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Chapter

Introduction to Bayesian Group
Sequential Design
Chen Li, Ping Huang and Haitao Pan

Abstract

In classical group sequential designs, a clinical trial is considered as a success if the
experimental treatment is statistically significantly better than placebo. The criteria
for stopping or continuing the trial are chosen to control the false-positive rate (type I
error). Bayesian group sequential design has an advantage of allowing inclusion of
prior information in the analysis. The decision criteria can be based on the posterior or
predictive distribution of the treatment effect to stop for success or futility, or to
continue for each interim analysis and the final analysis. This chapter introduces
Bayesian group sequential designs with examples in a confirmatory setting, including
how to calibrate the tuning parameters to set up decision criteria for the interim and
final analyses, how to derive the sample size, and how to evaluate the operating
characteristics via simulations.

Keywords: Bayesian, group sequential design, prior, effective sample size

1. Introduction

In confirmatory trials, randomized controlled trials (RCTs) are the gold standard
for treatment evaluation, which directly compare the investigational drug with the
standard treatment or a placebo (if there is no standard of care). The essential com-
ponent for a trial design is to find the sample size that is necessary to detect a clinically
important treatment difference with sufficient power and controlled type I error rate.
Once all observations have been collected, final analyses will be conducted. However,
due to lack of information on both the magnitude and the sampling variability of the
new treatment effect at the design stage, realized sample size may be different from
what the design gives use. To that end, the fixed designs can be inefficient since they
cannot accommodate this discrepancy.

There has been an increasing interest in group sequential designs that can adapt to
the information collected during the process of the trial. In contrast to fixed designs,
group sequential methods are flexible and adaptive to regularly examine the efficacy
over administratively convenient time intervals [1]. During the process of a trial,
strong evidence in favor of the benefit of the novel treatment may emerge early. If so,
the extra study participants required to provide this protection against a false-negative
result may not be necessary. Stopping the trial before the maximum planned sample
size can save resources and accelerate the trial process. Of course, this advantage must
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be balanced against the potential for the overestimation of the treatment effect and
other limitations of smaller trials (e.g. limited safety data and less information about
treatment effects in subgroups). Conversely, if strong evidence accumulating against
the benefit of the new treatment, it would be unethical for patients continuing to be
exposed to the futility therapy. Interim analysis is a useful tool to stop trials early for
futility. In classical frequentist group sequential designs, the criteria for stopping or
continuing the trial are chosen to control the type I error and p-values are used to
make decisions.

Rather than making inference by using p-values, criteria for success and futility
stopping, Go/No-go decisions in Bayesian design are based on the posterior probabil-
ity (PoP) or posterior predictive probability (PreP) at the interim and final analyses
[2, 3]. Based on these statistical tools, use of the cumulating data through interim
analyses allows the trial design adapted to improve design efficiency. For example,
ineffective treatment arms could be dropped; further treatment arms could be intro-
duced; the trial could be stopped early (due to futility/efficacy); or randomization to
treatment could be altered to favor the more effective treatment. Such adaptations are
attractive to both researchers and patients, by making more efficient use of patient
resource and potentially treating patients more effectively. In general, adaptive
clinical trial designs are easier to implement within the Bayesian framework.
Frequentist designs may not always work. While, Bayesian methods have
particular advantage in rare disease scenarios where traditional methods can
be difficult, if not impossible, to achieve due to limited sample size. To that end, the
Bayesian approach is that they allow inclusion of external information, which can be
historical, nonconcurrent information. By applying dynamic borrowing methods or
matching approaches to create a synthetical control arm or augment a control arm,
sample size may be saved.

In this chapter, we provide an introduction of Bayesian group sequential trials and
discuss some commonly used design features with an example.

