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Abstract

Condition monitoring strategies play an important key role to ensure the proper
operation and/or working conditions in electrical, mechanical, and electronic systems;
in this sense, condition monitoring methods are commonly implemented aiming to
avoid undesired breakdowns and are also implemented to extend the useful life of the
evaluated elements as much as possible. Therefore, the objective of this work is to
report the new trends and challenges related to condition monitoring strategies for
assessing the state-of-charge in batteries under the Industry 4.0 framework. Specifi-
cally, this work is focused on the analysis of those signal processing and artificial
intelligence techniques that are implemented in experimental and model-based
assessing approaches. With this work, important aspects may be highlighted as well as
the conclusions and prospects may be included for the development trend of condi-
tion monitoring strategies to assess and ensure the state-of-charge in batteries.

Keywords: condition monitoring, state-of-charge, battery

1. Introduction

Condition monitoring strategies have been successfully implemented as a part of
Condition-Based Maintenance (CMB) programs for several decades with the aim of
preventing the occurrence of malfunction problems. Although CBM programs have
been effectively implemented, in the last years, Industry 4.0 is changing the landscape
in different sectors with the rise of the smart factory and the use of data, such changes
have been possible through the digitization of value chains, where the aim is to
improve the efficiency, sustainability, and flexibility of operations. These new trends
present new tools to further maximize the value of the data that are collected during
the equipment operation to coordinate tasks in a predictive environment (before a
functional failure occurs). However, it is important to clearly define what information
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or data to collect will represent a meaningful value to the decision-making process. In
this regard, it should be noted that the proper implementation/conversion to the
Industry 4.0 may lead to numerous advantages to any process [1, 2]. Thus, Figure 1
shows the most important benefits that may be reached by the implementation of
Industry 4.0, the order of importance may differ according to the process and/or
application where Industry 4.0 is implemented.

Thus, the most important profits that are taken into account focused on monitor-
ing strategies applied to assess the condition of a specific system are described below:

• Productivity improvement: optimization of the processes carried out in
organizations, which refers to the decrease in time and resources allocated to
achieve them, as well as the reduction of failures and interruptions in production
are eliminated.

• More security: it is possible, in some scenarios, to introduce machines or robots in
dangerous environments, which increases the safety of the workers who work in
these areas.

• Data management (processing): allows efficient data management since defined
and authorized personnel can access and interact with them from anywhere.

• Support in decision-making: factories have large volumes of information, which,
when properly treated and classified, improves the decision-making process.

• Greater traceability: the traceability of all day-to-day records generated as a result
of the business management process is increased.

Under this framework, the term Industry 4.0 can be interpreted as the
hyperconnection, where all systems are connected between them and can send,

Figure 1.
Most important advantages and benefits reached through the implementation of the Industry 4.0, where such
advantages may be found in several research papers focused on the Industry 4.0 [1, 2].
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receive, and analyze data and are no longer a novelty. Thus, this new concept is
currently used during the collection and monitoring of the control parameters of the
equipment to optimize its operation. It is well known that the Industry 4.0 has
profoundly changed industrial processes, in fact, in a constant optimization process,
also, the Industry 4.0 would reduce energy and resource consumption while improv-
ing production. Accordingly, many problems that have been and are still faced by our
planet are the product of industrialization, such as climate change, unsafe levels of air
pollution, the depletion of resources, or the loss of biodiversity are some examples of
the impact of our activity in the world [2, 3]. Also, the implementation of the Industry
4.0 has impacted different subject areas, and it should be noted that engineering and
data science applications have been significantly benefited and other areas such as
energy have not been widely studied, this statement is supported by the percentage of
published papers related to Industry 4.0 for the different subjected areas as Figure 2
depicts.

