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Abstract

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative 
disease that severely impairs the patient’s mobility, as it mainly affects the upper 
and lower motor neurons in the spinal cord. In addition, alterations have also been 
demonstrated in different parts of the central nervous system (CNS), such as the 
brain and brainstem. The retina is a projection to the brain and is considered as a 
“window” to the CNS. Moreover, it is possible to use the retina as a biomarker in 
several neurodegenerative diseases, even in the absence of major visual impairment. 
Classically, it was thought that the eyes were not affected in ALS, with respect to 
extraocular muscles, whereas the remainder of the muscles of the body were dis-
tressed. Nevertheless, retinal changes have recently been found in this pathology and 
could help in diagnosis, follow-up, and even monitoring therapies in this disease.

Keywords: amyotrophic lateral sclerosis, ALS, retina, animal models, SOD1, microglia, 
protein aggregates, axon pathology, neurodegeneration, neuroinflammation

1. Introduction

Amyotrophic lateral sclerosis (ALS) is the most common progressive motor 
neuron disease, accounting for 80–90% of all motor neuron diseases cases [1]. 
Worldwide, the incidence per 100,000 people ranges from 0.3 to 2.5 cases per year 
[2–5]. Only 10% of the cases are familial [6], ranging from 2 to 15% depending on the 
population [7], whereas 90% of the cases are sporadic or seemingly sporadic. Overall, 
both the incidence [8] and the prevalence [9] of ALS vary according to location and 
race. ALS is more common in men than in women, with a ratio of 1.5:1 [5].

This neurodegenerative disease is rapidly progressive with a typical combina-
tion of symptoms of both upper motor neurons (UMNs) and lower motor neurons 
(LMNs) in different degrees, causing muscle fiber atrophy, which seriously affects 
the patient’s mobility and quality of life [2, 4, 10]. ALS comprises overactive reflexes, 
as well as muscle weakness and stiffness, and it also involves the swallowing, speech, 
and respiratory muscles [10–12]. In fact, patients usually die within 2–3 years from 
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diagnosis, frequently due to respiratory failure [5, 13]. The disease usually has a spinal 
onset, beginning in the extremities and spreading to the rest of the body; however, 
one in every four patients has a bulbar onset, which has a worse prognosis [4]. ALS 
is a heterogeneous disease with asymmetrical onset and spreading of UMN and 
LMN dysfunction, which makes its classification very complex [14]. In addition, no 
single specific test exists for ALS diagnosis; it is a diagnosis of exclusion based on the 
initial symptoms, the progression of the disease, and tests to eliminate overlapping 
conditions.

Although ALS has been considered an exclusively motor disease, over the last few 
years, several studies have focused on assessing the possible participation of nonmo-
tor areas of the central nervous system (CNS) in this illness. Actually, neuroimaging 
tests have shown an overall reduction in brain volume, with a loss of focal gray matter 
and regional white-matter alterations [15–20]. The alteration of these areas leads to 
cognitive and behavioral changes [16, 18]. During the course of the disease, it has 
been found that 50% of ALS patients have some degree of cognitive impairment, 
mainly featuring executive dysfunction and mild memory loss [15, 21].

Classically, it was thought that the eyes were not affected in this disease, with 
respect to the eye motor muscles, whereas the remaining muscles of the body were 
affected [22]. However, some studies have found abnormal ocular movements in these 
patients [23–28]. Nevertheless, this classical concept did not refer to the retina or the 
optic nerve. Actually, these patients have demonstrated not only abnormal evoked 
potentials [29–33] but also astrogliosis in nonmotor areas, specifically in the occipital 
area [34]. Even a significant interocular difference of the P100 in ALS patients was 
demonstrated in a study of visual evoked potentials [33], similar to the existing asym-
metry in the CNS of these patients [14]. Some researchers have also analyzed changes 
in the visual pathway (a nonmotor neuron area) using optical coherence tomography 
(OCT) in ALS patients [35–44], finding different changes in the retina and optic 
nerve, some with contradictory results, stressing the importance of classifying 
patients by both stage and type of ALS, given the high heterogeneity of the disease.

