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Abstract

Microbial colonization is one of the main causes of implant loosening and  
rejection. Pathogenic contamination and the subsequent biofilm formation reduce 
the implant’s chance of survival and can be life-threatening to a patient. Among the 
many strategies employed to reduce the infection probability of bioceramics, surface 
functionalization plays a key role. This chapter is dedicated to describing the different 
strategies available to prevent bacterial colonization and the proliferation of hydroxy-
apatite-coated implants. Moreover, the factors intervening in the bacteria-implant 
interaction will be described, detailing the mechanisms involved during the contact, 
adhesion, and proliferation of bacteria. Finally, the characterization methods will be 
discussed, emphasizing the bioactivity and antibacterial assays.
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1. Introduction

Bioceramics, particularly hydroxyapatite (HA), are used massively to produce 
ceramic biomaterials and coatings for metallic implants. Implant infection is a serious 
medical complication and socioeconomic concern.

The economic burden can be quantified by the increased time in the hospital, 
rehospitalizations, additional surgeries, and the total cost of outpatient care. There 
are also intangible costs associated with implant infections, such as physical limita-
tion, mental trauma, and reduction in quality of life for the patient.

An infected medical device can be difficult to treat with only antibiotic therapies. 
When these therapies are ineffective, then required the use of surgical procedures, such 
as debridement or implant replacement. Once the infection has spread to the bone, 
known as osteomyelitis, it may lead to limb amputation threatening the patient’s life.

The first part of this chapter describes the mechanisms of interaction between 
the bacteria and the surface of hydroxyapatite. The second part is a review of the 
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different strategies to develop an antibacterial functionalization. The last part 
describes the main methods of studying bioactivity and antibacterial properties.

2. Bacteria-hydroxyapatite interaction mechanism

Infection of HA implants is a complex problem in clinical medicine. The large 
number of pathogens that infect medical devices, their resistance to antibiotics, and 
the strategies that microorganisms used to resist treatments are some of the reasons.

The infection probability is dependent on several aspects, such as the environmen-
tal conditions in which the attachment occurs, the type of microorganism, the prop-
erties of the substrate, and host characteristics. Furthermore, preexisting conditions, 
such as diabetes, obesity, and the use of immunosuppressant drugs, can increase the 
probability of an infection event.

There is limited research about the effect of material composition on the prob-
ability of infection. Hailer et al. [1] studied hip implant infection, and they detected 
no significant difference in infection events comparing hydroxyapatite-coated with 
micro-rough titanium implants.

The data available show that factors, such as the local immunological environ-
ment, the type of surgical intervention, the healing time, the fluid in contact with 
the implant and the microorganism contained, are more important to determine the 
infection probability than the chemical composition of the implant [2].

2.1 Implant infection classification

Infections of medical devices can be classified by the timeline of the infec-
tion event as early postoperative, late chronic, and hematogenous infection [3]. 
Alternative classifications are related to the microorganisms detected (bacterial, 
fungal, and polymicrobial) or by the substrate infected.

Early postoperative infections, also known as surgical site infection (SSI), are 
associated with postoperative wound infection and nosocomial infections. The symp-
toms appear during the first three months after surgery because of contamination 
during implantation or hospitalization before the wound is closed. The most common 
organism isolated from early infection is Staphylococcus aureus [4], but depending on 
the type of implant and the surrounding tissues, other organisms can also be found, 
such as Klebsiella spp., Pseudomonas spp., and Escherichia coli [5].

Late chronic infections are delayed postoperative infections and the symptoms 
normally emerge after the third month and up to two years after the surgery. These 
infections normally develop after months of apparent implant stability and their 
treatment includes surgical intervention and implant exchange [6].

Hematogenous infection generally occurs after a symptom-free period and is 
caused by bacteria originating from a secondary infection that spread through the 
bloodstream infecting other tissues [7]. This type of infection is a threat to the 
patient’s life years after surgery.