As stated, condition monitoring strategies have been extensively applied and its
implementation as a CMB program has benefited the industry sector since major of
the procedures are accomplished by electronic, electrical, and mechanical ele-
ments, where its combination leads to electromechanical systems [4–6]; moreover,
it is worth noting that condition monitoring is also a very active area of research in
aerospace and civil engineering where the objective also remains to ensure its
functionality. In this regard, CBM programs may be implemented with different
aims, for example, by analyzing the remaining useful life (RUL), it is possible to
predict the occurrence of faults that may affect the functionality of the whole
system in a near future, as well as the detection and isolation of faults that have
been occurred and are present by analyzing the state-of-health (SOH), and the
detection and identification of multiple and combined faults that may occur
simultaneously. As stated, despite most of the condition monitoring strategies
being developed under a particular framework, i.e., RUL and/or SOH, the principal
aim remains to identify abnormal states and/or operations that tend to present
deviations from an optimal condition or state of operation; therefore, the most
appropriated way of implementing such condition monitoring practices will
depend on the application or problem being addressed [7, 8].

Figure 2.
Percentages of papers that have been published and focused on the Industry 4.0 for different subject areas.
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On the other side, the Industry 4.0 framework also aims to face pollution problems
through the proposal of green solutions and by the implementation of renewable
energy systems. In this context, environmental pollution, which is one of the most
critical global problems affecting today’s world, has attacked the attention of many
scientists aiming to provide successful solutions. Certainly, it is well known that the
world’s pollution (measured in terms of air quality) is in general produced due to the
effects associated to the global greenhouse gas emissions, where carbon dioxide (CO2)
is the most dangerous gas produced by the use of fossil fuel and also produced in
industrial processes, which has a concentration of about 65% only for the global
greenhouse gas emissions; meanwhile, the remaining 35% of gases are composed by
carbon dioxide, methane, nitrous oxide, among others. Therefore, cars, trucks, and/or
industrial processes that are based on the use of fossil fuel are the main sources that
contribute the environmental pollution, specifically, to the pollution of the air. In this
sense, in the most recent decades, it has been noticed that electrification may be the
key solution that can lead to the reduction of those high percentages of gas concen-
trations that increase the world’s pollution and that endanger human health [9–11].
Accordingly, since electrification can be considered the most adequate solution to the
reduction of environmental pollution, it may be understood as the reconversion of
those traditional systems that are dependent on fossil fuel to new systems that only
use electric drives. Hence, nowadays, new scientific and technological advances have
made it possible to innovate as the readily technology is scalable; in this regard, the
new trends are toward the manufacturing of electric vehicles if possible and/or hybrid
vehicles to reduce the emission of polluting gases. Although the manufacturing of
electric or hybrid vehicles has been promoted by technologically developed countries,
some challenges must be faced; thereby, the energy storage and management are
probably the most critical issues that are recently addressed. Certainly, the monitoring
of the state-of-charge in batteries may be the key point that allows the characteriza-
tion of the efficiency and/or autonomy in electric and hybrid vehicles [12–15].

In fact, the Industry 4.0 can be the solution to face actual problems and to over-
come challenges that have not been addressed, thus, it should be highlighted that the
Industry 4.0 is adaptable to a specific application. For example, for electromobility
and electric vehicles, the most critical challenges are the range, charging time, and
charging infrastructure. Consequently, most of the recent research has been focused
on the condition assessment of the state-of-charge in batteries under the Industry 4.0
framework, which involves the general terms of automation, big data, cloud comput-
ing, autonomous Internet of Things (IoT), and data management. Moreover, the
efficiency of electric vehicles is intuitively in terms of installed monitoring and diag-
nostic systems and depends on the number of available variables that can be acquired
to assess the vehicle parameters. As illustrated below (Figure 3), under the Industry
4.0 framework, it is shown a general scheme where are presented different problems
(challenges) to be solved under the Industry 4.0 framework.

Therefore, this work presents a systematic report related to the new trends and
challenges that are associated with condition monitoring strategies used for assessing
the state-of-charge in batteries under the Industry 4.0 framework. Precisely, in this
work are presented those classic and significant techniques of analysis that have led to
high-performance signal processing, as well as those artificial intelligence techniques
that are implemented in experimental and model-based assessing approaches. Addi-
tionally, in this work are included the most important aspects that have to be theoret-
ically considered whether a condition monitoring strategy is intended to be
implemented for the assessment of the battery’s condition.
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2. Theoretical background

In this section, a summary of the most common battery technologies nowadays, as
well as an overview of the main components and functions that must be accomplished
by a BMS (Battery Management System) to guarantee the proper operation of any
battery system, is presented.