2. The decision rule in classical frequentist framework

Classical group sequential trials rely on null hypothesis testing involving calcula-
tion of test statistics, along with p-values and confidence intervals. The critical statis-
tical issue with early stopping, particularly for success, is accounting for multiple
“looks” and repeatedly testing the null hypothesis over time. However, the more
frequently the data analyzed, the greater the chance of observing one of these fluctu-
ations. Therefore, the decision criteria for early stopping or continuing the trial are
chosen to control the overall type I error rate (e.g. 0.05) [4, 5]. For example, the null
(H0 : δ≤0) and alternative (H0 : δ>0) hypotheses are formulated for the true treat-
ment difference δ (large values of δ correspond to a positive effect) in a two-arm
trials, and the type I error (α) is set to a specified value. The null hypothesis will be
rejected if the observed one-sided p-value is less than . The interim analysis can be
performed on a specific calendar date within the planning period of times, which is
called calendar time. It can also be performed at the information time, which is a
predefined proportion of maximum subjects or events/outcomes already observed,
especially in time-to-event trials. To account for multiple testing on several interim
analyses, interim hypothesis testing always based on α-spending functions, such as
Pocock method and O’Brien-Fleming method [6]. The stopping rules require a very
small p-value smaller than the false-positive rate boundaries in the interims. The more
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conservative the early stopping criteria, the more assurance there is that an early stop
for success is not a false-positive result.

3. The decision rule in Bayesian perspectives

Unlike frequentist approaches where parameters of interest are considered deter-
ministic, the parameters in the Bayesian paradigm are treated as random, while the data
collected in the trial have been observed and thus considered fixed. The prior distribu-
tions that we assign to the unknown interest parameters (e.g. treatment effect) can be
viewed as our uncertainty initial belief about them. Once data of the current trial
collected, new information becomes available and is summarized by another distribu-
tion—the likelihood. Using Bayes’ theorem, the prior can be combined with the likeli-
hood and updated to become a posterior distribution. Accordingly, various posterior
probabilities and inferences can be drawn. Thus, the decision can be made by the
posterior probabilities which summarize all information available at that point in time.
We can find the empirical frequentist error rates for a Bayesian testing procedure by
fixing certain parameter boundaries at prespecified values. Bayesian approach provides
an alternative statistical framework and uses probability distributions to represent
uncertainty of the parameter estimation. By carefully calibrating design parameters, not
only do the methods enhance flexibility of trial conduct and monitoring, but they can
also maintain the frequentist type I and type II error rates at the nominal levels.

From a Bayesian perspective, the decision-making is based on the PoP for the
treatment effect given the trial data. If the PoP for the interest parameter δ beyond the
effect threshold s is sufficiently high, i.e. above a prespecified boundary θs, denoted by
Pr δ> sjDð Þ≥ θs, the trial could allow for early stopping for efficacy. By the same token,
early stopping for futility may be permitted if the PoP is below the futility boundary
θf , expressed as Pr δ> sjDð Þ≤ θf . If the probability falls between these two values θs
and θf , then the trial may continue recruiting. Since the Bayesian methods are not

required for multiple looks corrections, the decision can be made at any time with the
updating PoP. Also, the stopping rules in each interim can be constructed indepen-
dently and multiple criteria can be required based on several treatment effect thresh-
olds. For example, the success criteria of a trial can be quantified as:

Pr δ> s1jDð Þ≥ θs1 and Pr δ> s2jDð Þ≥ θs2: (1)

where s1 and s2 are specified effect thresholds, and θs1 and θs2 are specified or tuned
probability boundaries. The multiple quantitative criteria based on the PoP may
greatly help to achieve a clinically meaningful decision-making. This is appealing to
clinicians and statisticians who will often want to know how a given design will
conclude in favor of some particular treatment effects.

Although the type I error and power are frequentist concepts, the Bayesian
approach can calculate something analogous to these quantities for any prespecified
decision rules. It can also consider multiple “looks” as the frequentist approach to
control the type I error. The multiple corrections, such as based on α-spending func-
tions, may be conducted as the Bayesian early stopping boundaries on the interim
analysis to maintain the total false-positive rate. The PoP can also be considered as the
power for a specific treatment effect when the target treatment effect is assumed to be
the true value. It assists with decision-making to demonstrate that the Bayesian design
has good frequentist operating characteristics.
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4. Decision boundaries

