-
ered holography, but with a communications theory perspective that employed a
spatial frequency carrier for off-axis holography [7–9]. In off-axis holography, with a
suitably large incident reference beam angle, the complete complex signal field may
be recovered, thus solving the twin-image problem. In 1997, Yamaguchi demonstrated
another elegant solution to the twin-image problem by taking a sequence of holograms
where the relative phase of the signal and reference field was shifted, allowing for
unique extraction of the complex signal field from a series of in-line holograms [10].
While early holographic work made use of photographic plates, modern holography
makes use of digital cameras and numerical processing algorithms [11, 12].

Off-axis holography is hailed as a 3D imaging technique. Indeed, when a hologram
produced from an exposed photographic plate is illuminated by a duplicate of the
reference wave, one will observe the signal wave as if the object were still present. An
observer will see a 3D image of the object. Off-axis holography was first revealed in
dramatic fashion with holograms of trains produced in Leith’s laboratory. However, it
must be remembered that human visual perception is stereoscopic and not truly 3D.
Thus, an observer perceives depth, but does not truly resolve the 3D spatial structure of
an object!

Emil Wolf analyzed optical holography from the perspective of linear scattering in
the first Born approximation. He developed what is now referred to as the Fourier
diffraction theorem, which shows that while a holographic field can be propagated or
refocused, the field does not include any axially localized (optically sectioned) information
about the object under study [13]. The 3D holography observations can be explained as
surface scattering from an object with varied depth so that upon viewing, the
observed perceives depth through stereoscopic processing.

The focus of this chapter is on nonlinear holographic imaging. In nonlinear
microscopy, signals are recorded from coherent nonlinear scattering, which arises
from a distortion of the induced oscillating dipole response of an atom or molecule
subjected to a suitably strong illumination (fundamental) field. This nonlinear
response can scatter light to new frequencies at harmonics of the incident fundamen-
tal field frequency, ωm ¼ mω1, where ω1 is the fundamental frequency and m> 1 is an
integer. Both second harmonic generation (SHG, m ¼ 2) [3] and third harmonic
generation (THG, m ¼ 3) [14–16] are routinely used for optical microscopy [2]. The
first SHG images demonstrated the approach, but routine use had to await the arrival
of reliable ultrafast laser oscillators. Today, SHG microscopy is routinely used in
biological imaging [4, 5] to look primarily at muscle fibers [17] and collagen [18–20].
Beyond the study of morphology [21], one may obtain macromolecular structure [22].
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Due to the weak strength of the nonlinear optical susceptibility, coherent nonlinear
holography had to await the development of more powerful ultrafast sources. Roughly
60 years after the first reports of linear holographic imaging, Demetri Psaltis’ group
described SHG holography of SHG-active nanoparticles using a 10 Hz laser amplifier
system [23] in a special issue of applied optics that was dedicated to the memory of
Emmett Leith [24]. Subsequently, Psaltis demonstrated focusing and imaging of point
scatterers in biological tissues and phase conjugation to improve image quality [25–
28]. Shortly after this initial demonstration of SHG holography, imaging in biological
systems with oscillators was demonstrated [29–34]. By optimizing the experimental
configuration, quasi-3D imaging at rates of nearly 1500 volumes per second was
demonstrated [34]. This early holography work was still limited in the ability to
produce detailed 3D imaging and this problem was only recently solved with the
introduction of harmonic optical tomography (HOT) [35].

3. Optical diffraction tomography

A measured optical field that has scattered from an object because of a spatial
inhomogeneity in either the linear or nonlinear optical susceptibility reveals informa-
tion about the spatial distribution of the susceptibility. The goal of any coherent
imaging system is to uncover quantitative data on the spatial distribution of suscepti-
bility variations, δχ rð Þ. The information that is transferred from the incident light field
to the scattered field—whether this involves linear or nonlinear scattering—depends
on both the properties of the incident light and the nature of the optical physics
exploited for the contrast mechanism. In this chapter, we focus our discussion on
tomographic imaging obtained through coherent nonlinear optical scattering holo-
graphic measurements. To put this technique in context, we will recite the key prop-
erties of tomographic imaging under the range of coherent properties of the
illumination light and for various contrast mechanisms.

The concept of diffraction tomography was introduced by Emil Wolf in his semi-
nal optics communications paper analyzing optical holography for the case of linear
scattering [13]. Wolf’s treatment is reproduced in this chapter and the extension to
coherent nonlinear scattering [35] is developed.

In classic holography [7–9, 11, 12, 36], we consider the illumination of the object by a
spatially coherent, monochromatic plane wave with a particular incident propagation
wavevector ki. The key observation that follows from the Fourier diffraction theorem is
that very limited information is transferred from the scattered field in the process of
optical scattering of the incident light from the linear susceptibility perturbation. In a
holographic imaging scenario, the transverse spatial frequency span is limited by the
numerical aperture of the objective lens, which sets the transverse imaging resolution
[8, 37, 38]. However, for the spatially coherent illumination case, the axial frequency
support is identically zero. This means that a coherent scattered field recovered from
holography does not permit optical sectioning in the imaging process. To fully resolve
the object, all the spatial frequency information (or equivalently the spatial informa-
tion) must be adequately sampled. The methods for fully capturing both the transverse
and axial spatial frequency information, called optical diffraction tomography (ODT),
make use of either object or beam rotation [37, 39, 40].

The opposite extreme of spatially coherent illumination is the case of spatially
incoherent illumination [41, 42]. We may still assume a long coherence time for the
case of quasi-monochromatic light. However, the temporally random variations of the
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illumination field sample the full range of possible incident spatial frequency that is
supported by the numerical aperture of the condenser lens. The image transfer model
for incoherent illumination exhibits a finite thickness at intermediate spatial frequen-
cies, yet still exhibits no spatial frequency support near zero transverse spatial fre-
quencies [43]. As a result, spatially incoherent imaging also lacks optical sectioning
capabilities. However, when an object is placed within the depth of focus of a micro-
scope with spatially incoherent illumination, an absorption tomographic image can be
reconstructed [41] with only a slight modification to the standard computed tomog-
raphy filtered back projection algorithm from a sequence of transillumination inten-
sity images taken over a full rotation of the object [40]. This imaging modality is
referred to as optical projection tomography.

Partially coherent illumination fits somewhere in between fully spatially coherent
and incoherent imaging. The image transfer model was derived by Streibl for linear
scattering under quasi-monochromatic, partially coherent illumination [43]. This
transfer function falls between that found for fully coherent and fully incoherent
illumination. While in the case of fully spatially coherent light, scattering is accumu-
lated from all depths, the image transfer function of partially coherent light acts as a
low-pass filter that rejects the defocused contributions [44]. Streibl showed that by
acquiring a stack of images in axial steps of the depth of focus, the set of data can be
deconvolved to obtain a three-dimensional image [45–47]. This same strategy—that of
a 3D deconvolution of a stack of images—is a productive approach for 3D imaging of
incoherent fluorescent emission [48, 49].