The retina is considered as an open window to the CNS, and it is possible to use it 
as a biomarker in multiple neurodegenerative diseases, whether or not there is visual 
impairment. In recent years, many studies have emphasized the importance of the 
retina in the diagnosis and monitoring of neurodegenerative diseases, with various 
pieces of evidence highlighting its value as a biomarker [45–57]. However, what was not 
so evident was the possible involvement of the retina in neuromuscular diseases, which 
are chronic progressive neurological diseases, such ALS, that predominantly affect the 
spinal cord, whereby the neurological involvement is far from the visual pathway.

The purpose of this review is to analyze the retinal changes that have been 
described in different animal models in this disease, to compare them with each other 
and to correlate them with the changes described in humans to highlight the possible 
role of the retina as a biomarker in this disease.

2.  Retinal histopathological studies in amyotrophic lateral sclerosis 
patients and experimental models

ALS is a neurodegenerative disease, which shares some pathophysiological mecha-
nisms common to other diseases of the CNS, such as vascular pathology, glutamate 
excitotoxicity, fragmentation, aggregation, and functional abnormalities of the 
mitochondria, impaired retrograde and anterograde axonal structure and transport, 
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increased free-radical and oxidative stress, protein aggregation, and neuroinflamma-
tion [12, 58–61]. However, studies in the retina are scarce and have focused only on 
four such mechanisms, as described below.

2.1  Histopathological studies in ALS demonstrating intraretinal protein 
inclusions

(Table 1, Figure 1) Accumulated and altered proteins can interfere with neuronal 
traffic or can abduct proteins that are essential for proper neuronal functioning caus-
ing neurotoxicity [62]. The ubiquitin proteasome system plays an important role in 
ALS, with reactive ubiquitin inclusions being characteristic of this pathology [5, 63]. 
Among them, TDP-43 and p62 proteins are specifically indicative of ALS. These 
inclusions, which are positive for P62 and negative for TDP-43, have been demon-
strated in the brain, hippocampus, and cerebellum in ALS patients [64, 65].

There are scarce studies that have focused on the histopathology of retinal tissue 
in both ALS patients and animal models of mammals with ALS. Actually, the first 
histopathological analysis in the retina was performed in 2014 on a patient with the 
C9orf72 mutation. In this study, protein intracytoplasmic p62-positive and pTDP43-
negative perinuclear aggregates, typical of ALS/frontotemporal dementia (FTD), 
were observed in the inner nuclear layer (INL) of the retina [66]. Both the poly-(GA)
n dipeptide repeats and ubiquitin in the retina were positively stained for p62, similar 
to the perinuclear inclusions localized in the brains, specifically in the dentate gyrus, 
of patients with this mutation [66]. The authors suggested that most of the p62-posi-
tive inclusions found were likely placed within the cones of bipolar cells (OFF bipolar 
cells) and between amacrine and horizontal cells, because they were also stained 
with GLT-1 and recoverin; in addition, these retinal deposits could be related to the 
contrast sensitivity impairment manifested by the patient [66]. Moreover, Volpe et al. 
[67] analyzed two retinas from ALS patients with C9orf72 mutations and demon-
strated (i) specific p62 inclusions mostly in the INL (94.9%) and in a smaller propor-
tion in the retinal ganglion cell layer (GCL) (5.1%) in one patient, and (ii) ganglion 
cell axonal atrophy specifically in the papillomacular bundle in the second patient. 
On the other hand, abundant positive ubiquilin 2-positive inclusions were also shown 
in a transgenic mice experimental model with mutant UBQLN2, mostly in the inner 
plexiform layer (IPL), with a smaller amount in the outer plexiform layer (OPL) and 
a scarce amount in the GCL. This ubiquilin 2 aggregation in the layers of the retina 
with more synapses is associated to the ubiquilin 2 accumulation in the dendritic 
spines of the hippocampus, and it may also be related to the dementia observed in this 
experimental model. Furthermore, few ubiquilin 2-positive aggregates were detected 
between the neurosensorial retina and the retinal pigment epithelium, whose 
appearance was analogous to that of drusen [67]. Similarly, in patients with FTD and 
progranulin deficiency, lipofuscin deposits were found, sometimes associated with 
subretinal drusen-like aggregates [68]. Retinal thinning in these patients was detected 
by OCT before symptoms, suggesting that the eye is affected in progranulin-deficient 
frontotemporal dementia disease [69].

