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Chapter

The Influence of Geometry on
Plasmonic Resonances in
Surface- and Tip-Enhanced Raman
Spectroscopy
Lu He, Dietrich R.T. Zahn and Teresa I. Madeira

Abstract

Plasmonic nanostructures have attracted growing interest over the last decades
due to their efficiency in improving the performance in various application fields such
as catalysis, photovoltaics, (opto-)electronic devices, and biomedicine. The behavior
of a specific metal plasmonic system depends on many factors such as the material,
the size, the shape, and the dielectric environment. The geometry, that is, size and
shape of both single plasmonic elements and patterned arrays of plasmonic
nanostructures, plays an essential role, and it provides considerable freedom to tune
the plasmonic properties of a single plasmonic nanostructure or any combination of
nanostructures. This freedom is mainly used in the application fields of surface-
enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy
(TERS). In this context, the chapter encompasses how the geometry of the SERS-
active plasmonic nanostructures and tips with/without metal substrates used in TERS
influences the localized surface plasmon resonances of the plasmonic systems.

Keywords: plasmonics, metal nanostructures, geometry, SERS, TERS, simulation

1. Introduction

Almost 50 years ago, in 1974, Fleischmann et al. observed an enhanced Raman
signal from a monolayer coverage of pyridine molecules adsorbed on a silver electrode
[1]. Such unexpected behavior opened and initiated a new field of spectroscopic
analysis including experimental and theoretical studies. Creighton’s group [2] and Van
Duyne’s group [3] published similar results regarding pyridine molecules on silver
anode surfaces using relatively low laser power and they brought forward different
explanations for their results on the variation of Raman signal. Creighton explained
that the enhanced signal is, on one hand, due to a surface effect increasing the
molecular Raman scattering cross section and, on the other hand, due to the broaden-
ing of the electronic energy levels of molecules at rough metal surfaces, which may
induce resonant Raman scattering from the adsorbed molecules via interaction with
surface plasmons. Additionally, Van Duyne discovered that the enhancement of the
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Raman signal is related to the roughness of the surface of the silver electrode and
together they established the hypothesis that the phenomenon is due to electric field
enhancement. Both explanations were accepted, but the electromagnetic enhance-
ment was more prevailing [4] compared with the chemical or first-layer enhancement
when molecules are in contact with metals.

In 1978, Moskovitz [5] put forward a possible explanation for the excitation-
wavelength-dependent behavior observed by Creighton et al. [6] and Jeanmarie and
Van Duyne [3]. He suggested that the observed behavior originates from the
adsorbate-covered metal bumps on the metal surface, which could be considered as a
two-dimensional colloid of metal spheres covered with the adsorbate and embedded
in a dielectric medium on top of a smooth metal mirror. Additional absorption appears
for those metal colloidal particles, for which interband electronic transitions exist [7].

Such resonance from the collective oscillation of conduction electrons on the metal
surface and limited by the physical dimensions of the metal nanostructure is called
localized surface plasmon resonance (LSPR). Typical metals used for plasmonic
nanostructures are copper, silver, and gold [8, 9]. Due to the strong confinement of
the electric field in the vicinity of such plasmonic metal nanostructures, they can be
employed to break the optical diffraction limit and offer a vast range of applications in
the fields of biology [10], chemistry [11–14], information [15], optical devices [16–
19], and energy science [20, 21]. As a fast-developing field, researchers have studied
plasmonic-related phenomena in all directions including the ultimate theoretical
understanding from classical theory (e.g., Mie theory [22–26]) to quantum theory
[27–29] aiming at providing a solid theoretical background to the main experimental
and technological applications.

It is known that many factors, such as the material, size, shape, and dielectric
environment, play important roles in determining the LSPR [30]. Among these fac-
tors, the geometry [31–37] of the plasmonic nanostructure provides the largest free-
dom and a straightforward way to tune the plasmonic resonance condition. Therefore,
in this chapter, we focus on different geometries of plasmonic structures starting from
introducing mathematical solutions for a single metal sphere representing a monomer
system and two coupled metal spheres representing a dimer system. Then, we give a
review on theoretical approaches that have been used in two powerful analytical
techniques: SERS and TERS. Both experiment and simulation provide solid input to
the understanding of the mechanisms and the principles of the techniques.

2. Theory on monomer and dimer systems

2.1 Single metal sphere: monomer systems

We refer to monomer systems when considering a single plasmonic nanostructure.
Practically, for each system, in which metal nanoparticles are sparsely distributed in a
dielectric environment, the interaction between the individual nanostructures can
often be neglected so that each nanostructure can be considered as a monomer. Here,
we address the equations for a single metal sphere regarding the light-matter interac-
tion in detail [38–40], while the solution for further arbitrarily shaped single ele-
ments, which may appear more frequently in reality, is not derived, but related
theoretical work can be found in refs. [41–46].

In the quasistatic approximation, light scattering by a spherical particle, the radius
of which is a a≪ λð Þ, in a uniformly distributed electric field of E ¼ E0r cos θ
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(as shown in Figure 1 [40]) is described by the Laplace equations for the scalar
electric potential [38].

Ein ¼ �∇Φin (1)

Eout ¼ �∇Φout (2)

∇2ϕin ¼ 0 r< að Þ (3)

∇2ϕout ¼ 0 r> að Þ (4)

with the continuous boundary conditions

ϕin ¼ ϕout, εm
∂ϕin

∂r
¼ εd

∂ϕout

∂r
r ¼ að Þ (5)

Ein and Eout indicate the electric fields inside and outside the metal particle with
their electrical potential written as ϕ

ⅈn r, θð Þ and ϕout r, θð Þ. εm and εd are the dielectric
functions of the metal sphere and the dielectric environment, respectively. If we
consider that the electric field at infinite distance is not disturbed by the metal sphere,
the solution of Eqs. (1)–(4) can be written as [38].