2.1 Different battery technologies

Batteries are electrochemical devices that can receive and store energy to be used
at a later moment. Although there are more energy-storage devices, batteries have
gained popularity due to their capability of providing high power and energy effi-
ciency at a relatively low cost with a long life cycle and a rapid response [13]. Figure 4
illustrates the general construction of any type of battery. It is composed of two
electrochemical cells that can turn chemical energy into electricity. Each cell consists
of a positive electrode, or cathode, a negative electrode or anode, and an electrolyte
that is commonly a fluid that allows the flow of the ions (i+) from one electrode to
another. This way, the electric current flows outside, and it can be used to feed any
load.

Figure 3.
Challenges to be faced under an Industry 4.0 framework presented in some published research works ([3]).

Figure 4.
Representation of the basic internal composition of a battery.
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Due to the key role that batteries play in important emergent technologies such as
electric vehicles and renewable generation sources, a big effort is put into the devel-
opment of a wide variety of batteries with different characteristics. This situation is
achieved by using different chemical elements and construction strategies resulting in
a wide variety of battery technologies. Next, the main technologies used in batteries
are shown in Figure 5 and also addressed and briefly described. Although there exist
several battery technologies, the ones that are presented in this section represent the
most used in applications such as renewable generation and electric vehicles.

2.2 Lead-acid batteries

This is one of the oldest technologies used for the development of batteries.
Therefore, the lead-acid technology for batteries is mature and widely spread. These
types of batteries are characterized to be low cost and very reliable; thus, it is a
proficient technology for applications that require an uninterrupted power supply
with high quality [16]. In lead-acid batteries, the positive electrode (cathode) is
composed of lead dioxide (PbO2) and a negative electrode (anode) of metallic lead
(Pb). Additionally, they consider a sulfuric acid solution (H2SO4) as an electrolyte. At
the anode, the Pb reacts with a sulfate ion to obtain lead sulfate (PbSO4) as shown in
Eq. (1):

Pbþ SO2�!2e�þPbSO4

4 (1)

It is observed in Eq. (1) that two electrons are released at the lead electrode
conferring it the negative charge. On its part, the PbO2 of the cathode reacts with the
electrolyte yielding PbSO4 and water according to Eq. (2):

PbO2 þ 4HþþSO2�þ2e�!PbSO4þ2H2O

4 (2)

Finally, the total reaction can be expressed with Eq. (3):

Pbþ PbO2 þ 2H2SO4⇔2PbO2 þH2O (3)

Eq. (3) shows that the reaction is reversible allowing the battery to be repeatedly
charged and discharged. Commonly, a lead-acid battery is composed of several pairs
of electrodes that are placed in separate compartments. Each one of these compart-
ments is called a cell. The negative electrode of each cell is connected with the positive
electrode of the next cell leaving free the cathode of the first cell and the anode of the
last cell, and the result is a battery whose voltage is the sum of the individual voltages
of each cell. It is important to mention that each cell of a lead-acid battery handles

Figure 5.
Main technologies used in the internal composition of a battery.

6

Industry 4.0 - Perspectives and Applications



typical voltages of E0≈2:048V and typical configurations consider three, six, and 12
cells for a complete battery [17].

2.3 Lithium-ion batteries

This technology is more recent, it was first introduced in the 1990s, but it is recently
widely used in electronic devices, smart grids, and electric vehicles [18]. Lithium-ion
batteries have gained a lot of popularity because they are the main type of storage
system used by all mobile devices as smartphones and tablets. Notwithstanding, they
are also highly used in electric vehicle applications as well as in grids containing renew-
able energy generation. These types of batteries can provide a higher energy density
than most of the other available technologies since they operate at voltages around 4 V
per cell, while other systems operate at 2 V per cell [19]. Lithium-ion batteries use
anodes and cathodes based on insertion-compound materials. In the case of the anode, a
carbonaceous material [20] is required; therefore, the preferred compound is graphite
formed by one lithium atom per six carbon atoms LiC6. On its part, for the construction
of the cathode, it is used a metal oxide and the available materials are mainly three: the
layered limO2 (M ¼ Mn,Co and) [21], spinel lim n2O4 [22] and olivine LiFePO4 [23].
Additionally, these batteries use water-free organic liquid electrolytes such as LiPF6 salt
dissolved in a mixture of ethylene carbonate (EC). In fact, the use of this type of
electrolytes is the reason why lithium-ion batteries are capable of handling 4 V per cell.
Finally, this technology incorporates a separator that allows only the lithium ions to
flow from one side to another in the battery. During the charging process, some of the
lithium ions leave the positive electrode and flow through the electrolyte to the negative
electrode. When the lithium ions reach the graphite, they are inserted between the
atomic layers of that material, where they recombine with the electrons, leaving the
lithium deposited there. When the ions stop flowing, the battery is completely charged.
On the other hand, when the battery is discharging, the lithium ions flow back through
the electrolyte from the graphite anode to the cathode.