2.2 Bacteria’s life cycle

Suitable environmental conditions are necessary for bacterial attachment to the 
implant surface. During unfavorable or stressful conditions, the bacteria can enter an 
intermediate or “starvation survival” which allows them to survive long periods of 
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nutrient deprivation [8]. During this stage, the bacteria morphology changes dramati-
cally adapting to a spore-like shape, known as ultramicrobacteria [9], reducing significa-
tively the size and the metabolic activity until the conditions allow for active growth [10].

The bacteria life cycle on a substrate is a process genetically regulated that occurs in 
four main stages: attachment, growth, proliferation, and dissemination [9, 11]. Starting 
within the first few seconds after the implant insertion, the bacteria’s reversible attach-
ment to the substrate is mediated by Van der Waals forces and determined by the surface 
charge, the degree of hydration, the topography, and the surface’s roughness [12, 13].

An inactive bacterium, also denominated swimmer or planktonic cell, can interact 
with a surface using a flagellum as a mechanoreceptor. Once a suitable surface is 
detected, a gene expression allows the bacteria to change phenotypically attaching 
irreversibly to the substrate [9, 14].

Immediately after the irreversible adhesion, the bacteria begin to grow and prolif-
erate, creating microcolonies of one or several species embedded in an extracellular 
polymeric matrix or slime [11]. This polymeric slime is composed of exopolysaccharides, 
proteins, lipids, and extracellular DNA [13, 14]. The biofilm has matrix-enclosed bacte-
rial colonies adherent to each other and surfaces. Biofilms contain open channels that 
facilitate nutrient and water diffusion from the bulk phase to bacteria in the biofilm [15].

Biofilm generation is a survival strategy that protects bacteria from changes in 
environmental conditions or antimicrobial agents. Biofilms can protect bacteria by 
different mechanisms. First, by acting as a barrier that can dilute reactive species 
before they can reach the bacterial wall. Second, by creating a stationary phase to 
reduce the effectiveness of antibiotics. Third, by increasing the survival of bacterial 
subpopulations with antibiotic-resistant phenotypes.

During the initial formation stages, the biofilm is still unstable and susceptible to 
elimination, but once maturation is achieved it gains an increased thickness (up to 
50 μm), a mushroom or column-like morphology, and higher resistance to antibiotics 
[16]. The dissemination is the culmination of the “bacterial life cycle” by biofilm disso-
lution and detachment of free-living bacterial cells, which will spread to other locations 
[9, 16]. Figure 1 presents a schematic representation of the implant infection timeline.

2.3 Common microorganisms infecting implants

Implants infections are mainly caused by Staphylococcus bacteria, the coagulase-
positive S. aureus, and the coagulase-negative Staphylococcus epidermidis [13, 17].

S. aureus can release enzymatic virulence factors, such as exfoliative toxins and 
nucleases, to avoid the immune response and toxins like hemolysins and leucocidins 
to destroy host cells [18]. Indeed, considerable concern has recently been raised 
because of the resistance to antibiotics of methicillin-resistant Staphylococcus aureus 
(MRSA) as the cause of the most important incidents of infectious diseases [19].

In healthy people, S. epidermidis is a symbiotic microorganism that inhibits the 
colonization of more virulent bacteria in the skin and mucous membranes. S. epi-
dermidis adheres exceptionally well to indwelling catheters and is founded in early 
postoperative infections [20].

Other bacterial strains found frequently in early postoperative implant infections 
are aerobic gram-negative bacilli, such as Pseudomonas aeruginosa and Escherichia 
coli. These microorganisms are especially threatening due to their high virulence and 
resistance to antimicrobial agents, mainly because they can produce a mature biofilm 
in 5–7 days [21]. P. aeruginosa, an opportunistic pathogen, found in soil or water is one 
of the major causes of nosocomial infections [22]. The pathogenesis of P. aeruginosa 
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is related to their high adherence to mucus and injured-epithelial cells [23]. E. coli is a 
symbiotic organism found in the gut flora of healthy people and can cause more than 
80% of urinary tract infections (UTI). E. coli is the second highest cause of gram-
negative orthopedic implant infection [22].