ϕin ¼
�3εd

εm þ 2εd
E0rcosθ (6)

ϕout ¼ �E0rcosθ þ a3E0
εm � εd

εm þ 2εd

cos θ

r2
(7)

Eq. (7) indicates that the potential outside the sphere can be considered as an
addition of the incident field �E0rcosθ and a dipole with its dipole moment defined
according to Eq. (8) [38],

p ¼ 4πa3ε0εm
εm � εd

εm þ 2εd
E0 (8)

with its polarizability α of [38]:

α ¼ 4πa3
εm � εd

εm þ 2εd
(9)

Figure 1.
Schematic sketch of a metal nanosphere in an electric field [38].
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This is to say that we can consider a metal sphere, the dimension of which is much
smaller than the wavelength of the incident light, as a simple dipole. Its polarizability
is a function of the dielectric constant and size of the metal sphere.

Further derivation shows the cross sections for scattering and absorption are
obtained from the scattered field radiated by this induced dipole interacting with the
incident plane wave. They can be written as [38]:

Cscattering ¼
k4

6π
αj j2 ¼ 8

3
k4πa6∣

εm � εd

εm þ 2εd
j2 (10)

Cabsorption ¼ kIm αf g ¼ 4kπa3Im
εm � εd

εm þ 2εd

� �

(11)

where k is the wave vector of the incident light.
For a specific metal in a specific environment where εd and εm are defined and

fixed, the absorption coefficient is proportional to the third power of the radius of the
particle, while the scattering cross section is proportional to the sixth power of this
radius. The efficiency of absorption dominates over the scattering efficiency when the
particle size decreases.

Additionally, one can also notice a resonant enhancement for scattering and absorption
when the condition Re εm þ 2εdð Þ ¼ 0 is satisfied, which is called Fröhlich condition [30].
This resonance is due to resonant excitation of the dipole surface plasmon. With the
Drudemodel of the dielectric function, the frequency of the dipole surface plasmon can be
written as ωsp≈ωp=

ffiffiffi

3
p

with ωp corresponding to the plasma frequency of the bulk metal.
The theory mentioned above can only be applied to particles that are much smaller

than the excitation wavelength so that we can consider the electromagnetic field
uniformly distributed across the entire metal particle. For particles with dimensions
comparable to the excitation wavelength, in which the electrical field can no longer be
considered uniform across the particle, a modified long wavelength approximation
(MLWA) based on perturbative corrections has to be used [47–49].

The localized surface plasmon resonances (LSPRs) of noble metal particles with sizes
of >10 nm were characterized well experimentally [50–53]. However, the characteriza-
tion and understanding for sizes smaller than 10 nm is still poor and challenging from
both experimental and theoretical points of view [54, 55]. This is mainly due to the fact
that both quantum effects and surface interactions become important as the electrons
interact more strongly with the surface including the spill-over of conduction electrons
at the particle surface, which complicates geometrical analysis [56]; these effects cannot
be described directly and solely by electrodynamics, and they require detailed calcula-
tions of the electronic structure for the actual atomic arrangements in the nanostructure
of interest. In what concerns the experiments, the optical detection in the far field
becomes difficult for small particles due to the size-dependent reduction in scattering
intensity. In what concerns theory, time-dependent density functional theory-based
methods are in general limited at present to particles with the sizes below 1–2 nm
[57–59]. This mismatch between what can be achieved experimentally and what can be
addressed theoretically make it difficult to benchmark both approaches.

2.2 Coupled elements: dimer systems

When we bring two or more single elements together, a new system is formed due
to the interaction among those single elements and their light-matter interaction can
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consequently be quite different. Here, we address a dimer system, which is composed
of two metal spheres with a sufficiently small gap distance in the range of a few
nanometers. These spheres are normally but not necessarily identical with respect to
their size, geometry, and material.

A widely accepted and discussed theory stems from Nordlander [60], who gave an
intuitive explanation to define the extinction cross section of dimer systems based on
the gap distance between the nanoparticles. The dimer plasmons can be considered as
a combination of bonding and antibonding states derived from the individual
nanosphere plasmons. In this theory [61], the conduction electrons are considered as a
charged and incompressible liquid sitting on top of rigid, positively charged ion cores.
Ion cores are treated within the jellium approximation and the positive charge n0 is
uniformly distributed within the particle boundaries [62]. The plasmon modes are
considered as self-sustained deformations of the electron liquid. Only the surface
charges are responsible for such deformation since the liquid is incompressible.
Therefore, the surface charge for a single solid metal sphere can be written as [61]:

σ Ω, tð Þ ¼ n0e
X

l,m

ffiffiffiffiffi

l

R3

r

Slm tð ÞY lm Ωð Þ (12)

where Y lm Ωð Þ indicates the spherical harmonic of the solid angle Ω, R is the radius
of sphere, Slm represent the new degrees of freedom, and l is the angular momentum
of a nanosphere. When the polar axis is chosen along the dimer axis, for a real
representation that is adopted for the spherical harmonics, the interaction is diagonal
in azimuthal quantum number m.

Therefore, the dynamics of the deformation is described by [61]:

Ls ¼
n0me

2

X

_S
2
lm � ω2

S,lS
2
lm

h i

(13)

where ωS,l ¼ ωB

ffiffiffiffiffiffiffi

l
2lþ1

q

represents the solid sphere plasmon resonance and

ωB ¼
ffiffiffiffiffiffiffi

e2n0
meε0

q

, represents the bulk plasmon frequency, _Slm represents the time derivative

of the term Slm. For the dimer system, when the distance between the centres of the
two spheres is smaller than λB=4, retardation effects can be neglected and the dynam-
ics of the plasmons is defined by the instantaneous Coulomb interaction between the
surface charges as [61]:

V Dð Þ ¼
ð

R1
2dΩ1

ð

R2
2dΩ2

σ1 Ω1ð Þσ2 Ω2ð Þ
r1
!� r2

!�

�

�

�

(14)

where D is the separation between the centres of the two spheres in a dimer
system.

The left panel in Figure 2a shows the dimer plasmon energies as a function of
dimer separation for plasmon polarizations along the dimer axis (m ¼ 0). At large
separation, the interaction of plasmons on different nanoparticles is weak and the
dimer plasmons are essentially bonding and antibonding combinations of plasmons of
the same angular momentum l belonging to the nanoparticle.