In recent years, Streibl’s approach has been expanded to other partially coherent
illumination sources. A method called white light diffraction tomography makes use
of spatially coherent light with very broad bandwidth, and thus short temporal
coherence [50]. When this very broad bandwidth light is used to illuminate a speci-
men with a very high NA objective, measurement of the complex field produced by
linear scattering through a variant of holography broadens the imaging transverse
function axially to permit optical sectioning. Three-dimensional images of the inho-
mogeneity of the linear susceptibility are then obtained through a 3D deconvolution
from a sequence of images taken as the object is displaced in the in the axial direction.

Another strategy that avoids the use of interferometry for extracting the complex
field is the use of asymmetric illumination apertures with partially coherent light [51].
When this illumination strategy is coupled with a rigorous model of the imaging
transfer function, again a 3D deconvolution can be applied to an axial image stack to
obtain a 3D image of the spatial variations in linear optical susceptibility.

The forms of tomography that we have discussed so far are primarily based on
optical scattering. As we discuss in detail in the later section, the reliance on scattering
with spatially coherent illumination allows for the measured field to relate the input
and output scattering directions, which pinpoints the spatial frequency component of
the object spatial susceptibility perturbation distribution. However, the short duration
of the excited state lifetime and rapid dephasing of fluorescent emitters renders them
spatially incoherent. While one might expect this spatial coherence to prevent inter-
ference, an individual fluorescent emitter will interfere with itself even though the
lack of spatial coherence prevents interference between emitters. As a result,
diffractive optical structures can be designed to enable depth-dependent interference
intensity structures that allow for holography of incoherent emitters [52, 53]. An
alternate strategy can be deployed for mimicking coherent scatting and holographic
imaging with incoherent emitters based on the interference of spatially coherent
illumination light, either between a plane wave and a point focus [54, 55] or with a
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pair of plane waves [56–61]. By using the interference between two spatially coherent
illuminating plane waves, one may perform tomographic imaging with fluorescent
emitters that exactly mimics ODT [62–65].

Widefield coherent nonlinear scattering enables the ability to form holograms
when a coherent reference beam is directed to interfere with the light produced from
the nonlinear scattering process [23, 29]. In the case of illumination with a plane wave
fundamental beam, the scattering picture for nonlinear scattering is nearly equivalent
to that of linear scattering, with a few modifications. These similarities and differ-
ences in the scattering picture will be discussed in later sections of this chapter. The
key observation is that we will not obtain any optical sectioning with strictly plane
wave illumination. However, due to the weak interaction strength for nonlinear scat-
tering, the fundamental excitation beam is generally weakly focused to provide a
balance between field of view activated in the nonlinear scattering process and signal
strength that is driven by suitably large field strengths. In such a weak excitation case,
moderate 3D imaging resolution is observed [34].

The fact that nonlinear scattering is driven by multiple input fields allows for a
completely new form of optical tomography that we called holographic optical
tomography (HOT) [35]. In HOT, we employ a high NA condenser to illuminate the
object with a broad range of input fundamental spatial frequencies. To ensure
widefield illumination, the object is illuminated at defocused plane where the beam is
spread out spatially. Because the nonlinear scattering process draws from a broad
distribution of illumination spatial frequencies from the full transverse spatial fre-
quency support of the condenser NA, the coherent transfer function for this widefield
coherent nonlinear scattering imaging process gains axial spatial frequency support,
and thus allows for optical sectioning. Now the strategy first demonstrated by Streibl
may be deployed so that 3D tomographic imaging can be obtained from the
deconvolution of an axial image stack using a model of the HOT coherent transfer
function.

4. Description of optical imaging systems

Optical microscopy can be modeled as a two-dimensional or three-dimensional
image collection system. As our focus here is the treatment of tomographic imaging
with coherently scattered light, we will provide a discussion of the imaging of spatially
coherent light. In the case of coherent nonlinear scattering, however, the weak
nonlinear light-matter interaction strength necessitates the use of pulsed light fields.
Because the light propagation [66, 67] is linear and shift-invariant, after the coherent
nonlinear scatter has occurred (as described in the following section), we may treat
the light propagation for each temporal and spatial frequency independently, so that
the total field may be obtained from the superposition of the imaged fields. A sche-
matic of the optical imaging system is shown in Figure 1.

The spatio-temporal variation of the scalar field is denoted by

Usc
j r, tð Þ ¼ aj tð Þe

�iωj tuj rð Þ (1)

Here, j is the order of the incident pulse with a complex slowly-varying temporal
envelope aj tð Þ, that is centered on optical frequency ωj ¼ jω1. The object is illuminated
by the incident fundamental pulsed field denoted with j ¼ 1 having a field spectrum
centered at ω1. The full spectrum of the complex analytic scalar field is simply
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Uj r, ωð Þ ¼ F t Usc
j r, tð Þ

n o

¼ Aj Ωj

� �

uj rð Þ, where F �f g is the Fourier transform opera-

tor with its subscript t denoting a transform with respect to the time variable t and the
relative frequency is Ωj ¼ ω� jω1. The complex temporal envelope is obtained
through the inverse Fourier transform of the field spectral amplitude as

aj tð Þ ¼ F
�1
t Aj Ωj

� �� �

. The time, t, and optical frequency, variables are conjugate as are
the three-dimensional spatial vector, r ¼ r⊥, zð Þ, and the spatial frequencies,
k ¼ 2π f⊥, f z

� �

. The transverse spatial coordinates are r⊥ ¼ x, yð Þ, with the

corresponding transverse spatial frequencies f⊥ ¼ f x, f y

� �

.

When imaging a coherent field from an object plane to an imaging plane, we can
use a simple shift-invariant model for each optical frequency component. The imaging
system will be described by an ideal telecentric 4-F imaging system as shown in
Figure 1 [66, 68]. Green’s function for a coherent 4-F imaging system is referred to as
the amplitude (or coherent) spread function (CSF), h r⊥ð Þ, which is expressed as the
spatial convolution

uim r⊥,im, ωð Þ ¼

ð

�∞

uo r⊥,o, ωð Þh r⊥,im � r⊥,o, ωð Þd2r⊥,o: (2)

Here, uim ¼ u z ¼ zimð Þ is the field at the image plane, uo ¼ u z ¼ zoð Þ is the field at
the object plane, r⊥,im is at the image plane and r⊥,o is at the object plane. The spatial
frequency representation is quite compact and elucidates the low-pass transverse
spatial filtering behavior of coherent optical imaging systems through the expression
as follows:

uim f⊥, ωð Þ ¼ H f⊥, ωð Þuo f⊥, ωð Þ: (3)

The coherent transfer function (CTF) is the Fourier transform of the CSF,
H f⊥, ωð Þ ¼ F r⊥ h r⊥, ωð Þf g. Here, we have assumed that the 4-F imaging system has
unity magnification for simplicity of notation. The expressions are easily generalized
to non-unity magnification [66].