2.4 Niquel-Cadmium (Ni-Cd) batteries

This is another technology that has been on the market for many years. These
batteries use a cathode of nickel hydroxide and an anode of cadmium hydroxide. In
this case, the electrolyte is an alkaline substance and the charge and discharge process
can be described by Eq. (4):

2NiOOH þ 2H2Oþ Cd⇔2∋ OHð Þ2 þ Cd OHð Þ2E
0 ¼ 1:29V (4)

where E0 represents the voltage of a single Ni-Cd cell.
These batteries are famous because they can operate at a wide temperature range

and they are easy to maintain. However, their manufacturing is complex, making
these batteries expensive. But probably the biggest issue related to this technology
relays in the fact that it contains cadmium, which is a heavy metal well known for its
toxicity [24].

2.5 Nickel-metal hydride (Ni-MH) batteries

This type of battery operates in a way similar to the Ni-Cd one, and this technology
is preferred in hybrid electric vehicles (HEV) due to its high-power density and
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tolerance to overcharge/over-discharge processes [25]. In this case, the Ni-MH tech-
nology considers that the active material of the positive terminal is nickel
oxyhydroxide (NiOOH) and the active material that constitutes the negative terminal
is hydrogen in the form of a metal hydride, which allows the hydrogen produced
during the charging process to be stored and released during the discharge process
[24]. This type of electrode is responsible for providing greater capacity per volume
unit compared to a Ni-Cd battery. A common metal alloy (M) in Ni-MH batteries is an
alloy made up of a mixture of zirconium or titanium hydride with another metal such
as nickel, cobalt, or aluminum. And the electrolyte in these batteries is mainly made
up of potassium hydroxide, which also makes it a type of alkaline battery. The chem-
ical reaction that occurs inside these batteries is described by Eq. (5):

MH þNiOOH⇔Mþ OHð Þ2E
0 ¼ 1:35V (5)

Again, as in the Ni-Cd battery, the term E0 refers to the voltage of a single battery
cell. Compared to its cadmium counterpart, this technology is less harmful to the
environment. However, its disposal at the end of its lifecycle must be cautious since it
still uses corrosive salts.

2.6 Flow batteries

This is a technology that considers systems of two connected tanks, both
containing electrolytic liquids: one with a positively charged cathode and the other
with a negatively charged anode. Electricity passes from one electrolytic liquid to
another through a membrane between the tanks. There are two main types of com-
mercial flow batteries: Vanadium redox batteries (VRB) and Zinc-Bromine (Zn-Br).
The VRB uses sulfuric acid containing V5+/V4+ and V3+/V2+ redox couples as the
positive and negative half-cell electrolytes. The reaction that describes the charge/
discharge process is described by Eq. (6):

VOþþ2HþþV2þ⇔VO2þþH2OþV3þE0¼1:26

2 (6)

In the case of the Zn-Br battery, its operation principle may be defined by Eq. (7)
as follow:

Znþ Br�⇔ZnBr2þBr�E0¼1:85

3 (7)

Despite this technology having technical advantages, such as potentially separable
liquid reservoirs and almost unlimited longevity over most conventional rechargeable
batteries, current implementations are relatively less powerful and require more
sophisticated electronics [26].