When the separation is relatively large (�35 nm), the splitting of the bonding and
antibonding dimer plasmons is symmetric. The splitting increases as their interaction
increases. The bonding/antibonding configuration corresponds to the two dipole

5

The Influence of Geometry on Plasmonic Resonances in Surface- and Tip-Enhanced Raman…
DOI: http://dx.doi.org/10.5772/intechopen.108182



moments moving in phase/out of phase (positive/negative parity of dipole moments
or symmetric/asymmetric fields). For identical spheres, the net dipole moment of the
negative parity plasmon (asymmetric field) is zero and they can hardly be excited by
light, and they are therefore considered as dark plasmons, while the positive parity
(symmetric field) plasmons are referred to as bright or luminous plasmons.

As the separation decreases, the splitting of l ¼ 1 plasmon becomes asymmetric.
Since the lower energy plasmon branch shifts faster than the higher energy plasmon
branch, the overall non-dipole-like red shift effect is caused by the interaction of the
l ¼ 1 nanosphere plasmons with the higher l plasmons of the other nanosphere.

For the plasmons corresponding to m ¼ �1 (polarization-oriented perpendicular
to the dimer axis shown in Figure 2 left panel (b)), the overall phenomena are similar.
Note that the assignment for the bright/dark plasmons is reversed in this case because
the perpendicular polarization coupling has opposite signs.

The right panel of Figure 2 depicts the dimer plasmon for a heterodimer as a
function of dimer separation. The behavior with the separation is different compared
with results shown in the left panel of Figure 2. As the parity of the dimer is broken,
the lines representing the dimer plasmon energies exhibit avoided crossings in the
figure. All dimer plasmons with mj j≤ 1 are bright.

As the separation decreases, the interactions get particularly strong when anti-
bonding plasmons approach the bonding dimer plasmons of higher l manifolds,
meaning that the higher l dimer plasmon also carries a finite dipole moment and
becomes dipole active. Therefore, multiple peaks in the absorption spectra or a broad
absorption region in the case of overlapping resonances are expected.

Figure 2.
Calculated plasmon energies of a nanosphere dimer with identical sphere radii of 10 nm as a function of
interparticle separation (left); calculated plasmon energies of a heterodimer as a function of interparticle
separation (right) with two spheres that have different radii of 10 nm and 5 nm. Panels (a) is for the azimuthal
quantum number m ¼ 0 and panels (b) for m ¼ 1. The curves represent the bonding and antibonding dimer
plasmons derived from the individual nanosphere plasmons with increasing angular momentum l. The arrows
indicate the orientation of their dipole moments, see ref. [61].
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The result from the plasmon hybridization method is further compared with the
finite difference time domain method (FDTD). And the results agree well with each
other [63]. Figure 3 from ref. [64] shows the scattering cross section of a nanosphere
dimer system with radii of 40 nm and a separation distance varying from 0.5 to
200 nm compared with that of a monomer with a diameter of 80 nm. When the
separation of the dimer is large, for example, 200 nm, the dimer system behaves the
same as the monomer system, while decreasing the gap distance induces a shift
toward higher energy and creating additional modes when the gap reaches 4 nm or
even smaller distances.

Besides the above-mentioned hybridization method, another practical approach,
which is used to describe coupled plasmon resonances in the so-called capacitive and
conductive coupling regimes using an equivalent circuit model, was put forward by
Benz et al. [65]. They claimed that such model can be used to calculate analytically the
resonance wavelengths for different gap sizes, nanoparticle sizes, refractive indices,
and linker conductivities.

To understand the dimer system further, different dimer systems are developed
for fundamental studies. For example, Jeong et al. used an approach to fabricate
plasmonic dimers in a very large scale with precise control of size, nanogap, material,
and orientation [66]. They found that the optical response of each dimer is found to be
identical with a highly uniform gap maintained across the array over centimeter
distances. The existence of the transverse dipole mode and/or the longitudinal coupled
resonance mode is highly dependent on the polarization of the incident light with
respect to the dimer axis. A red shift can be observed with increasing gold nanoparti-
cle size. Arbuz et al. recently studied the influence of the interparticle gap in dimers of
gold nanoparticles on gold (Au), aluminum (Al), silver (Ag) films, and silicon (Si)
wafers as substrates [67]. They claimed that the influence of the substrate vanishes
when the dimer gap becomes larger than 2 nm. Nevertheless, the relation between the
gap and the SERS intensity and enhancement factor is still under debate [68–71]. Also,
Song et al. designed an experiment using an electromechanical method to tune the
distance in the nm range between two Au nanoclusters as a strongly coupled
plasmonic dimer, right before detrimental quantum effects set in. Different plasmon
modes followed different trends as the bonding dipole (BDP) mode, a small blue shift

Figure 3.
FDTD simulation results for the scattering cross section of a nanosphere dimer system with radii of 40 nm and a
separation distance varying from 0.5 to 200 nm compared with that of a monomer [64].
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of the anti-bonding dipole (ADP) mode, and a negligible shift of anti-bonding vertical
quadrupole (AVQP) mode with decreasing gap of the nanodisk dimer [72].

Dimer systems, as a basic metal nanostructure coupled system, provides a simple
but very practical approximation for many application situations, especially in the two
techniques, that is, SERS and TERS, that are discussed in the following sections.

2.3 Simulation on SERS and TERS

In the technical application of plasmonics, commonly used experimental configu-
rations for SERS and TERS are shown in Figure 4. It is not only convenient but also
reasonable to simplify the experimental configurations to simple spheres thus reduc-
ing a lot the computational cost in simulations. These schematic sketches of typical
configurations include SERS in colloidal solution, SERS with a solid substrate, gap-
mode SERS, TERS [73] and shell-isolated nanoparticle-enhanced Raman spectroscopy
(SHINERS) [74–77].

To understand the impact of the geometry of plasmonic structures, simulations
have an unbeatable advantage of freedom when designing the geometries. Besides
straightforward experimental research, numerical simulations are gradually changing
their role from a supporting approach to interpret the experimental results to a
convenient and solid tool to investigate the mechanisms of plasmonic structures.