Other microorganisms found infecting orthopedic devices are Streptococcus and 
Enterobacteriaceae strains [7, 24]. If the implant is in direct contact with mucus or 
sores on the skin Streptococcus pyogenes, Streptococcus agalactiae, and Streptococcus 
pneumoniae can also be present [18, 25].

Polymicrobial infections occur generally in the early stages after surgery but can 
be discovered months afterward in immunocompromised patients. When two or 
more microbes colonize the same substrate, they interact releasing small molecules 
that change the host’s environment. These biomolecules can increase the proliferation 
of the microbes improving their resistance to antimicrobial drugs resulting in a chal-
lenge for treatment [26, 27].

Fungal infections of implants are rare events, but their treatment involves more 
medical problems and aggressive surgical treatments than normal bacterial infec-
tions. Most fungal infections are caused by candida species, such as Candida albicans 
and Candida parapsilosis [28, 29].

3. Mechanisms against bacterial infections

Meticulous aseptic methods during surgery and prophylactic actions, such as 
antibiotic treatment, are not enough to prevent an implant infection. Several strate-
gies can be used to improve the resistance to an infection event. These strategies can 

Figure 1. 
Implant infection timeline. The Figure created by author using parts of figures from Servier Medical Art, provided 
by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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be broadly differentiated by the production of an implant with intrinsic antibacterial 
properties and by the functionalization of the surface.

3.1 Intrinsic antibacterial properties of HA

Intrinsic antibacterial properties are dependent on the chemical composition, 
structure, and morphology of the material. The obtention of HA with intrinsic 
antibacterial properties can be achieved by multi-cationic/anionic substitution, also 
known as ion exchange [30].

Substitutions of calcium ions, phosphate, and hydroxyl groups in the HA lattice 
are possible because the HA-crystal can incorporate several elements with different 
atomic radii and charges [31]. Cations, such as copper, iron, magnesium, manganese, 
potassium, strontium, and zinc, among others, can substitute some calcium cations. 
Similarly, anions, such as chlorine, fluorine, and carbonate groups, can substitute 
hydroxyl and phosphate lattice positions.

The exchange of atoms opens a wide range of possibilities for customizing the 
properties of HA. The atomic substitution alters the solubility, reactivity, and biologi-
cal properties of HA. Also, the amount of substituting atoms modify the percentage 
of the amorphous/crystalline phase ratio affecting the dissolution rate and the dura-
tion of the antibacterial properties. A co-doping strategy has been used to stabilize 
the crystalline structure after the introduction of atoms with a very big difference in 
radii and charge [32–35]. The objective is to improve bioactivity while maintaining 
good antibacterial properties.

There is a wide range of transition metals exhibiting antimicrobial activity being 
eligible for the cationic substitution of HA. Some examples are silver [33, 36–39], zinc 
[40–42], copper [34, 43, 44], and gallium [45–47]. The antibacterial characteristic of 
transition metals is produced by their oxidated forms [48]. The mechanism proposed 
is based on the inhibition of enzymes and cytoplasmatic proteins by the reaction with 
electron donors, creating M-thiolate bonds [49]. The inactivation of cytoplasmatic 
proteins can produce the disturbance of membrane potential, increasing permeability 
and the leaking of cellular contents [50].

Metallic ions can induce oxidative stress by increasing the production of reactive 
oxygen species (ROS) via the Fenton and Haber–Weiss reaction. These reactive oxy-
gen species can react with DNA molecules and proteins, triggering condensation and 
denaturalization reactions, reducing the replication capacity [51]. Figure 2 illustrates 
the main mechanisms of ROS toxicity.

The synthesis of multi-substituted HA can be achieved by different methods, such 
as sol-gel synthesis [35], co-precipitation [37, 41, 52, 53], hydrothermal [54, 55], and 
ball-milling [56, 57], among others [39, 42, 58–61].