The decision boundaries for the PoP can be specified based on a clinically
meaningful treatment effect threshold by the investigator. For example, one can stop
for efficacy if the PoP of having a hazard ratio (HR) <1 above 90%, i.e.
Pr HR< 1jDð Þ>0:9, and one can stop for futility if Pr HR< 1jDð Þ<0:2. In practice,
however, Bayesian designs usually rely on simulations to determine the decision
boundaries and parameter calibration. This is achieved by determining how
frequently the Bayesian design incorrectly declares a treatment to be effective or
superior when it is assumed that there is truly no difference. It has often been used to
tune stopping boundaries to ensure acceptable type I error, e.g. 2.5% one-sided type I
error or 5% two-sided type I error. The power for a specific treatment effect can be
calculated as the proportion of simulations that declare the trial to be “successful”
when the target treatment effect is assumed to be the true value. This approach has
been recommended by the FDA [4] and has been used in practice for Bayesian
adaptive designs [7, 8]. These simulations should be performed in the planning stage
of a Bayesian group sequential trail. In the analysis stage, no further adjustments are
required to account for the previous interim analyses that have been performed.

We use a simulations study to introduce how to obtain the decision boundaries.
Consider a two-arm RCT with two interim analyses, and a final analysis is planned
with time-to-event outcomes, such as progression-free survival (PFS) times. Let T
denote the underlying failure time, which may be right-censored, and let C denote the
censoring time. We denote the observed time as X ¼ min T, Cð Þ with a censoring
indicator ∆ ¼ I T ≤Cð Þ, i.e. if ∆ ¼ 1 then X ¼ T, which is the failure time, and if
∆ ¼ 0, then X ¼ C, which is the censoring time. We assume the survival times for
both the treatment and placebo arms followed exponential distributions with means
of μT and μC, respectively. The null hypothesis is equivalence of the two treatments in
terms of the efficacy, and the alternative hypothesis is the treatment better than the
control. Under the exponential survival model, the mean survival time is the recipro-
cal of the hazard, that is, the hazard ratio (HR) = μC=μT and a lower value means
better treatment. It could be claimed success if HR between two groups given the
observed data D satisfies

Pr log
μC

μT

� �

< δjD

� �

> θT (2)

where δ is an effect threshold for a clinically meaningful treatment difference, and
θT is a probability boundary for decision-making.

In the Bayesian framework, we specify a prior distribution for the mean survival
time μ following an inverse-gamma (IG) prior distribution for μ:

μ � IG α, βð Þ ¼
βα

Γ αð Þ
μ�α�1 exp �β=μð Þ (3)

where α>0 and β>0. Since the IG distribution is conjugate with the exponential
likelihood function, the posterior distribution of μ also follows an IG distribution:

p μjDð Þ∝μ
�
P

n

i¼1

∆i�α�1

exp �

Pn
i¼1xi þ β

μ

� �

(4)
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That is, μ∣D∝IG
Pn

i¼1∆i þ α,
Pn

i¼1xi þ β
� �

. Thus, we can compute the PoP of the
treatment better than the control as shown in Eq.(1). If PoP> θT, we claim the
treatment superior to the control. We should also specify the lower and upper proba-
bility boundaries θL and θU for decision-making in interim analysis. The decision rules
in the interim analysis are given as follows:

1.Success stopping If Pr log μC
μT

� �

< δjD
� �

> θU, we stop the trial to claim a superior

treatment.

2.Futility stopping If Pr log μC
μT

� �

< δjD
� �

< θL, we stop the trial to claim a futility

treatment.

Then, the design parameters (θT,θU,θL) can be calibrated via simulation to achieve
desirable trial operating characteristics.