Various methods such as T-matrix [78–81], discrete dipole approximation (DDA)
[82, 83], finite element method (FEM) [84, 85], and finite difference time domain
(FDTD) [63, 64, 86] are used to address plasmonic systems. We can directly get the
electric field distribution and use it for qualitative and even quantitative comparison
with experiments. Classical theory based on solving Maxwell equations builds the
backbone of many commonly used simulation tools while ab initio calculations may
produce understanding beyond the knowledge obtained from classical theory. For a
long time, we have tried to understand the mechanisms of light-matter interaction on
metal nanoparticles. With the help of the fast development in the field of electronic
and computer science, many computational methods were implemented to solve and

Figure 4.
Schematic presentations of different configurations of plasmon enhanced Raman spectroscopy. a) a plasmonic
colloidal solution as a substrate for SERS. b) A plasmonic solid substrate for SERS, comprising a glass or silicon
support and plasmonic metal nanoparticles. c) Gap-mode SERS. d) Shell-isolated nanoparticle-enhanced Raman
spectroscopy (SHINERS) uses nanoparticles coated with a layer of a dielectric material. e) TERS, the
nanoparticles are replaced by a single metallic scanning probe microscope (SPM) tip [73].
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visualize this problem. As solving the Maxwell equations is the core mission in this
field, solvers for a particular design have been developed in the form of either integral
or differential equations [87, 88].

Table 1 [89] provides a comparison of the most used simulation tools for
plasmonic structures.

Method Computation Time for Au

sphere with radius < < λ

Advantages Disadvantages

Mie
Theory

Rapid—a few milliseconds per
individual frequency

• Rapid computation time. • Applicable only to spherically
symmetric particles.

• Can also be used to
compute the optical
response of coated spheres.

• Not possible to include a
substrate interaction, therefore
difficult to replicate many
experiments.

T-
Matrix

Rapid—a few milliseconds—
per individual frequency.

• Rapid computation time. • Computations are numerically
unstable for elongated or
flattened objects (the matrices
are truncated during
computation—rounding errors
become significant and
accumulate rapidly)

• Wide range of geometries
supported.

• Also possible to include a
substrate interaction

DDA Moderate—depends on number
of dipoles, and separation.
Typically 50s per individual
frequency.

• Can be used to evaluate
any arbitrary-shaped
particle by specifying a
tabulated list of dipole
locations

• Convergence criterion:

|n|kd < 1

n = complex refractive index

k = wavevector

d = inter-dipole separation (Not
possible to solve for high aspect
ratio / elongated particles, or
those having a large refractive
index)

FEM Lengthy—typically 150 s per
individual frequency when
using an element length of
3 nm. A compromise is made
between the computation time
and element length.

• Can be used to evaluate the
scattered field distribution
of any arbitrary-shaped
particle.

• Computation time is lengthy.

• The use of a non-regular
tetrahedral adaptive mesh
for the FEM simulation
allows for a more accurate
approximation of curved
surfaces.

FDTD Lengthy—a broadband
response is computed across a
wide frequency range,
typically taking ≈ 3 hours to
cover visible frequencies. A
compromise made between the
computation lime and element
length.

• Can be used to evaluate
scattering parameters from
any arbitrary-shaped
panicle.

• Computation time is lengthy.

• Permittivity values have to be
specified over much wider
frequency range than just the
range of interest. The Drude-
Lorentz model may not be an
accurate representation of
experimental data.

Table 1.
Comparison on computation time, advantages, and disadvantages of different computational techniques [89].
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Among above-mentioned simulation methods, the finite element method (FEM)
and the finite difference time domain (FDTD) method are the most commonly and
widely used methods commercially available nowadays. In brief, FEM reduces the
complex partial differential equations to simple algebraic equations. This method
gives the approximate results at each discrete number of points over the domain. To
solve the problem, it divides the whole problem into various numbers of discrete units
generally termed as mesh elements. FEM can be applied to various physical problems
such as structural analysis, fluid flow, electromagnetic potential, and mass transport
[90]. FDTD, on the other hand, is usually suitable to solve transient change processes
of a field under external excitation. If a pulsed excitation source is used, a single
solution can yield a response over a wide-frequency band. Time domain methods have
reliable accuracy and faster computational speed, and can truly reflect the nature of
electromagnetic phenomena, especially in research areas requiring time domain mea-
surements [91]. FDTD is more useful for nonlinear materials with offering a large
range of wavelength-dependent dielectric constants and broadband simulations espe-
cially for the transient studies, while FEM benefits from unstructured gridding and is
therefore more promising for higher-order curved elements with the advanced FEM
codes [89, 92].

One of the most used simulation tools based on the FEM method is COMSOL
Multiphysics [93]. This software includes various working packages for a variety of
applications, among which the Wave Optics module is the one specifically used for
plasmonic studies, because it enables to handle objects, the dimensions of which are
comparable or smaller than the probing wavelength [94]. All modeling formulations
are based on Maxwell’s equations together with material laws for propagation in
various media. The modeling capabilities are accessed via predefined physics inter-
faces, which allow the user to set up and solve the electromagnetic models in two- and
three-dimensional spaces. The modeling of electromagnetic fields and waves can be
performed in the frequency domain, time domain, eigenfrequency, and mode analy-
sis. The modeling typically follows the sequence: definition of the geometry, selection
of materials, selection of a suitable Wave Optics interface, definition of boundaries
and initial conditions, definition of the finite element mesh, selection of a solver, and
visualization of the results [94]. Most of the simulations presented in both SERS and
TERS sections were performed with this tool.