2.7 Battery management system (BMS)

To ensure the safe and reliable operation of any battery, it is important to keep the
operating conditions within a range known as the safe operating area (SOA). Figure 6
shows a diagram of the different operating conditions that can be observed in a
battery.
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The SOA considers that the voltage and temperature of the battery must not exceed
or fall below very specific values. These values are different for any battery, and they
must be specified by the manufacturer. However, they can be addressed as the maxi-
mum voltage (Vmax), minimum voltage (Vmin), maximum temperature (Tmax), and
minimum temperature (Tmin). If Vmax is exceeded, the battery presents an over-
charge; when the battery reaches voltages lower than Vmin, it has reached the over-
discharge state; for the case of a temperature superior to Tmax, the battery shows an
over-temperature state; and finally, if the temperature is lower than Tmin and under
temperature condition is achieved. All these last four conditions must be avoided
because they can lead to severe damage to the battery, and they can result in safety risks
for the final users. On the other hand and as observed, a single-cell battery delivers a
small voltage value; therefore, a common battery is confirmed by a series of cells that
can deliver a higher voltage together. This situation supposes some challenges, for
instance, it is important to guarantee that all the cells perform the charge/discharge
operations at the same rate so the complete system is balanced. Additionally, it is
necessary to regulate the amount of current that is delivered or received by each cell to
avoid damages associated with a misuse of the batteries. In this sense, the battery
management system (BMS) plays an important role to keep the battery pack operating
safely, reliably, and efficiently [27]. The BMS can be described as a black box model as
depicted in Figure 7. To accomplish its purpose, the BMS takes the temperature (T),
voltage (V), and current (I) of the battery pack and use them to perform different
algorithms for controlling the operational conditions of the battery to extend its life and
guarantee a safe operation. Additionally, the BMS provides an accurate estimation of the

Figure 6.
Common diagram of the SOA for a battery that depicts different states during the charging procedure.

Figure 7.
Black box diagram of a BMS.
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State of Charge (SOC) and the State of Health (SOH) of the battery pack, and based on
all these parameters, the BMS can deliver information regarding the status of the battery
pack and detect if a fault condition is present in the storage system.

The SOC is a parameter that can be defined both: in terms of the battery capacity
or energy consumption. In renewable energy generation and EVs applications, it is
more common to define the SOC as the ratio of the remaining energy (Er) and the
total energy (ET) of the battery pack, and it is expressed as a percentage. The mathe-
matical definition can be observed in Eq. (8):

SOCE ¼
Er

ET
� 100 (8)

On the other hand, the SOH can be defined as the current total capacity that can be
performed by the battery compared with the total capacity of the battery at the
beginning of its life. As in the case of SOC, this parameter is defined as a percentage,
and it is mathematically defined by Eq. (9):

SOH ¼
CT

CBOL
� 100 (9)

Where CT is today’s total capacity, and CBOL is the capacity at the beginning of life.
In the following section, the most common approaches for the implementation of BMS
are presented. A more detailed diagram of how a BMS is composed can be observed in
Figure 8.

3. Approaches and technologies for the implementation of BMS

In order to ensure the reliable and safe operation of electric vehicles, the accurate
application of fault diagnosis schemes over the battery system is mandatory, in which
the most relevant elements are composed of the sensors, the systems and components,
and the actuators. Hence, different methods have been reported in the literature to

Figure 8.
Detailed diagram of a BMS showing the main and minimal components.
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implement different tasks that must be performed by a BMS. In general, all the
developed methodologies can be classified into two groups: experimental approaches
and model-based approaches. The first one considers that several tests must be
performed several times to obtain the information regarding the condition of the
battery pack, whereas the second one considers that there exists a series of parameters
that describe the battery state, and they focus on finding such parameters [28].