5. Parameter calibration and setup

The parameters calibration needs two stages.
In stage 1, we focus on choosing an appropriate probability boundary θT for the

specific treatment effect δ. We simulate the data under a “null” scenario of HR = 1 to
calibrate the parameter that can control the false-positive rate. In this step, we firstly
set θL ¼ 1 and θU ¼ 0 such that the trial will not be terminate early. Considering null
hypothesis H0 : μT ¼ μC and the alternative hypothesis H1 : μT ¼ μC � eδ, an initial
sample size can be obtained by the frequentist method. Let the prior distribution of μ
for each arms be non-informative prior such as IG (0.01,0.01) and simulate the data
under the null hypothesis. We simulate millions of trials and count the number of
trials that were declared to be successful in which the decision rule was shown in Eq.1.
The proportion of trials that were successful when assuming a HR = 1 provides the
simulated type I error rate. Then we vary the value of θT (e.g. from 0.6 to 0.95) and
calculate the PoP in Eq.1 Pr logHR< δjDð Þ> θT. If the final PoP is higher than the
given type I error, it means that the probability boundary is too loose to control the
false-positive rate, and we should increase θT and use more stringent stopping
boundaries. On the contrary, if PoP is lower than the given type I error, θT can be
decreased to loosen the efficacy stopping boundaries. Until PoP is close to the type I
error, the corresponding θT can be chosen as the final efficacy success boundary.

In the second stage, we fixed the chosen θT in stage 1 and varied the value of θU
and θL, such as θU ¼ 0:90,…0:99 and θL ¼ 0:01,…0:10, to calibrate early stopping
boundaries in the interim analysis. Similar to the calibration procedures in stage 1, we
select the appropriate combination of θU and θL to control the given type I error with
simulations presented above.

6. Sample size estimation

In this step, based on the above calibrated parameters (θT,θU,θL), we simulate the
data under the alternative hypothesis using the initial sample size estimated by the
frequentist method. The proportion of the simulation trials declared to be successful
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based on the given decision criteria can be interpreted as the conditional power. If it is
lower than the given power, it means the current sample sizes cannot provide ade-
quate power, and we should increase sample size and vice versa. Until the PoP reaches
to the given power, the corresponding sample sizes can be finally determined.

7. Prior distribution and ESS

Although noninformative prior has been widely applied in the design stage, the
prior can also be constructed using domain knowledge based on expert clinical
opinion or information from previous studies. Borrowing data on the control arm
may result in a more efficiently design and more favorable operating characteris-
tics by way of a smaller trial overall or patients on the control arm. Although the
idea of using historical data is not new, proper application is critical. Challenges
exist in quantifying the level of relevance of historical data. When incorporating
prior information, it is significant to choose prior beliefs into trials. For example,
we can use skeptical or enthusiastic priors to decide partial or fully borrowing of
the external information. In practice, to utilize historical data as enthusiastic prior
data for the current trials, it must be assumed that the historical data are fully
relevant to this trial patient population. If unsure of the relevance of prior infor-
mation, a probability of relevance can be incorporated as part of the prior distri-
bution, such as

prior ¼ 1� αð Þ ∗ f Dð Þ þ α ∗ g Dð Þ (5)

where f(D) is skeptical prior distribution (the external information or historical
data are completely different from current data), g(D) is the enthusiastic prior distri-
bution (historical data reflects current data) and relevance factor, and α is the appli-
cability probability of current data [9]. A number between 0 and 1 for the relevance
factor α corresponds to the amount of information borrowed from the historical data,
that is, the interpretation of applicability of the historical data. Some other common
methods for discounting are weighted average of the means for the randomized and
historical controls to control bias, such as the power prior approach [10], the com-
mensurate prior approach [11], meta-analytic predictive (MAP) approaches [12], and
so on. Modeling and simulation are useful tools to explore and set expectations on the
relevance of the historical data. Even if prior information seems very relevant, suffi-
cient skepticism about potential efficacy exists; therefore, requiring that prior infor-
mation should be discounted.

Quantification of the amount of information induced by the prior is important to
avoid domination of the prior information on posterior inference. The effective sam-
ple size (ESS) reflects the amount of borrowing by incorporating prior information,
which equates prior information to a certain number of observations. Since the his-
torical information may not be commensurate with the information collected during
the current trial, there may be a prior-data conflict observed. The ESS can quantify the
strength of prior information and its contributions to the inference.