The main advantage of the use of atomic substitution to increase the antibacterial 
resistance of implants fabricated with hydroxyapatite is the straightforward adapta-
tion of the production facilities to prepare substituted HA. The atomic substitution 
can be achieved either during the synthesis of the HA or during the posttreatment of 
pure HA.

The challenge in the use of intrinsic antibacterial properties is related to the 
precise control of composition and percentage of the crystalline/amorphous phases. 
These variables simultaneously regulate the solubility and the release control of the 
antibacterial compound.

It is necessary to select the best variable combination to ensure long-term anti-
bacterial properties and optimal concentration to avoid toxicity problems. The 
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compositional adjustment is an interesting strategy, combining different solubility 
rates and releasing kinetics to obtain antibacterial properties consistently during a 
long period of time [59]. Figure 3 presents a schematic representation of Projection of 
Ag-substituted HA according to planes 110, 001, and 111.

3.2 Antibacterial functionalization of HA

Functionalization can be defined as a modification of the material surface by 
incorporating functional groups, biomolecules, nanoparticles, and other components 
with the objective to modify or enhance properties. The surface functionalization is 
mainly used to increase bioactivity, osseointegration, and angiogenesis but also can be 
used to produce antibacterial coatings on HA. Functionalization can be achieved by 
linking biomolecules by a covalent bond to the HA surface, by using physical adsorp-
tion to generate a covering layer, or by creating a hybrid coating.

Figure 3. 
Projection of Ag-substituted HA according to planes 110, 001, and 111. Figure created by author.

Figure 2. 
Mechanisms of ROS toxicity. The Figure created by author using parts of figures from Servier Medical Art, 
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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3.2.1 Functionalization by covalent bonding

A covalent bond can be created because the HA surface presents approximately 2.6 
P-OH groups per nm2 that can be used as an anchoring point to tether a molecule to 
the surface of HA via hydrogen bonding [62]. The target molecule can be covalently 
anchored if containing a functional group as amines, carboxylates, and thiols that can 
react with the hydroxyl moieties [63–65].

Another approach is to use a molecular adhesive as a spacer between the HA surface 
and the antibacterial compound. Molecular adhesives act like a bridge, creating a cova-
lent bond between the hydroxyapatite surface and the biomolecule of interest [66, 67]. 
Many molecular adhesives can produce a covalent link with HA, but the most used are 
silane coupling agents that contain a reactive silanol group at one end and at the other 
end a hydrolysable group, typically alkoxy, halogen, or amine [68]. CEPTES and APTES 
are examples of silane molecules that contain a reactive group of carboxyl and amino, 
respectively, that can react with a functional group of a target biomolecule [65, 69, 70].

The main drawback of the use of silane agents as adhesive molecules is their high 
reactivity. Silanes interact through hydrogen bonding with the hydroxyl groups of the 
surface, but lateral polymerization may occur, generating multiple siloxane layers. 
The creation of a monolayer of silane molecules at the HA surface normally requires 
anhydrous conditions, extended reaction times, elevated temperatures (50–120°C), 
and rigorous control of the reagent concentration [68].

Formulated bio-adhesives using mussel adhesive proteins (MAPs) are a good alter-
native for silane coupling agents [71, 72]. Many MAPs have been isolated containing 
L-3,4-dihydroxyphenylalanine (Dopa) residues. The functional part of Dopa residues 
necessary to create covalent bonds is the catechol group.

A catechol group is composed of a benzene ring and two hydroxyls in the ortho 
position. Catechol groups can be oxidated into quinones under alkaline and neu-
tral conditions, creating a stable coating with controllable film thickness [73, 74]. 
Dopamine, caffeic acid, and L-3,4-dihydroxyphenylalanine have been used to produce 
stable coatings containing the molecule of interest [75–77].

3.2.2 Functionalization by physical adsorption

Physical adsorption is a straightforward method to generate antibacterial func-
tionalization because it can be achieved by soaking HA powders or substrates into a 
solution containing the antibacterial molecule. The main drawback is the weak bonds 
or interactions resulting in high release kinetics of the adsorbed molecule.