Eye degeneration was reported in an ALS Drosophila model that expressed C9orf72 
repeat expansion. The expansion of a noncoding GGGGCC hexanucleotide repeat of 
the C9orf72 gene on chromosome 9p21 is the most common point mutation in familiar 
ALS, which generates dipeptide repeat proteins that aggregate in the brain. It is note-
worthy that some synthesized compounds revealed a significant biological effect by 
blocking the neurodegeneration of fly retina at different efficacy levels and upgrading 



Animal Models and Experimental Research in Medicine

4

Mechanism Author 

and year

Retinal tissue Main retinal 

findings

Other comments

Protein inclusions Fawzi et al. 
2014

One patient with 
ALS secondary to a 
C9orf72 mutation

Protein 
intracytoplasmic 
p62+/TDP43- 
perinuclear 
aggregates in the INL

Most of the p62-positive 
inclusions found were 
likely placed within 
OFF bipolar cells and 
between amacrine and 
horizontal cells; they may 
have been responsible for 
the contrast sensitivity 
impairment in this patient

Volpe et al. 
2015

UBQLN2P497H TG 
mice

Ubiquilin2+ 
inclusions mostly 
in the IPL, with a 
smaller amount in 
the OPL and in the 
GCL

Drusen-like ubiquilin 
2-positive aggregates at 
the level of the sub-RPE 
space

Two patients with 
ALS secondary to a 
C9orf72 mutation

First patient: Specific 
p62+ inclusions: 
94.9% in the INL 
and 5.1% in the GCL

Second patient: ganglion 
cell axonal atrophy 
specifically in the 
papillomacular bundle

Azoulay-
Ginsburg et 
al. 2021

ALS fly Drosophila 
model expressing 
C9orf72 repeat 
expansion

Eye 
neurodegeneration

Compounds 9 and 4 of 
chemical chaperones 
blocked and upgraded the 
eye neurodegeneration

Neuroinflammation Ringer et 
al. 2017

TG mouse model 
SOD1G93A

hSOD1+ vacuoles 
in the dendrites of 
excitatory retinal 
neurons in the IPL, 
with hardly any in 
the GCL and INL

No signs of activation of 
either the astroglia or the 
microglia of the retina

Cho et al. 
2019

Mouse model of 
ALS devoid of 
Ranbp2

↑ Amoeboid forms 
and microglial cells 
surrounding the 
RGCs

Hypertrophy in RGCs + 
↑ metalloproteinases in 
RGCs + axonopathy in the 
optic nerve

Rojas et al. 
2021

TG mouse model 
SOD1G93A (late 
stage)

Microglial cells 
activation in retinal 
tissue

Loss of RGCs

Cell thickening in 
the area occupied by 
each microglial cell

↑ Microglial 
arborization in the 
area with hyper-
ramifications in the 
inferior sector of the 
OPL

M1 phenotype or 
proinflammatory state of 
microglia: neurotoxic

Retractions of 
cells processes + 
migration and 
clustering of cells 
in some areas of the 
retina
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this eye degeneration. The most active chemical chaperones were compound 9, which 
is a peptide derivative targeted to the endoplasmic reticulum, and compound 4, which 
is targeted to the lysosome. Consequently, both might be used as a new class of drug 
candidates to treat ALS and other protein misfolding disorders [70].

2.2 Histopathological studies in ALS and neuroinflammation in retinal tissue

(Table 1, Figure 1) Neuroinflammation is a pathophysiological mechanism, 
which involves the activation of astroglial and microglial cells, and it occurs in many 
neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, ALS, and 
glaucoma [62]. Microglial cells are the macrophages of the CNS and have the ability 
to respond to injury by becoming activated; they can proliferate, migrate, and change 
shape, acquiring an amoeboid appearance in the most active state [62, 71]. On the 
one hand, in an attempt to protect against damage, microglial cells can secrete proin-
flammatory molecules, such as interferon γ or interleukin (IL)-1β [62]. Nonetheless, 

Mechanism Author 

and year

Retinal tissue Main retinal 

findings

Other comments

Retinal spheroids 
and axon pathology

Sharma et 
al. 2020

Retinal sections of 
10 postmortem eyes 
from ALS patients

PAS+ spheroids (> 
9.07 μm in diameter) 
in the RNFL

No significant correlation 
of retinal spheroids and 
axon pathology with 
clinical characteristics 
of the ALS patients 
(age at death, gender, 
disease duration, mode of 
disease onset, ALSFRS-R, 
and rate of disease 
progression)