3.1 Experimental approaches

First, it is important to mention that most of the BMSs focus on performing an
accurate estimation of the consumed capacity. If this task is correctly performed, it is
possible to estimate the SOC and the SOH of a battery pack accurately and reliably.
Therefore, most of the works reported in the literature pay special attention to this
matter. The most common solution for this issue is the method known as the Coulomb
counting [29], which considers the used capacity as the area behind the curve defined
by the discharging current over time. When this value is subtracted from the total
capacity, it is possible to know the remaining capacity in the battery pack. This
method can be mathematically described by Eq. (10):

SOC tð Þ ¼ SOC t0ð Þ �
1

CT

ðt
t0

i tð Þdt (10)

Where SOC tð Þ is the current SOC; SOC t0ð Þ is the initial SOC that is commonly
considered as 100%; CT is the nominal capacity of the battery; and i tð Þ is the discharge
current extracted from the battery. Accordingly, the implementation of the afore-
mentioned method can be experimentally performed by means of following the flow-
chart of Figure 9, where the SOC starts by carrying out the real-time data acquisition,

Figure 9.
General flowchart that may be followed to apply the assessment and achieve the SOC in batteries through
experimental-based models.
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then in a second step, the model parameter identification is achieved, and subse-
quently, the SOC is estimated in terms of the collected data by applying Eq. (10).
Despite this approach being preferred, the implementation of this method has a
technical drawback that is related to the use of a sensor for the current measuring. The
sensors used for this purpose are usually shunted resistors or Hall effect transducers.
These types of instruments introduce an error in the estimation due to the drift.
Therefore, the Coulomb counting must be complemented with another technique to
compensate for this effect. In this sense, the use of the open circuit voltage (OCV)
[30] allows the analysis of energy changes in the electrodes of the battery, and
therefore, there exists a direct relationship between the OCV and the SOC of the
battery. In the experimental approaches, the OCV is sometimes obtained from the
specifications given by the manufacturers. Notwithstanding, the information given by
the manufacturer is not as detailed as required to perform an accurate estimation of
the SOC.

Thus, the use of methodologies such as the low current test and the incremental
current test results is helpful to solve this issue. The low current test considers that the
battery must be initially charged using a constant current rate of 1C, considering that
1C means that the complete energy of the battery is taken in intervals of 1 hour. Next,
the battery is discharged at a constant rate of C/20, and then, recharging the battery
uses this same last rate (C/20). In this test, the voltage between electrodes is con-
stantly measured and recorded during the entire test. This process is repeated several
times and the average of all the tests is taken as the OCV [31]. On its part, the
incremental current test considers that the battery must be completely charged to
represent a 100% SOC. Then, a negative pulse current relaxation is used to discharge
the battery and the voltage between terminals is measured every 10% of the discharge.
When the battery has been completely discharged, the process is applied in reverse,
i.e., the battery is charged with a positive pulse current and the voltage between
terminals is measured every 10% of charge. This process must be repeated several
times and the OCV curve is obtained by linear interpolation [32]. These techniques
provide a good approximation of the OCV that can be easily related to the SOC and
SOH of the battery. However, they are considered aggressive tests that may cause
damage to the batteries; moreover, they suffer from the polarization effect due to the
constant current discharge. In this sense, another widely spread methodology for the
estimation of the SOC and SOH in batteries is the use of the impedance measurement
[28]. This method takes advantage of the fact that the internal resistance of a battery
determines its power capacity. Thus, the internal resistance is calculated using Ohm’s
law considering the voltage drop over the electrodes when a current is demanded. The
so far mentioned algorithms calculate the SOC and SOH directly using their definition
stated by Eqs. (8) and (9), respectively. But there is also possible to perform an
indirect estimation of the SOC and SOH of the battery using the incremental capacity
analysis (ICA) and the differential voltage analysis (DVA). These techniques allow to
find a curve coming from the gradient of charged/discharged capacity concerning the
cell voltage according to Eq. (11) and another one derived as the gradient of the cell
voltage for the battery capacity as shown by Eq. (12):

IC ¼
ΔQ

ΔV
¼

dQ

dV
(11)

DV ¼
ΔV

ΔQ
¼

dV

dQ
(12)
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Where IC is the incremental capacity feature, DV is the differential voltage fea-
ture, Q is the cell capacity, and V is the cell voltage. These curves present peaks at
specific values and locations, and as the battery degrades, the amplitude and location
of the peaks change. This situation is used for determining the SOH of the battery
accurately and reliably [33].