The nature and chemistry of the HA control the interaction with biomolecules, 
and the surface chemistry and porosity are fundamental variables. The interaction 
between adsorbed molecules and hydroxyapatite surfaces is predominantly Van der 
Waals forces, hydrogen, and weak coordination bonds [78].

The adsorption capacity is dependent on the surface area available. When there is 
no internal porosity, the biomolecules are mostly adsorbed onto the surface, limiting 
the loading capacity. Mesoporous hydroxyapatites are excellent structures for bio-
molecule release using physical adsorption mainly by their high surface area, but also 
because the pore size and interconnection can be customized [65, 79].

The chemical composition of the HA surface can be functionalized to improve 
adsorption and reduce the releasing kinetics prolonging the duration and efficiency 
of the antibacterial properties (Figure 4) [80, 81].
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3.2.3 Functionalization by antibacterial composites

The production of antibacterial composites is a valuable approach to produce 
antibacterial functionalization of hydroxyapatite. The combination of polymers, 
nanoparticles, antibiotics, and different structures of HA have unlimited possibilities 
for the obtention of medical devices with antibacterial properties.

Among the methods used to prepare composite, the incorporation of antibacte-
rial compounds into the precursor solution is highly employed in co-precipitation, 
sol-gel, and hydrothermal methods to produce antibacterial HA powders with 
high homogeneity [42, 82, 83]. Additionally, the solution containing the antibacte-
rial compound can be applied to HA substrates by dip coating and spin coating 
[84–86]. Another approach is to use electrochemical methods, such as electrodepo-
sition [34, 87–89], micro-arc oxidation [90], and electrophoretic deposition [91], 
to generate HA coatings containing antimicrobial compounds. Electrospinning can 
be used for the creation of composite nanofibers and coatings with a combination 
of functionalized-HA nanoparticles and antimicrobial compounds [92–94]. Other 
methodologies include the spraying of a solution containing the precursors of HA 
mixed with the antibacterial compound [95–97].

Different compounds can be used to produce antibacterial functionalization 
of HA including antibacterial polymers, nanoparticles, antibiotics, and proteins. 
Among them, antibacterial polymers, such as chitosan, and polycaprolactone 
(PCL), are frequently preferred for the obtention of HA composites with anti-
bacterial properties [87, 90, 91, 98–102]. Metallic nanoparticles, such as silver, 
zinc dioxide, titanium dioxide, and niobium pentoxide, have been combined with 
graphene and hydroxyapatite to produce composites with antibacterial properties 
[64, 80, 94, 103–105].

Many antibiotics have been used to produce antibacterial functionalization. 
Among them, β-lactam antibiotics, such as amoxicillin, can be adsorbed onto  
HA nanocrystals to be used alone or in composites fabricated by electrospinning 
[92, 106].

Fluoroquinolones, such as ciprofloxacin, have been used to functionalize 
nano-HA crystals and composites of chitosan, poly(vinyl alcohol), and HA 
sponges [107, 108]. Other fluoroquinolones, such as enoxacin, have been employed 
together with nano-HA/Polyurethane-cement to enhance the antibacterial 
properties of bone cement [109]. Adsorption has been used to introduce broad-
spectrum antibiotics of the tetracycline class and cyclic oligosaccharides, such 

Figure 4. 
Strategies to produce antibacterial properties on HA. Figure created by author.
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as cyclodextrin, onto HA surfaces [78, 88, 95]. Moreover, antibiotics from the 
glycopeptides class as vancomycin has been loaded into porous substrates to obtain 
a controlled release [84, 91]. Taha et al. [95] prepared a cyclodextrin polymer 
loaded with rifampicin, an antimycobacterial antibiotic, to prepare a coating onto 
titanium-coated hydroxyapatite surfaces. Covalent immobilization of antibiot-
ics like doxorubicin can be achieved using HA nanoparticles functionalized with 
amino groups or by more complicated methods, including the fabrication of 
polymer brushes, to anchor aminoglycoside antibiotics, such as gentamycin, to HA 
substrates [110, 111]. Furthermore, aminoglycosides antibiotics, such as strepto-
mycin, have been encapsulated in HA nanoparticles [93].