P-NF+ spheroids 
(8 to 15 μm in 
diameter) in the 
peripheral and 
pRNFL

NP-NF+ spheroids 
(7 to 10 μm in 
diameter) in the 
RNFL

↑ NP-NF signal in 
the RNFL and IPL

Vasculopathy Abdelhak 
et al. 2018

34 ALS patients 
with clinically 
diagnosed ALS who 
underwent an OCT

The outer wall 
thickness of retinal 
vessels was thicker in 
ALS patients than in 
controls

Thinning of the ONL, 
suggesting a possible 
impairment of rod and 
cone function

There was also 
no correlation 
between the vessel 
measurements and 
clinical parameters

The whole retinal 
thickness was negatively 
correlated with the 
ALSFRS-R

ALS: amyotrophic lateral sclerosis; FTD: frontotemporal dementia; INL: inner nuclear layer; UBQLN2P497H: 
dysfunctional ubiquilin 2; TG: transgenic; IPL: inner plexiform layer; OPL: outer plexiform layer; ONL: outer nuclear 
layer; INL: inner nuclear layer; GCL: ganglion cell layer; sub-RPE: subretinal pigment epithelium; hSOD1: human 
superoxide dismutase 1; Ranbp2: RAN-binding protein 2; RGCs: retinal ganglion cells; PAS: periodic acid Schiff; P-NF: 
phosphorylated form of neurofilament; NP-NF: non-phosphorylated form of neurofilament; RNFL: retinal nerve fiber 
layer; pRNFL: peripapillary retinal nerve fiber layer; OCT: optic coherence tomography; ALSFRS-R: ALS Functional 
Rating Scale—Revised.

Table 1. 
Retinal findings in ALS animal models and patients.
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uncontrolled activation of the M1 phenotype can lead to a state of chronic inflam-
mation, which can induce neuronal death. On the other hand, microglial cells can 
also secrete anti-inflammatory molecules, such as IL-10 and the enzyme arginase 1 
(Arg1), in order to control inflammation, repair tissue, and improve neuronal survival 
[62, 71–73]. Consequently, activated microglia can acquire two different activation 
phenotypes: an M1 or proinflammatory phenotype vs. an M2 or anti-inflammatory 
phenotype, both of which can be influenced by molecules derived from surrounding 
cells such as astrocytes [62, 74]. Astrocytes are glial cells of ectodermal origin that 
perform numerous functions for neuronal survival [75], such as maintenance of the 
volume and composition of the extracellular space, maintenance of the blood-brain 
barrier, and regulation of synaptic transmission [76], as well as metabolic maintenance 
and neuronal survival [77, 78]. When astrocytes are damaged and consequently 
activated, “astrogliosis” occurs [79]. If this astrogliosis is severe, a glial scar may form 
[75]. Reactive astrocytes can interact with microglia and neurons and can impair the 
function of neurons after an injury [80].

Astrocyte activation [81], microglial activation [82], and the appearance of lym-
phocytes [83] have been found in animal models of ALS (with SOD1 mutations) and 
in ALS patients. In ALS there are reactive microglia and astrocytes, which can result 
in motor neuron injury and subsequent death [73, 74, 81]. The SOD1G93A mouse 
model is one of the most suitable and widely used for preclinical studies in ALS, 
attributable to the animals having an analogous phenotype to patients. These animals 
develop limb paralysis due to the loss of motor neurons in the spinal cord, with a 
reduced lifetime of 150 days [84]. Microglial activation also occurs in ALS, as  
observed in SOD1-mutated mice and in spinal cord samples from ALS patients, 
which could exacerbate neuronal damage [73, 74, 81, 85]. In fact, it has been shown 
that exogenous extracellular mutation of SOD1G93A is not directly toxic to motor 
neurons, but requires microglial activation for toxicity in primary motor neuron and 
glia cultures [86]. Furthermore, in SOD1 transgenic mice, activated astrocytes and 
microglia have been shown to contribute to disease progression but not to disease 