3.2 Model-based approaches

The experimental methods provide a good tool for BMS to perform its task. However,
they present the disadvantage of requiring a repeated number of tests to deliver their
results. Therefore, they are not recommendable for an online implementation since BMS
is expected to monitor the condition of the battery in real time, the model-based solutions
seem to be a more appropriate tool. These approaches consider that certain parameters as
the capacity and resistance of the battery can be calculated based on a mathematical
model. In this regard, batteries have been described using an equivalent circuit model
(ECM). This methodology states that a battery can be described by three main parame-
ters: resistance, inductance, and capacitance. By finding these parameters, it is possible to
determine the SOC and SOH of the battery in the function of the variations in the
nominal values of the parameters. Here, the Kalman filter algorithm turns out to be
particularly good for the estimation of the parameters of the battery [34]. This model
delivers good results; however, it does not consider what happens inside the battery and
may lead to errors if parameters such as the temperature are not taken into account. To
overcome this situation, some works propose the development of an electrochemical
model (EM). This way, the operation principle of the battery and its dynamic are
modeled getting a more reliable and accurate representation. But this increment in the
accuracy is not for free, the complexity of the model and the number of parameters
increase, making the proper parameter identification more difficult. For instance, in [35],
the use of different types of parameters: geometric, transport, kinetic, and concentration
is proposed. The result is a mathematical model that comprises a total of 26 parameters.
With this model, the SOC and the SOH are calculated considering not only the electric
performance but also the composition and internal reactions of the battery. Thereby, SOC
and SOH are commonly proposed and/or designed as a condition monitoring scheme that
accomplishes stages such as data acquisition or monitoring, feature extraction or signal
processing, and the fault diagnosis task in which the fault detection, isolation, and esti-
mation are executed. Figure 10 shows the flowchart of a condition monitoring scheme
used for the implementation of a SOC.

Figure 10.
Flowchart of a condition monitoring-based scheme used for performing the fault diagnosis in battery systems.
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Another approach that is gaining popularity is the use of data-driven methodolo-
gies based on machine learning. These methodologies model the battery as a black box
and develop software that uses example data or past experiences for learning how to
solve a problem [28]. Here, support vector machines (SVMs) have proven to be
effective for the estimation of parameters such as the SOC of a battery. For instance,
in [36], the authors use voltage, current, and cell temperature as inputs of an SVM and
with a least square algorithm, they estimate the SOC based on the behavior of the
input parameters. A similar implementation is carried out in [37], the difference is
that in this work the use of an SVM and the least square approximation are replaced
by a deep neural network that estimates the battery condition using as inputs the
voltage, current, and temperature. On their part, the authors in [38] propose the use
of an ECM, and they use a fuzzy logic system to perform the parameter estimation. At
this point, it is important to mention that all the machine learning approaches can be
appreciated as a hybrid of the experimental and the model-based methods because
they require a series of previous experiments before being implemented; additionally,
they use a mathematical model but the model does not describe the system but the
conditions required for the system to meet a specific state.

4. New applications and trends in BMS devices

According to recent research works and studies, it has been determined that the
BMS (Battery Management System) is the key element in applications such as electric
vehicles and renewable energy, this assert is due to the BMS being responsible for
managing the energy consumption totally or partially, and it is also responsible for
managing the energy storage. Although there exist different types of BMS that allow
achieving an effective energy exploitation, nowadays new trends are emerging aiming
to contribute to the development of innovative solutions. In this regard, the trend of
new research will continue to consider a general diagnostic framework, and these will
be based on the flowchart of Figure 11 as a common base, where the data monitoring,
data processing, data analysis, and diagnosis comprise the four general steps.

Accordingly, regarding the Data monitoring step, the most accepted approaches are
those that perform the assessment by means of experimental and/or model-based
implementations, which are also known as data-driven approaches. Despite these pro-
posals differing whether experimental data and/or simulated data are used, in both cases
may exist similar aspects that are taken into account and that lead to new proposals. In
case that data are acquired through experimental tests, the monitoring procedure con-
sists of recording physical magnitudes such as voltage levels, current consumption, and
reached temperature; in fact, these signals are commonly acquired for the whole battery

Figure 11.
General flowchart that may be followed to perform the assessment of batteries.
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bank and are also individually acquired for each cell [39]. On the other side, equivalent
circuit models are considered into account as the theoretical models when the data used
are generated through simulation procedures, where the battery dynamics remain the
most important aspect to be considered during the simulation [40].