2.3.1 SERS

In the typical SERS configuration shown in Figure 4a, computer simulations
showed that spherical Au and Ag NPs as monomers cannot generate a strong localized
electric field on their surface [95], and nevertheless, they carry on being most widely
used options in SERS and TERS experiments, where high-quality signals can be
obtained from different analytes, due to their easy and fast synthesis. Since a main
task in SERS and TERS research is to increase the sensitivity of the plasmonic systems,
other alternative geometric structures have been investigated, in which the aspect
ratio of the spheroid structures is investigated: particles with prolate or oblate spher-
oid geometries [96]. A practical approximation in ref. [97] shows the possibility to use
a Taylor expansion to numerically predict the extinction spectra of metallic spheroidal
particles for a wide range of the geometric aspect ratios.

For configurations as shown in Figure 4b and c, classical electrodynamics provides
a good description down to gap distances of the order of >1 nm, after which quantum
and non-local theory approaches have to be used [98–100]. The EM enhancement
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continues until the distance between two metal surfaces becomes so small that elec-
tron spill-out and non-local effects become important, eventually leading to electronic
tunneling and electrical shortcut [101]. Such phenomena are observed by simply
bringing two or more spherical NPs close enough experimentally [102–104].

It is worth to mention that besides the spherical nanostructures in Figure 4 other
nanostructures, such as mesoporous gold particles [105], nanostars/flowers [106–113]
or spiky structures/superstructures [114, 115], nanoshells [116], nanocubes [117–122],
and hollow-structured particles [109, 112], have been considered. For those as SERS
substrates, their edges work as hotspots concentrating the electromagnetic field of the
probing light into small volumes. This enhances the local electromagnetic (EM) field
near the edges of these metal nanostructures. The “hotspot” areas utilize the field
enhancement properties of the metal nanostructures to amplify the usually weak
Raman scattering signals.

Another way to boost the hotspots is to bring two or more particles in close
vicinity. Therefore, many agglomerated structures are practically used to increase the
SERS enhancement employing the interaction among the single monomers to fulfill
the “dimer” condition, such as clusters [123], trimers [67, 124–128], tetramers
[125, 129, 130], chains [131, 132], and arrays [133–137]. Detailed studies to understand
such agglomerates were performed by several groups. Sergiienko et al. investigated
the influence of NP agglomeration on the SERS signal [127]. The study was carried out
on monomers, dimers, and trimers. In comparison with a single NP, the plasmonic
absorption for dimers exhibits a new band at longer wavelength (red shift) due to the
interparticle plasmonic coupling. Theoretically, the interparticle plasmonic coupling
leads to more enhancement and red shifts the plasmonic absorption band with
increasing degree of aggregation. When the nanoparticles in a chain are brought closer
to each other (gaps decreasing from 2.5 to 0.5 nm), the maximum field enhancement
at the gap becomes nearly 10 times larger and aggregation causes a large red shift of
more than 200 nm. Overall, the SERS enhancement factor (EF) increases by 43% in
average upon dimerization and 96% upon trimerization for both AuNPs and AgNPs.
However, the maximum ratio of EFs for some dimers to the mean EF of monomers
can be as high as 5.5 for AgNPs on gold substrates. For dimerization and trimerization
of gold and silver NPs on silicon, the mean EF increases by 1–2 orders of magnitude
relative to the mean EF of single NPs. Therefore, the hotspots in the interparticle gap
between gold nanoparticles rather than hotspots between Au nanoparticles and sub-
strate dominate the SERS enhancement for dimers and trimers on a silicon substrate.
Raman-labeled noble metal nanoparticles on plasmonic metal films generate on aver-
age SERS enhancement of the same order of magnitude for both types of hotspot
zones (i.e., NP/NP and NP/metal film). A summary of these results is presented in
Figure 5. More details about this work can be found in ref. [124]

A SERS substrate can be composed of both monomer and dimer metal structures
placed on metal/non-metal substrates. Arrays, as one of the important configurations,
have been utilized in many fields [66, 138–140]. The fabrication of plasmonic arrays is
also versatile including both top-down and bottom-up methods as described, for
example, in ref. [138] and for instance, nanogap arrays using photolithography for
nanogap arrays with swelling-induced nano-cracking [141], superimposition metal
sputtering [135], and direct writing [142].

Among such methods, the so-called nanosphere lithography (NSL) using self-
assembled nanospheres as a shadow mask for metal deposition is a typical cost-
efficient and fast technique [143, 144]. NSL details are reviewed elsewhere [145].
Various metals can be used, such as silver, gold, copper, and aluminum. SEM images
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of such typical structures are shown in Figure 6. Tuning the plasmon resonance
frequency of such structure can be performed in the range from the near infrared to
the blue spectral using different metals and by annealing them at different tempera-
tures [146]. This tuning is simply based on the change of the shape of each metal
nanotriangle (NT) from triangular to roundish for the case of Au and Ag. For Cu and

Figure 5.
Raman and SERS spectra of analytes adsorbed on 60 nm Au NPs on an Au film: (A) 4-aminothiophenol,
1—Raman, 2—SERS, (B) 4-nitrobenzenethiol, 1—Raman, 2—SERS, (C) 2-methoxythiophenol, 1—Raman,
2—SERS, (D) SERS spectra of 2-methoxythiophenol (monomer, dimer, and trimer) [127].

Figure 6.
SEM images of the nanostructures prepared by nanosphere lithography. Top row shows the structures as deposited
and the bottom row after annealing at 500°C. The scale bar is 500 nm in all images [146].
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Al, the change in shape is not so dramatic as they form a dense oxide layer via
annealing thus preventing further shape changes (see Figure 6).

FEM simulations were performed using COMSOL 5.6 Wave Optic module [94].
The results are shown in Figure 7. There clearly is a blue shift of the resonant
wavelength with increasing annealing temperature, that is, change of the shape for
Ag, Au, and Cu arrays (Figure 7a–c), which is the main reason for the variation of the
plasmonic resonance in this scenario. Additionally, the simulation for the Cu arrays is
performed by adding a copper monoxide layer with the different thicknesses shown in
Figure 7c. The results on the LSPR position support the hypothesis derived from the
experimental results that annealing above 400°C produces thicker layers of copper
oxide [146]. The electric field distribution (Figure 7e) reveals the position of the
highest local enhancement for different copper oxide layer thicknesses.