As the propagation of coherent fields through a source-free region can be readily
described using the angular spectral propagator, the object field can thus, be propa-
gated from any reference plane to the conjugate object plane of the imaging system.
Similarly, the field in the imaging region can also be propagated from one plane to

Figure 1.
The schematic of the optical 4-F imaging system. We use Ui to denote the incident field, Ut to denote the total field,
Us to denote the field scattered from the object that is imaged as the image field Uim, and Ur is the reference field
that mixes with the images field to form the hologram.
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another. The angular spectral propagator for fields propagating in the positive z
direction, which we denote as our 4-F imaging system optical axis, is given simply by

u f⊥, zþ Δz, ωð Þ ¼ exp i2πγ f⊥, ωð ÞΔzð Þu f⊥, z, ωð Þ, z ¼ zim,zo, (4)

where the axial spatial frequency, γj f⊥, ωj

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nω=2π cð Þ2 � f⊥k k2
q

, c is the speed

of light in vacuum, and n ωð Þ ! n is the refractive index of the background medium at

optical frequency ω. Only non-evanescent spatial frequencies,
ffiffiffiffiffiffiffiffiffiffiffiffiffi

f⊥k k2
q

< nω=2π c,

propagate to the far field to be detected.
Within the theory of semiclassical light detection, we may describe the signal

recorded by a camera of an incident optical field as the time average of the zero-delay
field autocorrelation,

Idet r⊥, τð Þ ¼ Us
j r⊥, zim, t
� �

Ur, ∗

j r⊥, zim, tþ τ
� �

D E

t
: (5)

The angle brackets, < � > , denote a time average determined by the detector
timescale (e.g., the camera integration time), which for practical nonlinear holo-
graphic imaging is orders of magnitude longer than the coherent time of the light
fields. For τ ¼ 0, this signal can be equivalently represented by the weighted contri-

butions by the cross-spectral density of the light Wsr ωð Þ ¼ As ωð ÞAr, ∗ ωð Þ, leading to
the expression

Idet r⊥ð Þ ¼

ð

Wsr ωð ÞI r⊥, ωð Þdω: (6)

The intensity for spatially coherent fields, as we assume here, is defined as:

I r⊥, ωð Þ ¼ ju f⊥, zim, ω
� �

j2: (7)

Coherent tomographic imaging requires access to the field directly. This field can
be approximately retrieved experimentally through holography that relies on inter-
ference with a reference field, which we denote as ur ¼ Ar exp iϕrð Þ. For simplicity,
we have assumed that the reference field is unity amplitude and exhibits a relative
phase shift ϕr. This phase shift can vary linearly as in off-axis holography [7, 8, 36] or
relative phase shifts can be imparted in a series of measurements as is in phase shifting
holography [10]. In either case, the field intensity for the total field given by the sum
of the reference field and the images scattered field, ut ¼ ur þ uim leads to four terms

in the intensity that read It ¼ Ir þ Iim þ ur,
∗

uim þ uruim, ∗ . With suitable numerical
processing, we may then isolate the scattered field from the measurement, leading to

Iholo r⊥ð Þ ¼

ð

Wsr ωð Þur,
∗

r⊥, z
im, ω

� �

uim r⊥, ωð Þdω (8)

for the case of a unity amplitude reference field. In the transverse spatial frequency
domain, we may write this expression as:

Iholo r⊥ð Þ ¼ eiβr z
im

ð

Wsr ωð Þuim r⊥, ωð Þdω: (9)
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Here, we note that the image of the scattered field, us f⊥, ωð Þ, is low-pass filtered by
the imaging system CTF.

With a model of coherent imaging of the scattered field, we now need a descrip-
tion of the scattered field to proceed. In the following section, we derive the scattered

coherent nonlinear field the the mthorder harmonic driven by the fundamental field
pulse with an incident fundamental center frequency of ω1.

5. Coherent nonlinear scattering of scalar field

Our goal is to understand the imaging properties, capabilities, and limitations of
coherent nonlinear optical holography and tomography. While a full description of
coherent nonlinear scattering requires a vector treatment [17, 32, 34], we will restrict
our discussion to scalar fields. Such a treatment may provide an understanding of
holographic and imaging properties without loss of generality, as the measurement at
the camera always involves a projection of the nonlinear scattered field polarization
onto the reference field polarization [34]. Thus, we post-select a particular polariza-
tion component that can then be regarded as a scalar nonlinear field.

In the scalar description that follows, we begin with the wave equation, where we
have made the usual assumptions for optical propagation. Explicitly, these assump-
tions are that we consider a region devoid of free charges and associated free-charge
current densities. Moreover, we assume nonmagnetic media, so the magnetic perme-
ability used is simply that of free space. To simplify the wave equation, we assume

that both the linear, χ 1ð Þ, and nonlinear, χ mð Þ, optical susceptibilities are scalar quanti-
ties to facilitate a scalar treatment. Finally, we assume that any spatial variation in
optical susceptibility is weak compared to the mean optical susceptibility, i.e.,

δχ mð Þ rð Þ≪ χ mð Þ ¼ χ mð Þ rð Þ
	 


r
, and the angle brackets denote a spatial average. This

assumption means that to first order we may treat the medium as spatially homoge-
neous, which allows for simplification of the wave equation. The inverse scattering

problem for imaging the spatial variations of optical susceptibility, δχ mð Þ rð Þ, are
treated as a perturbation to the driven homogeneous wave equation.

5.1 Scattering model of scalar field

Making explicit use of the assumptions stated above, we may combine two of
Maxwell’s equations to obtain the optical wave equation:

∇� ∇� U r, tð Þ þ μ0
∂
2
D r, tð Þ

∂t2
¼ 0: (10)

Here, U is the electric field which is assumed to be scalar. The right-hand side of
the equation above is 0 because the external source of the field is excluded from the
interested region and we assume there is no internal source, i.e., the material is not
self-luminous. Here, D is the scalar displacement vector that describes the displace-
ment current, including the linear and nonlinear response from bound charges in the
material. The nonlinear contributions to this displacement constitute the quantity that
we wish to image. Here, U andD denote real fields. Below, we will drive coupled wave
equations for the propagation of the fundamental and nonlinear fields, where we
assume that these fields may be described as complex analytic functions.
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For isotropic media that can, to the first approximation, be treated as spatially
homogeneous, in the absence of free charges, Gauss’ law, ∇ �D ¼ 0, allows us to make
the approximation ∇ � U≈0. Making use of this simplification and a standard vector
identity, the first term in Eq. (10) simplifies to

∇� ∇� U ¼ ∇ ∇ � Uð Þ � ∇2
U ¼ �∇2

U: (11)