Subsequently, theData processing step may probably represent the most important
stage since all the acquired data are processed with specific techniques, in this sense, the
data processing may consider the simplest signal processing procedures such as the data
normalization, data sub-sampling, data organization and may also consider the most
complex signal processing procedures such as those techniques based on time domain,
frequency domain, and time-frequency analysis [41]. The main objective of the Data
processing step relies on the characterization and modeling of the acquired data, there-
fore, the processing of each acquired signal is performed in order to achieve a specific
task, for example, the voltage signal may be processed aiming to give the current
percentage or level of charge of the bank battery, the current signals are used to estimate
the energy that may be supplied to all cells of the bank battery during the charging
process and/or to estimate the energy consumption during the discharge procedure; and
the temperature signals are taken into account as an additional variable that is
implemented in most of the state-of-health monitor approaches to take care of the
current state of the battery bank and to extend its useful life as much as possible [42].

Afterward, the Data Analysis and Diagnosis steps are commonly implemented as a
part of the process that leads achieving the state estimation of the bank battery, as well
as the remaining useful life, the level of charge, or in general is implemented to provide
the SOH (state-of-health). Commonly, the Data Analysis stage includes Machine
Learning techniques to process the available data [43], whereas the Diagnosis stage
comprises intelligent algorithms to perform the automatic assessment task, in this
regard, the most used techniques and algorithms are dimensionality reduction and/or
feature extraction techniques, Support Vector Machines (SVM), Neural Networks such
as Recurrent Neural Networks (RNN) and Fed-Forward Neural Networks (FNN), as
well as regression models that may be based on Fuzzy algorithms; additionally, the use
of genetic algorithms (GI) as a part of the assessing structures when the optimization of
parameters is required [44]. On the other hand, it should be mentioned that for both
stages, Data analysis and Diagnosis, most of the proposed approaches compute numeri-
cal values such as the Maximum Absolute Error (MAE), the Root Mean Square (RMSE),
the Mean Square Error (MSE), and the goodness-of-fit R2, where these values are used
as a quantitative measurement that depicts the effectiveness of the designed approaches
[45]. An important aspect that must be also highlighted for theData analysis stage is the
estimation of the most representative set of features that allows a high-performance
characterization of the processed signals. Finally, the use of Neural Networks is pre-
ferred in most of the designed predictors or SOH approaches due to their versatility and
the low computational burden for their implementation in real-time applications. Thus,
the selection of an appropriate signal processing technique, the use of Machine Learning
techniques, and the implementation of Artificial Intelligence may represent the most
important aspects to be considered during the proposal of novel strategies applied to
assess the state-of-charge in batteries for multiple applications.

5. Conclusions

Modern society is undergoing an important transition toward new forms of trans-
portation and energy generation that are sustainable and that allow reducing the
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emission of gasses that cause the greenhouse effect and global warming. In this sense,
batteries play an important role because they allow energy storage with high power
and energy efficiency at a relatively low cost. However, to ensure their proper opera-
tion and to extend their lifecycle as much as possible, the use of a BMS is mandatory.
BMS allows the battery pack to perform its task safely and reliably by estimating
parameters that provide information regarding the condition of the batteries. Several
methodologies have been developed to allow the BMS to fulfill its task reliably and
accurately. The experimental approaches can provide an estimation of the battery
status using a simple but effective method. However, they require the implementation
of several tests to properly work becoming these techniques suitable mainly for offline
implementations. On the other hand, the model-based approaches can perform the
same task that the experimental techniques robustly and reliably can be implemented
for online condition monitoring, at the cost of higher complexity. Finally, the machine
learning techniques provide a hybrid between the experimental and the model-based
methodologies that uses artificial intelligence techniques for identifying the condition
of the batteries based on the behavior of some inputs that are commonly the electric
parameters of the battery pack. These implementations require a set of experiments to
be performed before they can be implemented; however, once they have been prop-
erly trained, they can operate in online systems. All the methodologies used for BMS
deliver accurate and reliable results, and this work aims to be a tool for the readers to
know different options so they can select the one that better fits their needs.
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