The optical behavior of the metal NTs as a function of different annealing temper-
atures is a straightforward example of the flexibility in tuning the LSPR. Nanosphere
lithography also allows other array structures to be fabricated, such as nanovoids
[147] and “hedgehog-like” nanosphere arrays [148].

The metal nanotriangle structures have widely been used to study 2D materials,
such as indium selenide (InSe) as shown in Figure 8 [149]. One up to seven layers of
InSe were deposited on arrays of plasmonic NTs composed of different metals. To

Figure 7.
Simulated transmission spectra and the electric field enhancement distribution at the LSPR position using
geometries corresponding to as prepared and annealed Ag NPs (a) and Au NPs (b). Simulated LSPR positions vs.
geometry change in a Cu array by changing the radius of the edge of the Cu triangles shown in the inset as a sketch
mimicking the change of the geometry at the lower annealing temperature shown in (c) and the electric field
enhancement distribution for Cu arrays at LSPR conditions shown in (d); (e) simulated LSPR for further increase
of the oxide thickness mimicking the situation as annealing temperature further increases [146].
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study the enhancement behavior, simulations were performed using the same condi-
tions as in the experiment. The enhancement factor, M, is defined as the square of the
local electric field strength enhancement. We can see dramatic enhancement for gold
and silver nanotriangles (NTs) with excitation energy of 1.58 eV and a relatively large
enhancement at 1.94 eV.

2.3.2 TERS

TERS is another important experimental technique based on plasmonic enhance-
ment. In a typical TERS configuration, there is a metal tip that is used for scanning a
substrate usually decorated with the analytes, for example, molecules or
nanostructures. If the substrate is a metal, then such a configuration is called gap-
mode TERS. One of the critical targets in this technique is to maximize the TERS
signal enhancement and achieve very good spatial resolution in the nanometer range,
well below the diffraction limit of light. Here, gold and silver are the two preferred
materials for the plasmonic tips. For both materials, their LSPRs locate in the near
infrared to visible range, where laser wavelengths are available to match the LSPR.
Therefore, most of the experimental and simulation studies are performed using these
two materials. Additionally, Au is normally the first choice because it is more chemi-
cally stable when exposed to air, enabling its use for longer periods of time, while Ag
tends to form sulfides when exposed to air deteriorating the TERS performance [150].

2.4 Tip effects

A “sharp” metallic tip promises good spatial resolution. Therefore, as the most
critical component in TERS, the tip is considered as a sharp “corner” of a metal rod. In
the macroscopic world, a spark would form at the end of a long metal rod due to
lightning bolt during a thunderstorm, and similarly in the nano-world, this effect also
plays a vital role and contributes to the TERS signal enhancement. This was first
explained in 1980 by Gersten and Nitzan [151] and then in 1982 by Wokaun [152]
using the formulation of depolarization factors.

Figure 8.
FEM simulation of plasmonic coupling between InSe and metal nanotriangles (MNTs). (a) Sketch of the model
used in the FEM simulation of InSe/metal NTs. (b) Simulated electric field intensity M distribution at two
different wavelengths for Ag and Al NTs. (c) Absolute value of calculated maximum M at three different
excitations. A similar plasmonic behavior is expected for Ag and Au NTs on InSe for three selected wavelengths,
while InSe with Al NTs shows a maximum at 1.94-eV excitation. (d) Raman spectra of 7 L InSe with Al NTs
acquired under three different wavelengths [149].
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Considering a metallic ellipsoid with the major axis a and minor axis b with
a,b≪ λ, so that the electrostatic approximation can be utilized. A uniform electric field
EL is applied along the major axis, and this leads to a uniform polarization density
within such an ellipsoid [152].

P ¼ 1
4π

εellip � 1

1þ εellip � 1
� �

Aa
EL (15)

Then, the field at the tip of the ellipsoid can be written as:

Etip ¼
1� Aað Þ εellip � 1

� �

1þ εellip � 1
� �

Aa
EL þ EL (16)

where εellip is the dielectric constant of the ellipsoid material and the Aa is the
depolarization factor defined as:

Aa ¼
ab2

2

ð

∞

0

ⅆs

sþ α2ð ÞR α ¼ a, bð Þ (17)

with R2 ¼ sþ a2ð Þ sþ b2
� �2

. For a sphere, Aa ¼ 1
3 and for a prolate ellipsoid with

ratio a : b ¼ 3 : 1, Aa ¼ 0:1087. The prominent effect that the depolarization factor
gives is the shift of the plasmon resonance frequency, that is, when the denominators
in Eq. (15) and Eq. (16) approach zero at a specific wavelength [152].

Now, we consider the nanoparticle dipole moment μ obtained by integrating
Eq. (15) over the whole volume of the nanoparticle. This leads to μ ¼ 4πab2P=3 [152].

The field of the nanoparticle is determined by the simple dipolar field of μ when at
large distance. However, the situation changes when we look at the tip of the ellipsoid
particle. A factor γ must be considered since the specific shape concentrates the field
on the narrower parts of the structure. This phenomenon is called the lightning rod
effect. We can then rewrite the Eq. (16) in a form of dipolar field Edipolar ¼ 2μ=a3 and
the new Etip is written as [152].

Etip ¼ γEdipolar þ EL where γ ¼ 3
2

a

b

� 	2
1� Aað Þ (18)

We can see that for a sphere, γ ¼ 1 with a ¼ b and therefore, Aa ¼ 1
3. For a prolate

where a : b ¼ 3 : 1, γ ¼ 12. In the more extreme situation with a needle-like ellipsoid,

we have Aa≈0 and γ≈ 3
2

a
b

� �2.
To calculate the total Raman enhancement, that is, an analyte molecule, for

instance, is beneath the TERS tip, we consider the large Raman molecular moment
that is induced by the intense local field at the ellipsoid and then the polarization of
the ellipsoid induced by the molecular field. For simplicity, we can treat both the
molecule and the ellipsoid as point dipoles. The molecular dipole field in turn polarizes
the ellipsoid, giving an ellipsoid dipole at the Stokes frequency ωs. This added-up
molecular dipole is larger than the usual Raman molecular dipole by a factor of [152].

f ¼ 4
9

ε ωsð Þ � 1
ε ωsð Þ � 1½ �Aa þ 1

� ε ωð Þ � 1
1þ ε ωð Þ � 1½ �Aa

b2

a2

 !2

(19)
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The Raman intensity enhancement is then given by fj j2. Note that the depolariza-
tion factor Aa can be approximately written as follows when a=b is very large [152].