Prior effective sample sizes are well understood for conjugate of one-parameter
exponential families. It can be motivated in the updating rule from prior to posterior
parameters. For example, for Poisson data with a Gamma a, bð Þ prior, the second
parameter of the posterior Gamma distribution is bþ n, implying b as the prior ESS.
In another way, the posterior mean is a weighted average of the prior mean and the
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standard parameter estimate, with weights proportional to the prior ESS and the
sample size n. For Poisson data, the prior mean and parameter estimate are a=b and
P

Y j=n, and the posterior mean aþ
P

Y j

� �

= bþ nð Þ is the weighted average of the
two, with weights proportional to b and n. The ESS under conjugacy can be concluded
with different distribution as follow:

Distribution Prior ESS

Normal Normal μ, s2=n0ð Þ n0

Binary Beta a, bð Þ aþ b

Poisson Gamma a, bð Þ b

Another more involved information-based ESS has been suggested in the seminal
paper by Morita [13], which has been denoted as Morita method for short. In addition
to the Fisher information, it uses the information of the prior distribution p θð Þ:

i p θð Þð Þ ¼ �
d2logp θð Þ

dθ2
(6)

and the information of and ϵ-information (large variance) prior p0 θð Þ with the

same mean θ
� �

asp θð Þ:

i p0 θð Þ
� �

¼ �
d2 log p0 θð Þ

dθ2
(7)

The ESS can be defined as an intergerm that minimizes the distance (evaluated at the

prior mean θ) between the expected posterior information for a sample of size m based
on the same mean large variance prior p0 θð Þ and the information of the actual prior:

∣i p0 θ
� �� �

þ EYm iF Ym; θ
� �� 	

� i p0 θð Þ
� �

∣ (8)

where the expectation of Ym is taken over the prior-predictive distribution under
p θð Þ. This approach is noteworthy because it appears to be the first formal, metric-based
approach to ESS that complies with the standard one-parameter exponential family ESS.

There is also another information-based ESS, which is described as expected local-
information-ratio (ELIR) method [14]. It also uses the prior and Fisher information, but
instead of locally evaluating the respective information ratio at the mean (or mode), and
it is defined as the mean of the prior information to Fisher information ratio r θð Þ:

ESSELIS ¼ Eθ r θð Þf g ¼ Eθ

i p θð Þð Þ

iF θð Þ


 �

(9)

ESSELIS gives the well-known effective sample sizes for some standard one param-
eter exponential families. For the natural parameter η, it is the standard ESS without
any boundary restriction on the parameters. The information ratio i ηð Þ ¼ i p ηð Þð Þ=iF ηð Þ
does not depend on the parameter. For the natural parameter, the sampling and prior
distribution can be written as:

f yjθð Þ ¼ exp yη�M ηð Þf g,p∣ ηð Þ ¼ exp n0m0η� n0M ηð Þf g (10)

7

Introduction to Bayesian Group Sequential Design
DOI: http://dx.doi.org/10.5772/intechopen.108852



Since iF θð Þ ¼ d2M ηð Þ=dη2, it follows that ESSELIS ¼ n0. Take Poisson data for
example, with a Gamma prior for the mean μ, η ¼ log μð Þ,M ηð Þ ¼ exp ηð Þ and n0 ¼ b.
Therefore, the ELIS method seems to be simple and superior to current versions.

8. Example

In the following, we use the above example to illustrate the design of Bayesian
group sequential trial. It will be used in a randomized, double-blinded, placebo-
controlled study on the efficacy of new treatment to improve the survival in advanced
triple-negative breast cancer patients. The primary time-to-event end point is PFS
within 30 months. It is allowed for 90% power to detect an improvement in median
PFS from 6 months in the control arm to 10 months in the new treatment arm, that is,
the target HR = 0.6 with 2.5% level of significance (one-sided). Accrual is projected to
occur over 15 months, and the final PFS analysis is expected 30 months after the first
patient enrolls. Assuming normal distribution for logHRs, it could be claimed success
if the posterior distribution of logHR satisfies Pr logHR< δ jDð Þ> θT given the
observed data D, and no futility criterion is required at the end of the trial. Consider-
ing two interim analyses at approximately 50% and 80% of information fraction, the
success and futility early stopping criteria are Pr logHR< δ jDð Þ> θU and
Pr logHR< δjDð Þ< θL, respectively. Now we need to calibrate the design parameters
(θT,θU,θL) for the decision-making.