Proteins that present a broad spectrum of antibacterial activity can be used for 
the antibacterial functionalization of HA surfaces. One example is protamine, a 
cationic protein rich in arginine residues, used for Koizumi et al. [112] to functional-
ize different calcium phosphates by adsorption. Peptides with between 10 and 15 
amino acids are preferable for the antibacterial functionalization of surfaces because 
of the lower production cost compared to proteins [113]. These peptides so-called 
antibacterial peptides (AMPs) are very interesting due to their selectivity and high 
antibacterial efficiency at low concentrations. Their efficacy is based on the adoption 
of amphipathic structures and their cationic character. So far, more than 700 types of 
AMP have been isolated from different organisms. AMPs can be used to functionalize 
HA surfaces by electrostatic and covalent attachment [114].

4. Characterization methods

4.1 Bioactivity

One of the most important factors affecting the bioactivity and biocompatibility 
of HA implants is the release of substances that can cause toxicity, hypersensitivity, 
allergies, or even osteolysis depending on the released product, their concentration, 
and the exposure time [115]. Ensuring a controlled release of substances after the 
implantation is one of the key strategies to improve the implant performance, as it 
can affect osseointegration and implant long-term viability. The ISO 10993-17 is the 
standard that establishes the limits for leachable substances in medical devices.

Immersion tests are used to quantify the products released at body temperature 
(37 ± 1°C) under static or dynamic conditions. The level of substance released is mainly 
dependent on the implant’s surface area and the composition of both implant and the 
body fluid in contact. Therefore, the released products should be determined using a 
solution with the closest composition to the body fluid in contact with the implant under 
working conditions. Complex biofluids can be replicated with phosphate buffer saline 
(PBS), Hank’s solution, simulated body fluid (SBF), Ringer’s solution, artificial saliva, 
and eagle’s minimum essential medium (EMEM), as well as other fluids [116, 117].

The ability of an orthopedical implant to induce the formation of biological apatite 
on its surface is one of the requirements to determine correct osseointegration. The 
precipitation of apatite can be replicated in vitro by the immersion of the sample 
in simulated body fluid, a saturated solution with a composition comparable to the 
human blood plasma [118].

The cytotoxicity of an antibacterial functionalization is determined by cell viabil-
ity and cell proliferation. Cell viability refers to the number of live, healthy cells in a 
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sample and cell proliferation is defined by the valance between cell divisions and cell 
loss through cell death or differentiation. Cell viability assays can be used to evaluate 
cell health and can be assessed by culturing the chosen cells over either the sample or 
an extraction vehicle. The cell viability can be quantified using redox indicators that 
interact with metabolites produced by healthy cells. Another method is the use of 
dyes that react only with healthy cells like methylene blue, triptan blue, neural red, or 
by live/dead assays [119–121].

Cell proliferation is defined as the increase of cell number after the final step of 
the cell cycle due to cytokinesis or cell division. Many strategies can be used to assess 
cellular proliferation as the use of nucleoside-analogs incorporated during DNA 
synthesis, the quantification of cell cycle-associated proteins, and the use of cytoplas-
matic proliferation dyes [122–125].

All methods are valid to compare proliferation but it is important to consider 
their strength and limitations and, to improve the accuracy of the results, multiple 
assays should be performed [126]. The standard procedure of in vitro cell viability 
and proliferation assays is exposed in ISO 10993-5: Biological evaluation of medical 
devices-tests for in vitro cytotoxicity.

4.2 Antibacterial properties

The antibacterial properties of a biomaterial can be tested by studying antimicrobial 
susceptibility in vitro. Multiple methods can be used to evaluate, either quantitatively or 
quantitatively, the antibacterial activity of HA coatings and powders.