Aa �
b

a


 �2

ln
a

b

� 	

(20)

The lightning rod effect can be critical when simulating the electric field enhance-
ment using geometrical simplifications. Therefore, for a tip geometry that is consid-
ered as a single sphere, the contribution to the signal enhancement due to the
lightning rod effect is neglected.

The two most important aspects in TERS are the TERS enhancement factor (EF)

and the spatial resolution. The TERS EF scales with Eloc

Einc

� 	4
, where Eloc is the local

electric field and Einc is the incident electric field. The following classical theory pro-
vides a straightforward understanding [153]. To define the spatial resolution, the
authors built a straightforward model for the TERS tip as shown in Figure 9. Here, the
geometry of the tip can be approximated as a metal sphere, for which the solution was
introduced in the previous section. The full-width at half maximum (FWHM) of the
field distribution (mind that the real TERS spatial resolution is actually derived from
the fourth power of the local electric field distribution) along the horizontal direction
under the tip apex at a specific distance d from the tip apex [153]:

FWHM ¼ 1:346 Rþ dð Þ (21)

The derived term indicates a supreme confined region of the local field, which is
limited by the radius of the metal sphere or the curvature radius of a tip [154].

Simulations for an Ag tip with varying geometrical parameters were performed
using COMSOL in ref. [155]. In this systematic simulation work, the simulated tip
length, the tip radius, and the conical tip angle are varied [155]. As can be seen in
Figure 10, there is a dramatic difference of the field enhancements between short and
long tips, while a short, truncated tip can produce a better enhancement than a long
one because of the excitation of the localized plasmon resonance. Regarding the tip
radius, there is a significant improvement of the field enhancement observed when r
decreases from 20 to 10 nm. Finally, the setting of the cone angle indeed influences
the results but not as dramatic as the other two factors. Unfortunately, a direct proof
of the spatial resolution derived in Eq. (20) cannot be found in the literature to our
best knowledge.

Figure 9.
Sketch of the geometric structure and local field distribution of a metal tip and its approximation as a single
sphere [153].
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Due to the significance of the TERS tips, their fabrication became an important
branch in the field of plasmonic [156, 157]. Different methods have been developed to
produce metal TERS tips, such as electrochemical etching [158–160], electrodeposi-
tion [161, 162], and tip tailoring [163, 164]. Recently, Zhang developed an approach
by concentrating the light via a waveguide and thus producing a low background
hotspot at the tip apex [165].

Scanning electron microscope (SEM) images of commonly used tip geometries,
namely of a) a sharp Au AFM tip, b) Au-coated spherical AFM tip and c) electro-
chemically deposited Au nanoparticle on a Pt AFM tip, are shown in Figure 11 [166].
The related simulation work (shown in Figure 12) explained the experimental results.

Figures 11 and 12 show an example from tip fabrication to characterization and
finally simulation. Here, the importance of the simulation is emphasized, and it not
only helps to understand the optical response of the tip but can also help to design tips
for specific resonance requirement. Thus, the simulation nowadays allows us from
finding suitable experimental analytes to fulfilling instrument requirements and
designing suitable experimental instruments for specific purposes.

2.5 Tip-substrate systems

Previously, it was demonstrated that a single metal tip alone can already enhance
the electric field intensity in the vicinity of the tip apex due to its plasmonic resonance
and the geometrical lightning rod effect. In a real TERS experiment, a metal substrate

Figure 10.
a) Local electric field enhancement spectra for conical tips with different tip lengths l with the tip radius r = 20 nm
and the tip cone angle α = 15°; b) local electric field enhancement spectra at the tip apex for different tip radii, and
the tip length is kept as infinite and tip angle = 15°; c) local electric field enhancement spectra at the tip apex for
different tip angles. The tip length is infinite and the tip radius r = 20 nm. Inset indicates the simulated tip
geometry [155].

Figure 11.
SEM images of a) a sharp gold AFM tip; b) gold-coated spherical AFM tip, and c) electrochemically deposited
gold nanoparticles on platinum AFM tip [166].
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is usually present to further boost the signal. This type of configuration is called gap-
mode TERS.

As shown in Figure 13, a gap-mode tip-substrate system can be considered as a
dimer system composed of a metal sphere and its image dipole that is created in the
metal film substrate [167]. Xu et al. gave a simple geometrical argument to estimate
the local electric field in the gap of such dimer systems taking into consideration the
drop in potential for the incident field Eloc [168].

The drop in potential between the two spheres shown in Figure 13 (dashed circles)
can be expressed as ΔV ¼ Elocj jd, while the potential difference between these two
sites in the absence of two metal spheres can be expressed as [153]:

ΔV ¼ Eincj j 2Rþ dð Þ (22)

Since the two spheres can be considered as equipotential bodies, we can write

ΔV ¼ Eincj j 2Rþ dð Þ ¼ Elocj jd (23)

In a specific geometry, where the radius of the sphere R and distance right beneath
the tip apex d are fixed, the lateral offset of electric field from the center can be
written as

Figure 13.
Schematic presentation of metal tip-substrate structure and its approximation as a metal-sphere dimer [153].