Now, Eq. (10) becomes

∇2
U � μ0

∂
2
D

∂t2
¼ 0: (12)

Our interest lies in the nonlinear response, which is encapsulated in the real
displacement field, which is written as

D r, tð Þ ¼ ε0U r, tð Þ þ P r, tð Þ: (13)

The total real polarization density of the form of a superposition of the linear and
the nonlinear response is given by

P r, tð Þ ¼ P
L r, tð Þ þ P

NL r, tð Þ: (14)

The linear polarization density follows a convolution of the linear optical response
of the medium

P
L r, tð Þ ¼ ε0

ðt

�∞

R 1ð Þ r, τð ÞU r, τð Þdτ: (15)

The linear, causal optical response function of the medium is R 1ð Þ r, tð Þ and is
related to the frequency-dependent optical susceptibility through the temporal

Fourier transform relationship R 1ð Þ r, tð Þ ¼ Fω χ 1ð Þ r, ωð Þ
� �

. Here, Fω �f g ¼ F
�1
t �f g ¼

2πð Þ�1 Ð F ωð Þ exp �iω tð Þdω denotes an inverse Fourier transform.
For nonresonant interactions, the nonlinear polarization density may generally be

expanded as a power series of the form

P
NL r, tð Þ ¼ P

2ð Þ r, tð Þ þ P
3ð Þ r, tð Þ þ⋯þ P

mð Þ r, tð Þ þ⋯: (16)

Details of the nonlinear polarization density will be deferred to a later section.
These nonlinear polarization density terms drive a wide range of nonlinear optical
processes. For our purposes, we will focus on m ¼ 2,3 and only consider the processes
that drive second and third harmonic generation (SHG and THG).

Combining all of these expressions, we arrive at our wave equation for coherent
nonlinear scattering that reads the equation:

∇2
U r, tð Þ � μ0 ε0

∂
2
U r, tð Þ

∂t2
� μ0

∂
2
P

L r, tð Þ

∂t2
� μ0

∂
2
P

NL r, tð Þ

∂t2
¼ 0: (17)

5.2 Wave equation in the frequency domain

The time-domain equation may easily be represented in the frequency domain by
noting that the fields can be represented through an inverse Fourier transform as
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U r, tð Þ ¼ Fω U r, ωð Þf g, PL r, tð Þ ¼ Fω P
L r, ωð Þ

� �

, and P
NL r, tð Þ ¼ Fω P

NL r, ωð Þ
� �

.
The spectra of the real fields are denoted with the argument ω.

Applying the second-order temporal partial derivatives to the inverse Fourier
transform in Eq. (17) produces the frequency-domain wave equation:

∇2
U r, ωð Þ þ ω2μ0 ε0U r, ωð Þ þ ω2μ0P

L r, ωð Þ þ ω2μ0P
NL r, ωð Þ ¼ 0: (18)

Making use of the time-domain linear response function in Eq. (15), we may write
the equation:

P
L r, ωð Þ ¼ ε0 χ

1ð Þ r, ωð ÞU r, ωð Þ: (19)

Defining the refractive index in the usual way as n2 r, ωð Þ ¼ 1þ χ 1ð Þ r, ωð Þ and the
wavenumber as β r, ωð Þ ¼ ωn r, ωð Þ=c and where the phase velocity of light in a vac-

uum is c ¼ μ0 ε0ð Þ�1=2, then the wave equation may be written as:

∇2
U r, ωð Þ þ β2 r, ωð ÞU r, ωð Þ ¼ �ω2μ0P

NL r, ωð Þ: (20)

This equation is now a forced Helmholtz equation, where the LHS describes linear
scattering and the RHS is the nonlinear forcing function.

5.3 Slowly varying envelope approximation

The wave equation in Eq. (20) contains the spectrum of the real fields and polar-
ization densities, which includes the complex conjugate of the positive frequencies in
the negative frequency region. In addition, these spectra include all optical frequen-
cies, including the fundamental and the nonlinear scattered fields. To simplify these
expressions, we assume that each spectral region can be written as a separate spectral
envelope, so that we consider, in general, a set of optical pulses (or cw fields) with
frequencies centered at ωj so that we may decompose the total (real) field as the
superposition

U r, tð Þ ¼
X

j

U j r, tð Þ (21)

with the distinct spectral bands centered about ωj. We now write the complex

analytic scalar field U for the jth frequency band as:

U j r, tð Þ ¼
1

2
U r, tð Þ þ

1

2
U ∗ r, tð Þ, (22)

where ∗ denotes the complex conjugate.
We assume that we have pulses well described by a slowly varying envelope in

time relative to the rapid oscillations of a carrier (center) frequency, ωj. Thus, the total
field can be written as a slowly varying temporal envelope, aj tð Þ, and spatial envelope,
uj rð Þ, multiplied by a rapidly varying carrier that is nominally propagating along the
direction z, giving

Uj r, tð Þ ¼ aj tð Þuj rð Þ exp iβj z� iωj t
� �

: (23)
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The wavenumber at frequency ωj is defined by βj ¼ ωjnj=c, where

nj ¼ n r, ωj

� �	 


r
. The positive frequency (complex analytic field),

Uj r, ωð Þ ¼ Fω Uj r, tð Þ
� �

, then reads the following equation:

Uj r, ωð Þ ¼ Aj ω� ωj

� �

uj rð Þeiβj z: (24)

For the convenience of notation, by defining Ωj ¼ ω� ωj, we may write

aj tð Þ ¼ FΩj Aj Ωj

� �� �

. With this definition, we use the standard approach of describing
a pulse in terms of a center of mass (of the power spectral density of the light field),
ωj, and a slowly varying envelope in time, aj tð Þ. We assume that these fields have a
temporal envelope that varies slowly with respect to the oscillation of the carrier, ωj.
This is the standard slowly varying envelope approximation.

5.4 Harmonic generation

The nonlinear polarization density, e.g., for SHG scattering with m ¼ 2, (assuming
scalar interactions for simplicity) is given by

P
NL r, tð Þ ¼ ε0 χ

mð Þ rð ÞUm r, tð Þ: (25)

We have explicitly ignored spectral dispersion of the second-order nonlinear coef-
ficient in this expression, and as such we do not need the second-order time response
integral nor the second-order response function. Physically, these assumptions equate
to assuming that the second-order polarization density responds instantly. Note also
that the field and polarization density are described by real quantities in this expres-
sion. While many nonlinear interactions can occur, we focus our discussion on coher-
ent nonlinear scattering where we scatter to new frequencies at ωm ¼ mω1 due to a
nonlinear dipole that oscillates at m times the input fundamental center frequency ω1.