Figure 1. 
Summary of retinal changes in amyotrophic lateral sclerosis. (A) Healthy retina. (B) Retinal changes in ALS. 
Most of retinal changes are mainly detected in the inner layers: (i) ganglion cell loss; (ii) activated microglia in 
outer plexiform layer (OPL) and inner layer complex (ILC) (constituting an inner plexiform layer and a nerve 
fiber–ganglion cell layer); (iii) p62-positive and TDP43-negative protein aggregates mostly in the inner nuclear 
layer with some in the ganglion cell layer (GCL); (iv) ubiquilin 2-positive inclusions mostly in the inner plexiform 
layer (IPL), with a smaller amount in the outer plexiform layer (OPL) and in the GCL; (v) periodic acid Schiff 
(PAS)-positive spheroids in the retinal nerve fiber layer (RNFL) and phosphorylated form of neurofilament 
(P-NF)-positive spheroids in the in the peripheral and peripapillary RNFL; (vi) non-phosphorylated form 
of neurofilament (NP-NF)-positive spheroids in the RNFL; (vii) hSOD1-positive vacuoles in in the IPL, with 
hardly any in the GCL and inner nuclear layer (INL).
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onset [87–89]. In ALS, microglial activation and proliferation have been observed in 
areas of significant motor neuron loss, such as the motor cortex, brainstem motor 
nucleus, corticospinal tract, and ventral horn of the spinal cord [90–94], as well as 
in areas with mild degeneration [95]. Precisely, in postmortem spinal cord analysis 
of patients with advanced stages of ALS, reactive astrocytes were found in the dorsal 
and ventral horn of the spinal cord [96] and in the gray [97] and white matter [34] of 
the cerebral cortex. Similarly, reactive microglia were found in the motor nucleus of 
the brainstem, motor cortex, corticospinal tract, and ventral horn of the spinal cord 
[91]. Reactive microglia were also observed in vivo using the PET imaging technique 
C-PK11195, finding a close relationship between microglial activation and upper 
motor neuron damage, but not lower motor neuron injury [98]. Moreover, in the 
SOD1 model, it was confirmed that overexpression of the SOD1 mutation in glial cells 
contributes to motor neuron damage, and that the degree of neuronal injury depends 
on the degree of glial cell pathology [99]. Microglial cells of SOD1-mutated mice suf-
fer different degrees of morphological changes from resting to macrophagic amoeboid 
forms [91]. Lastly, symptomatic SOD1 transgenic mice also have increased numbers 
of microglial cells, mainly due to the proliferation of resident microglia [100].

Bearing in mind all of the above, both the microglia and the astrocytes play an 
important dual role in the progression of the ALS. Nevertheless, most studies about 
the involvement of microglia in ALS have been conducted in the motor cortex, brain-
stem motor nucleus, corticospinal tract, and ventral horn of the spinal cord. To our 
knowledge, there are only three studies that investigated the glial cells of the retina in 
relation to ALS [101–103].

In the first one, a mouse model of ALS devoid of RAN-binding protein 2 
(Ranbp2), microglial activation was confirmed. Ranbp2 is a protein, which plays an 
important role in nucleocytoplasmic transport and whose regulation is affected in 
both sporadic and familiar ALS [104]. In this ALS mouse model, there was microglial 
activation with an increase in the number of microglial cells surrounding retinal 
ganglion cells (RGCs), as well as a noteworthy increase in amoeboid forms relative to 
controls. In addition, there was an increase in metalloproteinases in RGCs, and both 
hypertrophy in RGCs and axonopathy in the optic nerve were found [102].

In the second model, a TG mouse model of ALS SOD1 (SOD1G93A), there was 
a vacuolization, with hSOD1-positive vacuoles placed in the dendrites of excitatory 
retinal neurons, which were detected principally in the inner plexiform layer (IPL) 
and hardly in the GCL and INL; however, no signs of activation of either the astroglia 
or the microglia of the retina were shown compared with to the wild-type mice [101]. 
However, the authors did not rule out the possibility that the microglia were undergoing 
functional changes (in cytokines) related to the inflammatory process. Nevertheless, 
neuronal changes observed in this SOD1G93A ALS model in the brain at 50 days of age 
were followed by microglial morphological changes at 60 days [105–107]. Therefore, 
the authors concluded that, if there is an inflammatory process in the retina, microglia 
would be in a different, less reactive or even neuroprotective phenotype [101].