Figure 12.
a) Numerically simulated near-field spectra of spherical Au and AuNP-on-Pt tips with (b), (c) near-field maps
of the main resonance as highlighted by circles in (a). Simulated tips have 300 nm spherical radii, 120 nm neck
widths, 20° opening angles, and 1.88 μm lengths to best match the typical experimental tip geometries and avoid
truncation artifacts. Tips are illuminated by plane waves oriented along the tip axis. (d) Interpolated field
enhancement map with superimposed resonant wavelengths, as the neck width varies from a spherical to a sharp
tip. Tips have a 250 nm apex diameter, 1.88 μm length, and 10° opening angle [166].
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Eloc xð Þj j ¼ ΔV

2Rþ d� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � x2
p (24)

Therefore, the FWHM of the local field is given by FWHMEloc
¼ 2

ffiffiffiffiffiffi

Rd
p

[153].
Considering the TERS intensity, which is proportional to the fourth power of the local
electric field [169], we get

Eloc xð Þj j4 ¼ ΔV4

2Rþ d� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � x2
p� 	4 (25)

For a very small d, we can obtain the FWHM of the TERS intensity distribution as
[170]:

FWHMTERS ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

24
p

� 1
� 	

Rd
� 	

r

≈0:87
ffiffiffiffiffiffi

Rd
p

(26)

Many studies considered the easiest case of a substrate composed of a flat surface
of a bulk material. The geometric parameters of the metal tip and the metal substrate
with specific excitation wavelength using side illumination were evaluated numeri-
cally in ref. [169]. The study was performed using three-dimensional finite-difference
time domain simulation (FDTD) and the effect of the presence of a substrate is
demonstrated in Figure 14. Without a substrate, the electric field is enhanced by a
factor M ¼ 20 (see Figure 14, left), while it reaches M ¼ 189 (see Figure 14, right)
when there is a metal substrate.

Our own FEM simulation results on tip-substrate systems with various tip radii
using the wave optics module in COMSOL 5.4 [93] are shown in Figure 15. To save
the computational time, a two-dimensional model was built with a non-uniform mesh
that guaranteed a very fine mesh grid element (less than 1 nm) in the region of the gap
between the tip apex and the substrate [170].

To study the spectral dependence of each geometrical setting of various tip apex
radii, a spectral sweep is performed from 500 nm to 800 nm. The results shown in

Figure 14.
FDTD simulations of the electric field distribution for a single Au tip (a), and a gold tip held at distance d = 2 nm
from a gold substrate surface. The electric field E and wave vector k of the incoming light are displayed in the
figures. M stands for the maximum enhancement [169].
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Figure 15 demonstrate a strong relation between the tip diameter and TERS enhance-
ment factor with high spatial resolution, which is represented by the FWHM of the
fourth power of the local field distribution beneath the tip apex. As the tip diameter
increases from 30 nm to 160 nm, the increasing scattering cross section and the
increasing radiative damping [171–173] both affect the enhancement factor, which
increases and finally shows a saturation tendency.

Figure 16.
a) Scheme of the TERS experiment. b) A magnified SEM image of a TERS tip revealing the formation of Au
nanoclusters at and around the tip. C) A representative TERS spectrum of a MoS2 monolayer on an Au
nanocluster array in comparison with the spectrum excited by 785.3 nm light; d) Gaussian fit of an intensity
profile obtained for a scan across the rim of a nanodisk. The spatial resolution of the TERS image is equal to the full
width at half maximum (FWHM) of the fit (2.3 nm). Reproduced from ref. [174] with permission from the
Royal Society of Chemistry.

Figure 15.
Simulation results of (a) the spectral dependence of the TERS EF as a function of tip diameter, (b) max. TERS EF,
and (c) FWHM of the local TERS profile in the gap-mode TERS geometry as shown in the inset of Figure 15b. The
simulated FWHM as a function of the tip diameter is compared with the FWHM profile derived from Eq. (26)
(red asterisks in Figure 15c). The blue-shaded area presents the error bar of the FWHM [170].
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Utilizing gap-mode TERS, Rahaman et al. performed TERS studies of MoS2 layers
on gold nanodisk arrays under the ambient conditions. They used a side illuminated
AFM-TERS (Figure 16a) experimental configuration with a gold-coated Si AFM tip.
The SEM image of the tip apex is shown in Figure 16b. The TERS enhancement factor
was calculated using the A1g mode of MoS2 and it reached 5:6� 108 (Figure 16c),
while a spatial resolution of 2.3 nm was achieved (Figure 16d) [174].

STM-based TERS, on the other hand, can produce even better spatial resolution
due to the sharpness of the STM tips and the controlled experimental environment.
Liao used a STM-TERS system as sketched in Figure 17a on a carbon nanotube placed
on an Ag (111) substrate. A STM topography image can be seen in Figure 17b [175].
They claimed a spatial resolution of 0.7 nm (Figure 17c) with a TERS EF of approxi-
mately 108.

3. Conclusions

The geometry of plasmonic structures plays a key role and is an essential property
of a plasmonic system. For SERS systems composed of metal nanoparticles without a
supporting substrate or on a non-metal substrate, a single particle may not create
significant enhancement, while their agglomeration demonstrates a much more
enhanced signal both theoretically and experimentally. This is due to the existence of
the hotspots that are created in small gap between the single elements. For a gap-mode
SERS system, a good overall enhancement factor can be expected as the hotspots are
created between the particle and the substrate, and/or between the plasmonic parti-
cles themselves. Finally, metal nanostructure arrays provide a versatile tool in the
SERS catalog. Their optical resonance behavior can be tuned via changing their shapes
using different approaches. For TERS systems, the lightening rod effect, which is
induced by any geometric anisotropy, and the LSPR, which is influenced by the tip
geometry and material, are the two most critical experimental and theoretical param-
eters, while the real experiment is usually performed in the so-called gap-mode TERS
using metal substrates with metal tips. Despite the flexibility of the simulation tools
addressing TERS experiments, the modeling of such experiments is still challenging
due to the difficulties providing different and precise dimensions of active tips and

Figure 17.
a) Schematic illustration of the STM-TERS experiments. b) STM topography of an isolated CNT on Ag (111)
(1 V, 10 pA). Inset: Line profile of the CNT along the blue arrow line. c) Apparent height profile and TERS
intensity profiles along the long end of a carbon nanotube [175].
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substrates. Nevertheless, the support of experimental results by the simulations or the
planning of any SERS or TERS experiment using simulation tools is of major impor-
tance toward the understanding of the physics of plasmonic systems and in providing
a better control over the measurement itself.
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