The many interaction terms are considered by taking the mth power of the total

field that we consider as a superposition of the fundamental, U1, and the mth harmonic
field, Um. This expansion provides two complex analytic terms leading to a polariza-

tion density that generates the mth harmonic frequency ωm, given by

P mHGð Þ r, tð Þ ¼
1

2m�1 ε0 χ
mð Þ rð ÞUm

1 r, tð Þ: (26)

This term drives coherent nonlinear scattering from the fundamental optical fre-
quency centered at ω1 to the harmonic frequency centered at ωn. We may also
consider the complementary process in which the nonlinear field is back-converted to
the fundamental through the polarization density term that oscillates at the center
frequency ω1

P bcð Þ r, tð Þ ¼ ε0 χ
mð Þ rð ÞU ∗

1 r, tð ÞUm r, tð Þ: (27)

In an imaging scenario, we may assume that very little coherent linearly scattered
power is generated. Thus, we may assume that Um ≪U1, and that U1 is constant
throughout the interaction region. The mathematical approximation for this condition
is referred to as the undepleted pump approximation. In this approximation, we may
drop the back-conversion term. In addition, we will see that this approximation
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naturally leads to a nonlinear scattering equation that is homologous to linear scatter-
ing in the first Born approximation.

As a specific example, consider SHG, where the time-domain polarization density
for the SHG source term reads

P SHGð Þ r, tð Þ ¼
1

2
ε0 χ

2ð Þ rð Þu21 rð Þa21 tð Þei 2β1 z�2ω1 tð Þ: (28)

The polarization density for SHG oscillates with a center frequency of ω2 ¼ 2ω1

and is described by the fundamental pulse spectral autocorrelation that appears from
the Fourier transform of the square of the slowly varying fundamental pulse temporal
envelope as given by

P SHGð Þ r, Ω2ð Þ ¼
1

2
ε0 χ

2ð Þ rð Þei2β1 zu21 rð ÞFω a21 tð Þe�i 2ω1 t
� �

: (29)

5.5 Coupled wave equations

Making use of the nonlinear scattering assumptions noted in the previous section
we are now in a position to write the coupled wave equations for the coherent
nonlinear scattering process.

∇2 þ β210n
2 r, ωð Þ

� �

U1 r, ωð Þ ¼ 0, (30)

∇2 þ β2m0n
2 r, ωð Þ

� �

Um r, ωð Þ ¼ �ω2μ0P
mHGð Þ r, ωð Þ, (31)

and where the nonlinear polarization density reads

P mHGð Þ r, ωð Þ ¼
1

2m�1 ε0 χ
mð Þ rð Þum1 r, ωð Þeimβ1 zFω am1 tð Þe�imω1 t

� �

: (32)

The first equation describes linear scattering, while the second is the nonlinear

scattering at the mth harmonic. Critically here, we have used the undepleted pump
approximation because the nonlinear scattered field is assumed to ever gain enough
strength to drive the back conversion process. In addition, we assume zero input

coherent nonlinear field at the input boundary. The free-space wavenumber for the jth

frequency term is βj0 ¼ ωj=c.

By defining the mth-order autocorrelation function as

Am Ωmð Þ ¼ Fω am1 tð Þe�imω1
� �

, (33)

we may write the forced equation governing linear and coherent nonlinear scat-
tering as:

∇2 þ β210n
2 r, ωð Þ

� �

u1 r, ωð ÞA1 Ω1ð Þ ¼ 0, (34)

∇2 þ β2m0n
2 r, ωð Þ

� �

um r, ωð ÞAm Ωmð Þ ¼ �
β2m0

2m�1 χ
mð Þ rð Þum1 r, ωð ÞAm Ωmð Þ: (35)

This form of the equations admits the construction of solutions from the free space
Green’s functions. Here, we have assumed that spectral width is sufficiently narrow
than the multiplicative ω2≈ω2

m.
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The equations above allow for a general spectrally-varying treatment of coherent
nonlinear holography and tomography. However, the effects of the spectral variation
on propagation and on the interpretation of scattering are not strongly dependant on
the pulse spectrum. In order to simplify the following interpretation of the imaging
transfer function, we will assume that we have a narrow enough spectrum so we may
make a continuous wave (cw) approximation, where Am Ωmð Þ≈Am δ Ωmð Þ. Invoking
this approximation and integrating over Ωm and assuming unity amplitude fields leads
to the simplified form of the coupled wave equations given by

∇2 þ β210n
2 r, ω1ð Þ

� �

u1 r, ω1ð Þ ¼ 0, (36)

for the fundamental and

∇2 þ β2m0n
2 r, ωð Þ

� �

um r, ωð Þ ¼ �
β2m0

2m�1 χ
mð Þ rð Þum1 r, ωð Þ (37)

for the nonlinear harmonic field (Figure 2).

5.6 Holography with a linear scattering

Inspection of the coupled wave equations in Eqs. (36) and (37) makes it clear that
within the undepleted pump approximation the fundamental field solution is inde-
pendent of the nonlinear scattering. Thus, it is fruitful to first obtain a solution to the
linear field propagation, and we will consider the general case where the linear sus-
ceptibility varies in space. We may rewrite Eq. (36) in the form of the equation:

∇2 þ β210n
2
1

� �

u1 rð Þ ¼ �β210 δχ
1ð Þ rð Þu1 rð Þ: (38)

Our goal is to solve for δχ 1ð Þ rð Þ ¼ χ 1ð Þ rð Þ � χ 1ð Þ to produce an image of image the
susceptibility variation, which constitutes our object. The background linear optical

susceptibility, χ 1ð Þ, is chosen so that δχ 1ð Þ rð Þ lies in a compact domain, i.e., so that it is
contained within some volume V. The background refractive index at the fundamen-

tal frequency ω1 is then given by n21 ¼ 1þ χ 1ð Þ.
Solutions to Eq. (38) in the first Born approximation may be constructed using

Green’s theorem with the formula as follows:

Figure 2.
The scattering model. The object is illuminated by a fundamental wave, for example, a plane wave with
wavevector ki. The field scattered from the object, with a range of detected wavevectors k, is measured at the plane
perpendicular to z axis with a size limited by the objective. The origin of the coordinate is denoted by the black dot.

For nonlinear scattering, we have ki ! ki
1
, k ! km.
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u1 rð Þ ¼ u
ið Þ
1 rð Þ � β210

ð

V
g r, r0ð Þδχ 1ð Þ r0ð Þu

ið Þ
1 r0ð Þd3r0: (39)

Such solutions in the domain outside of the compactly supported susceptibility
perturbation, i.e., r ∉ V, can be constructed because we have defined the susceptibil-
ity perturbation so that it is contained inside of the volume V. The free-space Green’s
function is defined by

∇2g r, r0ð Þ þ β21 g r, r0ð Þ ¼ δ 3ð Þ r� r0ð Þ, (40)

where β1 ¼ n1 β10. The incident fundamental wave, u
ið Þ
1 rð Þ, is a solution to the

homogeneous wave equation, given by Eq. (38) when the susceptibility term vanishes

with δχ 1ð Þ rð Þ ¼ 0.
Making use of a three-dimensional spatial frequency decomposition, where

kj ¼ kjx, kjy, kjz
� �

, and where the norm of the wavevector gives the wavenumber

kj � kj ¼ β2j , Green’s function is written as

g r, r0ð Þ ¼
1

2πð Þ3

ð

∞

�∞

g k1ð Þeik1� r�r0ð Þd3k1: (41)

Making use of this expansion in Eq. (39) produces the spatial frequency spectrum
of the free space Green’s function as:

g k1ð Þ ¼
1

k1z � Γ1ð Þ k1z þ Γ1ð Þ
: (42)

Here, we have defined the transverse spatial frequency vector kj⊥ ¼ kjx, kjy
� �

as

well as Γj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2j � kj⊥









2
q

.