Lastly, the third transgenic murine SOD1G93A model of ALS in an advanced 
stage of the disease (120 days) showed a loss of the number of Brn3a+ RGCs and a 
microglial activation in retinal tissue [103]. Signs of microglial activation were found 
in different retinal sectors (superior, inferior, nasal, and temporal) of different retinal 
layers: outer plexiform layer (OPL) and inner layer complex (ILC) (constituted 
by an inner plexiform layer and a nerve fiber–ganglion cell layer). In addition, the 
microglial activation in this SOD1G93A model of ALS showed a cell thickening in the 
area occupied by each microglial cell, a significant increase in the area of microglial 
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arborization with hyper-ramifications in the inferior sector of the OPL, retractions of 
cell processes, and migration and clustering of cells in some areas of the retina, but no 
increase in the number of microglial cells [103]. Moreover, phenotypic analysis of the 
microglia showed an M1 phenotype or proinflammatory state of microglia, as the cells 
were intensely labeled with anti-IFNγ and anti-IL-1β but did not stain with the char-
acteristic M2 markers (anti-arginase 1 and anti-IL-10) [103]. The significant decrease 
in the total number of Brn3a+ RGCs at 120 days of illness would be consistent with the 
damage observed in the RGCs of the ALS models discussed above [37, 101, 102], as 
well as with the thinning of the peripapillary retinal nerve fiber layer (pRNFL), 
observed by OCT, in ALS patients compared with controls [36–44]. Consequently, 
these data would support that, in ALS, not only are motor neurons affected but also 
RGC loss occurs, considering this disease as a multisystemic disease [103].

In none of the abovementioned models were changes in the outer segments of the 
photoreceptors found. This could indicate that neither this layer of the retina nor the 
outer blood-retinal barrier (BRB) would be compromised in these animals. Because, 
when the outer BRB is disrupted, as in a glaucoma model of laser-induced ocular hyper-
tension, there are morphological changes and an increase in the number of microglial 
cells in the photoreceptor outer segment layer [108–112]. Moreover, no changes in the 
number of microglial cells were found in either the OPL or the ILC [101, 103]; however, 
the group of Rojas et al. described signs of microglial activation [103]. This difference in 
results in the same experimental model could be due to the fact that Ringer et al. [101] 
used retinal sections, while Rojas et al. [103] used retinal whole mounts.

As mentioned above, microglial cells have two distinct phenotypic states that can 
exert neurotoxic or neuroprotective responses depending on the physiological condi-
tions in which they are found. During ALS progression, activated microglia represent a 
continuum between the neuroprotective M2 phenotype and the neurotoxic M1 pheno-
type [113]. In SOD1 ALS animal models, in early stages of the illness, microglia in the 
lumbar spinal cord expressed markers related to the M2 neuroprotective phenotype 
(Ym1 and CD206); however, in the late stages of the disease, microglia in the lumbar 
spinal cord expressed markers related to the M1 neurotoxic phenotype (high levels of 
NADPH oxidase 2 (NOX2)) [74], suggesting that there is a polarization from a neu-
roprotective phenotype to a cytotoxic phenotype that induces motor neuron damage. 
In the retina, there is only one study that analyzed whether microglia are in an M1 or 
M2 activation phenotype [103]. The results of this study showed that, in 120-day-old 
SOD1G93A mice, microglia were strongly labeled with antibodies against M1 inflam-
matory cytokines (IFNγ and IL-1β), but not with those against M2 anti-inflammatory 
cytokines (arginase-1 and IL-10), suggesting that at an advanced stage of the disease 
retinal microglial cells are in an M1 activation phenotype or in a pro-inflammatory 
state that could be neurotoxic to RGCs, as demonstrated by the loss of these neurons. 
These results are consistent with the findings in spinal cords of the same animal model, 
where microglia in an advanced stage of the disease showed a neurotoxic M1 pheno-
type, demonstrating the dual role (neuroprotective/neurodegenerative) of microglial 
cells during the ALS process [74]. Therapeutic approaches that target microglia 
polarization and result in the induction of the M2 phenotype are promising strategies 
to ameliorate local neurodegeneration and clinical outcome of the disease [114].

2.3 Histopathological studies in ALS and retinal spheroids and axon pathology

(Table 1, Figure 1) Alterations in axonal transport (retrograde and anterograde) 
are a hallmark of ALS, being impaired both in ALS patients and in mutant SOD1 
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mice. In the spinal motor neuron axons, an accumulation of altered mitochondria, 
neurofilaments, and autophagosomes [12, 58] was demonstrated. On the one hand, 
mutated dyneins in ALS mice cause this accumulation in the axons of mitochondria 
and autophagosomes [58]. On the other hand, altered autophagosomes do not elimi-
nate either altered mitochondria or dilated endoplasmic reticules, which accumulate 
in the axons of motor neurons and cause them to malfunction [12].