Firstly, we calculate an initial sample size by classical frequentist method for the
simulation. With an average 5% dropout rate per year, there will be approximately
100 patients required in each arm and totally 164 events occurred. Then, we simulate
the data under null hypothesis (HR = 1) and did not allow early stopping in the
interim analyses. Assuming a non-informative prior distribution of mean survival μ
for each arm, e.g., IG (0.01,0.01), we took 5000 posterior samples of μ for the PoP
calculation. Varying θT from 0.6 to 0.99, we performed simulations to calibrate the
cutoff probability values to satisfy 2.5% type I error. For each configuration, we
carried out 5000 simulated trials to summarize the operating characteristics. The
resulting type I error are presented in Table 1. With the decreasing of the target

δ θT Success probability Sample size Total time

log(0.8) 0.7 0.0247 218 23.1796

log(0.7) 0.6 0.0083 208 22.0439

log(0.7) 0.5 0.0157 208 22.0022

log(0.7) 0.46 0.0248 208 22.1248

log(0.7) 0.45 0.0210 209 22.2274

log(0.7) 0.43 0.0200 209 22.1462

log(0.6) 0.25 0.0118 190 20.1316

log(0.6) 0.2 0.0123 189 20.0138

log(0.6) 0.18 0.0227 188 19.8901

Table 1.

Stage 1 parameter calibration with no early stopping by varying the design parameter θT at different values of δ
under null hypothesis with HR = 1.
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logHR, the success probability boundary also decreased to yield 2.5% for the type I
error. For example, when δ is expected to be log(0.7), we should select the cutoff
value of θT ¼ 0:46. When the target HR decreased to 0.6, the boundary decreased
sharply to 0.18 to maintain the type I error. So the investigator can choose a clinical
meaningful treatment as the target value δ, and multiple criteria can be also required
based on several probabilities.

In the second stage of parameter calibration, given a specific δ and the tuned θT,
we varied the value of θU and θL: θU ¼ 0:90,…0:99 and θL ¼ 0:01,…0:10. To control
the type I error, we finally selected θU ¼ 0:89 and θL ¼ 0:01 to calibrate early
stopping in the interim analysis under the null to detect the effect size of log
(HR = 0.7). Similarly, if we want to detect log(HR = 0.6), we should select θU ¼ 0:91
and θL ¼ 0:01 under the null to control the type I error rate (Table 2).

Then, we obtained the tuned parameters (θT,θU,θL) for a specific effect size of . To
maintain 90% power, we simulate data from the H1, e.g. logHR= δ ¼ 0:6, and the
expected number of events was found to be 172.

9. Conclusion

In this chapter, we introduce the Bayesian group sequential framework with an
example with details for planning and executing interim analyses. The concepts of
PoP and predictive probability are intuitive and efficient tools for making decisions
about continuation or early stopping and can be used at interim analyses even if the
final planned analysis is to be performed in the classical frequentist hypothesis testing
framework. Simulations can help assess the performance of different decision rules
and assist in the determination of the sample size and are needed to tune desirable
design’s parameters. Bayesian approaches are often simpler to interpret than
frequentist methods and allow teams to consider the evidence in support of different
effects. Using these methods in clinical drug development can result in efficient
studies that make the best use of resources while ensuring good chances of success. Li’s
work was partially supported by National Natural Science Foundation of China
Grant 82273728.

δ θT θL θU Success probability Sample size Total time

log(0.6) 0.18 0.01 0.91 0.0245 219 17.0610

0.01 0.93 0.0228 218 16.8673

log(0.7) 0.46 0.01 0.89 0.0236 200 19.8338

0.01 0.91 0.0328 214 20.2497

Table 2.

Stage 2 parameter calibration with the tuned θT by varying the design parameter θL and θU under null hypothesis.
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