Computation of the inverse Fourier transform along the z direction by making use
of contour integration leads to the Weyl expression for Green’s function, that is:

g r⊥, z, r
0
⊥, z

0
� �

¼
1

i4π

ð

∞

�∞

eik1⊥� r⊥�r0⊥ð ÞeiΓ1 k1⊥ð Þ ∣z�z0∣

Γ1 k1⊥ð Þ
d2k1⊥: (43)

By defining the source term in the RHS of Eq. (38) as S1 rð Þ ¼ δχ 1ð Þ rð Þu
ið Þ
1 rð Þ in the

first Born approximation, we may write the solution for the scattered wave as:

u1 k1ð Þ ¼ u
ið Þ
1 k1ð Þ � β210 g k1ð ÞS1 k1ð Þ: (44)

Here, the spectrum of the source term reads S1 k1ð Þ ¼ δχ 1ð Þ k1ð Þ⊛k1u
ið Þ
1 k1ð Þ and the

spectrum of the input fundamental wave that is propagating along þz is

u
ið Þ
1 k1ð Þ ¼ Hi k1⊥ð Þδ k1z � Γ1 k1⊥ð Þð Þ. The operator ⊛ represents a convolution.
The forward and backward scattered fields are obtained by applying contour

integration and selecting the suitable residue from the simple roots of Eq. (42). In the
forward direction (z>0), we can obtain the field as:

u
f
1 k1⊥, zð Þ ¼ u

ið Þ
1 k1⊥, zð Þ � i

β210 e
iΓ1 z

2Γ1 k1⊥ð Þ
S1 k1⊥, Γ1ð Þ: (45)
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In the backward direction, z<0, we obtain

ub1 k1⊥, zð Þ ¼ i
β210 e

�iΓ1 z

2Γ1 k1⊥ð Þ
S1 k1⊥, �Γ1ð Þ: (46)

We will restrict our discussion to the forward-propagating wave collected by the
imaging system with a coherent transfer function given by Ho k1⊥ð Þ. Thus, the imaged
field reads as:

uim1 k1⊥, zð Þ ¼ �iHo k1⊥ð Þ
β210 e

iΓ1 z

2Γ1 k1⊥ð Þ
S1 k1⊥, Γ1ð Þ: (47)

Here, we have dropped the unscattered portion of the incident field to focus on the
scattered field and simplify the discussion that follows.

In the process of recording a hologram, we multiply by a reference field,

uref1 k1⊥, zð Þ ¼ δ 2ð Þ k1⊥ð Þ exp iβ1 zð Þ, so that our cw hologram signal,

Iholo1 r⊥, zð Þ ¼ uref,
∗

1 r⊥, zð Þuim1 r⊥, zð Þ, which leads to the transverse spectrum of the
hologram is given by the cross-correlation operation

Iholo1 k1⊥, zð Þ ¼ uim1 k⊥, zð Þ⊗ k1⊥
uref1 k1⊥, zð Þ: (48)

The operator ⊗ represents a correlation. We have also assumed that the holo-
graphic interference term has been shifted to baseband. After evaluation of the cross-
correlation integral, the hologram transverse spectrum now reads

Iholo1 k1⊥, zð Þ ¼ uim1 k⊥, zð Þe�iβ1 z: (49)

To simplify our analysis of the hologram, we will first consider the special case of

the fundamental incident wave as a plane wave incident along the direction ki
1, with

amplitude Hi k
i
1⊥

� �

, so that ui1 ¼ Hi k
i
1⊥

� �

exp iki
1 � r

� �

and the corresponding spectrum

reads ui1 k1ð Þ ¼ 2πð Þ3Hi k
i
1⊥

� �

δ 3ð Þ k1 � ki
1

� �

.

For the plane illumination case, we may specifically write out our source term
convolution integral as follows:

S1 k1ð Þ ¼

ð

δχ 1ð Þ k1 � k10ð Þui1 k10ð Þd3k10 (50)

as

S1 k1ð Þ ¼ Hi k
i
1⊥

� �

eiβ1 z δχ 1ð Þ k1 � ki
1

� �

: (51)

Now the imaged scattered field hologram for a single incident fundamental plane
wave illumination reads as:

Iholo1 k1⊥, zð Þ ¼ �iHo k1⊥ð ÞHi k
i
1⊥

� � β210 e
i Γ1�β1ð Þ z

2Γ1 k1⊥ð Þ
δχ 1ð Þ k1⊥ � ki

1⊥, k1z � Γ
i
1

� �

: (52)

Note that Γi
j ki

j⊥

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2j � ki
j⊥













2
r

and the spatial vector is decomposed as

r ¼ r⊥, zð Þ. We see that the 2D Fourier transform of the measured field is related to
the 3D Fourier transform of the susceptibility distribution of the object.
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Making a coordinate transform into the spatial frequency space of the object by

defining the scattering vector Q ¼ Q ⊥, Qzð Þ � k1 � ki
1, then we may rewrite the

hologram transverse spectrum for a single plane wave illumination as:

Iholo1 Q ⊥, zð Þ ¼ �iHo Q ⊥ þ ki
1⊥

� �

Hi k
i
1⊥

� � β210 e
i Γ1 Q ⊥þki

1⊥ð Þ�β1ð Þ z

2Γ1 Q⊥ þ ki
1⊥

� � δχ 1ð Þ Qð Þ: (53)

Now, we may take the Fourier transform along z, giving us

Iholo1 Q ⊥, Qzð Þ ¼ �iβ210Ho Q ⊥ þ ki
1⊥

� �

Hi k
i
1⊥

� � δ Qz þ β1 � Γ1 Q ⊥ þ ki
1⊥

� �� �

2Γ1 Q ⊥ þ ki
1⊥

� � δχ 1ð Þ Qð Þ:

(54)

The Dirac delta function has selected the portions of the Ewald sphere that are
supported by the illumination and collection optical system transfer functions given as
Hi and Ho, respectively. The hologram field may now be written as a simple linear
shift-invariant model with

Iholo1 Qð Þ ¼ Hlin Qð Þδχ 1ð Þ Qð Þ: (55)

By inspection of Eq. (54), we may identify the transfer function for a single
illumination plane wave, which is given by:

Hi
lin Qð Þ � �iβ210Ho Q ⊥ þ ki

1⊥

� �

Hi k
i
1⊥

� � δ Qz þ β1 � Γ1 Q ⊥ þ ki
1⊥

� �� �

2Γ1 Q ⊥ þ ki
1⊥

� � : (56)

When using a non-negligible illumination condenser optic NA, then the
super-position of all of the illumination k-vectors must be considered so that we
can get:

Hlin Qð Þ � �iβ210

ð

Ho Q⊥ þ ki
1⊥

� �

Hi k
i
1⊥

� � δ Qz þ β1 � Γ1 Q ⊥ þ ki
1⊥

� �� �

2Γ1 Q ⊥ þ ki
1⊥

� � d2ki
1⊥: (57)

Here, we have suppressed the explicit optical frequency dependence. For a short
pulsed illumination, we would make use of an effective transfer function weighted by
the cross-spectral density of the scattered and reference waves:

Hlin Qð Þ ¼

ð

Hlin Qð ÞWsr ωð Þdω: (58)

Notice that only the terms β1 and β10 exhibit spectral dependence, provided that

we can neglect dispersion of δχ 1ð Þ.

5.7 Coherent nonlinear scattering, holography, and tomography

The linear scattering case can be easily extended to nonlinear scattering. For mth-
order scattering, we first assume that we have zero-incident harmonic field, so that
only the scattered fields appear in the expressions. We assume a mean refractive index
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at the harmonic of n2m ¼ n2m rð Þ
	 


r
, so that we may define βm ¼ nmβm0 and

βm0 ¼ mω1=c. Furthermore, we define the magnitude of the phase mismatch at
Δβ ¼ βm �mβ1 ¼ mβ10 nm � n1ð Þ. This parameter is defined to be positive for material
that exhibits normal dispersion. This presents a scattering exclusion zone near the
origin.

Consider Eq. (37), which is a driven Helmholtz equation analogous to Eq. (38), but

where we make the substitutions β210 ! β2m0=2
m�1, δχ 1ð Þ rð Þ ! χ mð Þ rð Þ, and

u1 rð Þ ! um1 rð Þ. Now we obtain a nonlinear scattering version of Eq. (44), but where
no incident field is present due to the zero boundary condition identified above and
we make the further substitutions k1⊥ ! km⊥, Γ1 ! Γm, and modify the source term
to read

Sm kmð Þ ¼ χ mð Þ kmð Þ⊛km
u

mð Þ
i kð Þ: (59)

where u mð Þ
i kð Þ ¼ F 3D um1 rð Þ

� �

.

Defining a generalized nonlinear scattering vector Q ¼ Q ⊥, Qzð Þ � km � ki
m,

where ki
m ¼

Pm
j¼1k

jð Þ
1 , and explicitly we have ki

m⊥ ¼
Pm

j¼1k
jð Þ
1⊥ and Γ

i
m ¼

Pm
j¼1Γ

jð Þ
1 .

Then, by following the arguments in the previous section, we may again obtain a
linear shift-imaging imaging model given by

Iholom Qð Þ ¼ HmHG Qð Þχ mð Þ Qð Þ: (60)

Here, the transfer function for the harmonic holography reads:

HmHG Qð Þ ¼

ð

Hi
mHG Qð Þd2ki

m⊥: (61)

And where the integrand is given by:

Hi
mHG Qð Þ � �

i

2m�1 β
2
m0Ho Q ⊥ þ ki

m⊥

� �

u
mð Þ
i ki

m⊥

� � δ Qz þ βm � Γm Q ⊥ þ ki
m⊥

� �� �

2Γm Q ⊥ þ ki
m⊥

� � :

(62)

A similar extension to illumination with a short optical pulse can be applied to this
transfer function as was applied in the linear scattering case (Figure 3).

5.8 Example: second harmonic generation holography

Coherent nonlinear holography offers new possibilities for expanded spatial fre-
quency support due to the effect of noncollinear mixing of fundamental spatial fre-
quencies in the nonlinear mixing process [35]. The key difference lies in the source
term, which for SHG reads:

S2 k2ð Þ ¼

ð

χ 2ð Þ k2 � k20ð Þu
2ð Þ
i k20ð Þd3k20 : (63)

The spectrum of the square of the field is the autoconvolution of the spectrum,
ui2 k2ð Þ ¼ ui1 k1ð Þ⊛k1

ui1 k1ð Þ, which is given by the integral
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u
2ð Þ
i k2ð Þ ¼

ð

ui1 k1ð Þui1 k2 � k1ð Þd3k1: (64)

The autoconvolution of the fundamental field spectrum also appears in the prob-
lem of modeling reflectance confocal microscopy [69] and for an illumination objec-
tive with a half-opening angle α that is defined by sin α ¼ NA=n and reads as:

u
2ð Þ
i k2⊥, k2zð Þ ¼

4β2
πK

sin �1 1

p
1�

2β2 cos α

∣k2z∣

� �� �

,for ∣k2z∣ ≥ 2β2 cos α: (65)

Here, we use the parameters p ¼ 2β2jk2⊥jð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� K=2β2ð Þ2
q

= K jk2zjð Þ and

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k22⊥ þ k22z

q

.

Now, we consider the case where we have two input fundamental plane waves

u10 rð Þ ¼ a0 exp ik10 � rð Þ and u1
} rð Þ ¼ a} exp ik1

} � r
� �

. Now, the integral in Eq. (64)

u
2ð Þ
i k2ð Þ ¼ a0a}

ð

δ 3ð Þ k1 � k10ð Þδ 3ð Þ k2 � k1 � k1
}

� �

d3k1, (66)

which simplifies to

u
2ð Þ
i k2ð Þ ¼ a0a} δ 3ð Þ k2 � k10 � k1

}

� �

: (67)

Figure 3.
Visualization of the construction of the SHG coherent transfer function (CTF) using Eqs. (64) and (65). Panel (a)
and (b) show the fundamental pupil function of the condenser lens with an NA of .3. Panel (c) shows the resultant

distribution for u
2ð Þ
i k2ð Þ. Panel (d) shows the pupil function for the objective lens collecting SHG light (NA = .9).