There is only one study that focused on this important pathological mechanism 
in the retina [115]. This study analyzed retinal sections of postmortem eyes from 
ALS patients with periodic acid Schiff (PAS) and phosphorylated (P-NF) and non-
phosphorylated (NP-NF) forms of neurofilament (NF), compared with age-matched 
controls. Three kinds of spheroids were revealed. First, PAS-positive spheroids with a 
diameter bigger than 9.07 μm in the retinal nerve fiber layer (RNFL) were observed in 
most ALS patients (but only in half of controls), most commonly in the pRNFL and the 
peripheral RNFL, but rarely in the central RNFL in patients with ALS. The density of 
PAS-positive spheroids was significantly greater in the pRNFL. Second, P-NF-positive 
spheroids ranging from 8 to 15 μm in diameter were observed in the peripheral and 
pRNFL only in ALS patients. Additionally, ALS patients showed a stronger P-NF signal 
intensity in the RNFL in the peripheral, central, and peripapillary regions. Third, 
NP-NF spheroids ranging from 7 to 10 μm in diameter were observed in the RNFL in 
some of ALS patients (but not in controls). In addition, in most of the ALS patients, the 
NP-NF signal was increased in the RNFL and IPL. Nevertheless, there was no signifi-
cant correlation of these retinal spheroids and axon pathology with the clinical char-
acteristics of the ALS patients (age at death, gender, disease duration, mode of disease 
onset, revised ALS functional rating scale, and rate of disease progression) [115].

Consequently, patients with ALS show not only hallmark findings in spinal cord 
motor neurons pointing to disrupted axon transport [116–121] but also retinal spher-
oids and axon pathology as a shared pathogenesis [115]. Transgenic mice with dysfunc-
tional microtubule-associated motor proteins also display such findings [122–124].

2.4 Retinal vessel pathology and ALS

(Table 1, Figure 1) Retinal vessels are a reflection of small blood vessels in the 
brain [125]. Parallel vessel pathology in the retinal and cerebral small blood vessels 
has been demonstrated in many systemic diseases such as coronary heart disease [126] 
or stroke [127], as well as in some neurodegenerative diseases such as Alzheimer’s 
disease [128, 129] (even in subjects at high genetic risk of developing Alzheimer’s 
disease [130]) and Parkinson’s disease [131].

Some ALS-induced changes have also been described in small blood vessels of 
the brain, which include a loss of pericytes, endothelial cell degeneration, capillary 
leakage, downregulation of tight junction proteins, and microhemorrhages in patients 
with ALS [132, 133]. Moreover, alterations of the structure of small blood vessels of 
the skin and muscles in ALS patients have been described [134, 135].

There was only one study that analyzed retinal vessel pathology in ALS patients 
with Spectralis OCT but not with angio-OCT. This study described a thicker outer 
wall of retinal vessels in ALS patients compared with controls, which may be related 
to the findings in small blood vessels in skin and muscle biopsies. There were neither 
significant differences in the vessel diameters between ALS patients with spinal 
onset and bulbar onset, nor a correlation between the vessel measurements and 
clinical parameters (disease duration and ALS Functional Rating Scale—Revised 
(ALSFRS-R)) [136].
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3. Conclusions

Much research still remains to be conducted on the retina in both animal models 
and ALS patients. First, further research should aim to describe the different changes 
in the retina that occur in all pathogenic mechanisms of the disease. Second, there 
are several models with different genetic mutations that should also be analyzed. In 
addition, both the retinal and the choroid changes produced at different times in the 
evolution of the disease should be studied. It is known that ALS is a heterogeneous 
disease, with different forms of onset, development, and progression, which may 
potentially exhibit differences in the retina, as observed in the CNS.

The main findings found in the retina in ALS are summarized in Figure 1 and Table 1.
In conclusion, multiple studies have confirmed that the retina is affected in ALS, 

mainly in the inner layers, and it could serve as a biomarker in this pathology. These 
retinal changes can be detected by noninvasive retinal imaging techniques to help in 
the diagnosis and monitoring of ALS disease. In addition, the retina could be used to 
evaluate the efficacy of different therapies in ALS in a noninvasive way.
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