Qualitative measurements may not provide quantifiable results but offer valuable 
information regarding the bacteria’s sensitivity to antimicrobial functionalization  
of materials.

• The Kirby–Bauer disk diffusion susceptibility test, also known as the agar disk diffu-
sion method, is a standardized procedure to qualitatively determine the sensitivity or 
resistance of bacteria to antimicrobial compounds [127]. The presence or absence of 
growth around the disk is an indirect measure of the bacterial inhibition by the anti-
microbial compound. The Kirby–Bauer test was designed to test antibiotic-impreg-
nated disks, but many authors have also used it to test antibacterial substrates. This 
method cannot be used to determine the minimum inhibitory concentration (MIC) 
but can be approximate for some microorganisms and antibiotics by comparing the 
inhibition zone using systems that can read and interpret the results [128]. The main 
advantages of this method are its simplicity and low cost.

Quantitative tests provide more accurate information about bacterial growth in 
presence of an antimicrobial compound. These methods are normally based on the 
measurement of the turbidity of a bacterial solution to indirectly assess the bacteria’s 
sensitivity to an antibacterial compound.

• Among the quantitative test used, the broth dilution test can be used to test both 
coatings and powders that release the antibacterial compound. This method is 
based on the preparation of dilutions of the antibiotic or the extract in a liquid 
growth medium. The dilutions are inoculated with a previously known con-
centration of bacterial suspension. After overnight incubation, the turbidity is 
measured, and the MIC is defined as the lowest concentration that prevented the 
growth of the microorganism.



11

Perspective Chapter: Hydroxyapatite - Surface Functionalization to Prevent Bacterial Colonization
DOI: http://dx.doi.org/10.5772/intechopen.106375

• Once the MIC is determined, it may be useful to determine the interaction of the 
antibacterial compound depending on the time. The time-kill assay is based on 
the preparation of antimicrobial extracts with dilutions lower than MIC, and up 
to 16 x MIC that is inoculated with the same concentration of bacterial suspen-
sion, and their growth is measured during different intervals of time [129].

Likewise, in any biological test, the results obtained from a bacterial sensitivity test 
are dependent on variables, such as the inoculum size, the type of growth medium, and 
the incubation time [130]. Updated standards should be used to obtain reliable results.

Among the standardized methods to quantitatively evaluate antibacterial activity, 
there is the ASTM E2149-standard test method for determining the antimicrobial 
activity of antimicrobial agents under dynamic contact conditions and ASTM E2180-
standard test method for determining the activity of incorporated antimicrobial agent 
in polymeric or hydrophobic materials.

5. Conclusions

This book chapter presented the mechanisms that bacteria use to attach and 
proliferate on implants. Moreover, the main strategies used to provide antibacterial 
properties to hydroxyapatite powders and substrates were exposed.

The obtention of medical devices with suitable antibacterial properties must be 
complemented by excellent biocompatibility and adequate mechanical properties. 
Novel strategies include the combination of different methodologies and the use of 
different compounds to improve the properties.

The main difficulty in developing antibacterial functionalization of implants is 
the lack of homogeneity in the in vitro assays, which limits the comparison of the 
strategies employed. Additionally, many factors can affect the results from in vitro 
assays, such as the type of cell, their origin, incubation time, and the compound used 
to quantify the proliferation.

To accelerate the development of suitable antibacterial functionalization, more 
efforts must be made to use standardized protocols for bioactivity and antibacterial in 
vitro assays. The homogenization of the assays is necessary for an accurate compari-
son of the release of substances and bioactivity. Furthermore, through an in-depth 
study of the antibacterial properties during long periods of time, a selection of the 
suitable strategy for each application can be made.

Even though many attempts have been made to produce antibacterial function-
alization of HA, none have been used industrially. Considerably work still needs to 
manufacture a cost-effective implant’s antibacterial functionalization.
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