Panel (e) shows panel (c) again to graphically illustrate the convolution between (d) and (e) that appears at the
SHG CTF in panel (f). The final result in panel (f) is the total contribution of all possible plane wave angles and
collected SHG allowed by the optics of the system as shown in Eq. (76).
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So that now the source term evaluates to read

S2 k2ð Þ ¼ a0a} χ 2ð Þ k2⊥ � k1⊥
0 � k1⊥

}, k2z � Γ10 � Γ1
}

� �

: (68)

The imaged SHG field reads

uim2 k2⊥, zð Þ ¼ �iHo k2⊥ð Þ
β220 e

iΓ2 k2⊥ð Þ z

4Γ2 k2⊥ð Þ
S2 k2⊥, Γ2ð Þ: (69)

The SHG hologram reads

Iholo2 k2⊥, zð Þ ¼ uim2 k2⊥, zð Þe�iβ2 z: (70)

For the case with a pair of fundamental plane waves, the SHG hologram term

Iholo2 k2⊥, zð Þ ¼ �iHo k2⊥ð Þu
2ð Þ
i ki

2⊥

� � β220 e
i Γ2 k2⊥ð Þ�β2ð Þ z

4Γ2 k2⊥ð Þ
χ 2ð Þ k2⊥ � ki

2⊥, k2z � Γ
i 2ð Þ
1

� �

:

(71)

We have defined in incident SHG vector as the sum of the two incident funda-

mental k-vectors, ki
2 ¼ k10 þ k1

}, and explicitly we have ki
2⊥ ¼ k1⊥

0 þ k1⊥
} and

Γ
i 2ð Þ
1 ¼ Γ1

0 þ Γ1
}.

Defining a new SHG scattering vector Q ¼ Q ⊥, Qzð Þ � k2 � ki
2, then we may

rewrite the SHG hologram as

Iholo2 Q ⊥, zð Þ ¼ �iHo Q ⊥ þ ki
2⊥

� �

u
2ð Þ
i ki

2⊥

� � β220 e
i Γ2 Q ⊥þki

2⊥ð Þ�β2ð Þ z

4Γ2 Q ⊥ þ ki
2⊥

� � χ 2ð Þ Qð Þ: (72)

Now we may take the Fourier transform along z, giving us (Figure 4)

Figure 4.
An illustration of the contributions to the SHG CTF as described in Eq. (76). The green arrows represent the
scattered SHG direction, the red arrows show the pair of incident fundamental plane wave direction that generate
SHG scattering. The angle of the red arrows is limited by the condenser lens whereas the angle of the green arrow is
limited by the objective lens. The color map is the contribution of all fundamental input plane waves given in
Eq. (75). The dashed lines show the possible SHG scattering contributions of the detected scattering angle.
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Iholo2 Q ⊥, zð Þ ¼ �iβ220Ho Q ⊥ þ ki
2⊥

� �

u
2ð Þ
i ki

2⊥

� � δ Qz þ β2 � Γ2 Q ⊥ þ ki
2⊥

� �� �

4Γ2 Q ⊥ þ ki
2⊥

� � χ 2ð Þ Qð Þ:

(73)

The SHG hologram field may now be written as a simple linear shift invariant
model with

Iholo2 Qð Þ ¼ HSHG Qð Þχ 2ð Þ Qð Þ: (74)

The transfer function for a pair of fundamental illumination plane waves, is given
by

Hi
SHG Qð Þ ¼ �iβ220Ho Q ⊥ þ ki

2⊥

� �

u
2ð Þ
i ki

2⊥

� � δ Qz þ β2 � Γ2 Q⊥ þ ki
2⊥

� �� �

4Γ2 Q ⊥ þ ki
2⊥

� � : (75)

When using a non-negligible illumination condenser optic NA, then the super-
position of all of the illumination k-vectors must be considered, so that

HSHG Qð Þ ¼ �iβ220

ð

Ho Q⊥ þ ki
2⊥

� �

u
2ð Þ
i ki

2⊥

� � δ Qz þ β2 � Γ2 Q ⊥ þ ki
2⊥

� �� �

4Γ2 Q ⊥ þ ki
2⊥

� � d2ki
2⊥:

(76)

6. Harmonic optical tomography (HOT) conclusions

The conventional approach to harmonic holography, that is imaging of nonlinear
scattering with holographic detection using a coherent harmonic reference beam,
cannot provide depth information, known as optical sectioning. While one can rotate
the illumination beam or the object, neither of these strategies are very practical. In
the case of object rotation, the mechanical positioning errors introduced by the trans-
lation and rotation stages make high-resolution imaging all but impossible. While
illumination beam scanning is easier, one is left with the classic missing cone problem,
and thus estimation of the object is a difficult inverse problem that is prone to
distortion.

A few years ago, we introduced a completely new strategy that takes advantage of
the fact that coherent nonlinear scattering mixes all possible pairs of incident funda-
mental plane waves to produce a vast array of scattering directions. The result is that
with a suitably large condenser NA for focusing the fundamental light, optical sec-
tioning is admitted into the imaging process. Clearly, point scanning nonlinear scat-
tering takes advantage of this very feature, but in that case, the total power of the
scattered harmonic field is detected. As a result, one cannot obtain direct access to the

desired nonlinear susceptibility, χ mð Þ rð Þ. Detection of the field in such a point scanning
approach would allow for an identical information transfer from the object to the
image as we demonstrate in HOT.

However, HOT is able to exploit cameras, which provides several advantages.
First, we have increased speed because we capture a widefield holographic image
from which the mHG field is extracted. Second, we benefit from heterodyne
amplification of the field because we can bring a strong reference field to detect a
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weak harmonic field and push to very high imaging speeds [31]. Third, because the
CTF exhibits broadening along the direction of propagation (k2z), the SHG field
image is in focus over a finite depth of field. This means that we may take an image
stack by either translating the object axially (along z), or by imparting a defocus

phase to scan the depth. To produce a 3D tomographic image of χ 2ð Þ rð Þ, the extracted
field stack is deconvolved with the CTF (see Figure 5). While the low NA example in
Figure 5 shows negligible optical sectioning, increases in the condenser NA rapidly
expand the axial spatial frequency support. There is ample opportunity to further
optimize the resolution, speed, and sensitivity of HOT. In addition, there are
opportunities to implement HOT for other coherent nonlinear scattering
mechanisms, such as third harmonic generation (THG). Moreover, the polarization
behavior can be exploited, and the fact that we detect the fields, rather than the
intensity means that the sign, and thus the orientation of the susceptibility tensors
are accessible.

This chapter focused on the background to introduce the uninitiated to the topics
of coherent holography and tomography. We provided a full and rigorous scalar
treatment of coherent nonlinear scattering for holographic and nonlinear imaging and
tomography. Because most readers will be more familiar with linear scattering, we
reviewed linear scattering and then demonstrated the homology to coherent nonlinear
scattering through variable substitution to convert from the linear to the nonlinear
scattering formulae. The critical difference between linear and nonlinear cases is that
the source term in the nonlinear case provides vastly increased spatial frequency
support. We demonstrated that this spatial frequency support could be related to a
linear shift-invariant imaging model for coherent nonlinear scattering when holo-
graphic detection is used. As a result, the entire imaging process can be characterized
by a coherent transfer function (e.g., Figure 5). Expressions for computing the CTFs
for coherent nonlinear holographic imaging and tomography are derived. We hope
that the theory introduced here will inspire new researchers to investigate the use of
powerful coherent nonlinear holographic imaging and tomography tools.
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