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Abstract—Game-theoretic Demand Side Management (DSM)
systems have been investigated as a decentralized approach for
the collaborative scheduling of the usage of domestic electrical
appliances within a set of households. Such systems allow for the
shifting of the starting time of deferrable devices according to
the current energy price or power grid condition, in order to
reduce the individual monthly bill or to adjust the power load
experienced by the grid while meeting the users’ preferences
about the time of use. The drawback of DSM distributed
protocols is that they require each user to communicate his/her
own energy consumption patterns to the other users, which may
leak sensitive information regarding private habits.

This paper proposes a distributed Privacy-Friendly DSM
system which preserves users’ privacy by integrating data aggre-
gation and perturbation techniques: users decide their schedule
according to aggregated consumption measurements perturbed
by means of Additive White Gaussian Noise (AWGN). We
evaluate the noise power and the size of the set of users required
to achieve a given privacy level, quantified by means of the
Kullback-Leibler divergence. The performance of our proposed
DSM system are compared to the ones obtained by a benchmark
system which does not support privacy preservation in terms of
social cost, peak demand and convergence time. Results show
that privacy can be preserved at the cost of increasing the peak
demand and the number of game iterations, whereas social cost
is only marginally incremented.

Index Terms—Smart Grid; Demand Side Management;
Privacy-Friendly Load Scheduling.

I. INTRODUCTION

In the past few years, Demand-Side Management (DSM)
has garnered increasing interest because of its potential impact
in the sustainable development of power grids. DSM is a
proactive approach aimed at managing the load demand of
users based on the needs of both customers and power grid.
[1]. Nowadays, the power demand is largely uncontrollable
and is mainly driven by habits of users, who are unaware
of the grid requirements. By properly redistributing loads, it
would be possible to increase the efficiency of the whole power
system. Specifically, DSM can have several benefits, among
which increasing the amount of Renewable Energy Sources
(RESs) that can be connected to the grid [2] by mitigating
issues related to demand-supply balancing, power quality and
unintentional islanding [3], preventing power outages and
curtailing the grid capacity and investment [4].

The work in this paper has been partially funded by the Italian Ministry of
Education, University and Reserach (MIUR) project SHELL and by Regione
Lombardia under grant no. 40545387 Smart Campus as Urban Open LAbs
(SCUOLA).

The residential sector represents a promising area to apply
DSM solutions [5], since it accounts for approximately 30%
of the total electricity demand [6]. Residential users can be
incentivized to properly optimize their demand through the
adoption of dynamic pricing. In this case, the electricity price
may exhibit hourly changes and reflects the costs incurred
by the system to satisfy the users’ demand (e.g., higher
price during peak hours and lower price in off-peak hours).
Consequently, tariffs evolve based on the conditions of the
power system and the efficiency of the grid can be improved
through minimization of the users’ bills [7]. Game Theory is a
key analytical tool to design decentralized DSM systems based
on dynamic pricing, since it can model complex interactions
among the independent rational players of the power grid [8].

The drawback of traditional game-theoretic DSM ap-
proaches is that they require users to communicate their own
energy consumption patterns to the other players: even if
aggregated over multiple appliances and on hourly basis, such
data can still reveal the type of electrical devices in use
[9], [10], which in turn leaks sensitive information regarding
the private habits of the dwellers. Spatial aggregation over
multiple households and data perturbation by means of noise
injection are two countermeasures which have been already
combined with the aim of enhancing privacy in the context of
smart metering data collection (see, e.g., [11]).

In this paper, we formalize the notion of γ-privacy as a
measure of the privacy of the users participating in a dis-
tributed game-theoretical privacy-friendly DSM system aimed
at reducing their daily electricity bill. We define a commu-
nication protocol which allows for game interactions while
integrating both data aggregation and perturbation techniques.
We also analyze the impact of the size of the player set and
the statistical characterization of the noise to be added to the
individual consumption patterns in order to guarantee a given
privacy threshold, evaluated by means of the Kullback-Leibler
divergence. Moreover, we evaluate the degradation of the
protocol performance caused by the alteration of the players’
data due to noise injection by comparing it to a benchmark
system which does not support privacy preservation.

The remainder of the paper is structured as follows: Section
II provides a short overview of the related literature, whereas
Section III describes the privacy-preserving scheduling frame-
work. The attacker model is discussed in Section IV. The
security analysis and the performance assessment of our
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proposed infrastructure are provided in Section V. Conclusions
are drawn in the final Section.

II. RELATED WORK

Game-theoretic methods for DSM have been widely studied
in the recent literature, since they can properly represent the
interactions among the rational players of the power grid [8].
Specifically, game theory has been used to design distributed
demand-management frameworks, where decisions are made
locally by users. The goal of these solutions is to improve the
efficiency of the whole power grid by reducing the peak of the
aggregated demand [12] and the users’ bills [13], as well as
by increasing the amount of RESs connected to the grid [14].
Despite the effort in designing DSM systems based on game
theory, only a few of them have specifically addressed the
privacy preservation of the data exchanged within the par-
ticipants. Moreover, the security assumptions modeling the
adversarial entities which attempt to access users’ data are
quite various and most often too loose with respect to realistic
attack scenarios. Paper [15] proposes a distributed architecture
in which multiple Home Energy Management (HEM) units
collaborate with each other in order to keep the demand and
supply balanced in their neighbourhood by solving a multi-
stage stochastic optimization problem. The proposed system
hides the users’ individual information to any external entity
(e.g., energy provider or grid manager) but requires the cus-
tomers to communicate their power schedules to their neigh-
bours. Conversely, paper [16] avoids data exchange among
households, but assumes a trusted energy utility to collect
the individual power consumption curves and to broadcast
price information which are updated at every game iteration.
Our solution is completely decentralized and does not involve
additional nodes besides the local HEM systems, thus, in our
scenario, the adversarial entities are represented by the game
players themselves.
Papers [17], [13] assume that exchanging aggregated power
consumption data at household level (e.g., on hourly basis) is
sufficient to hide the usage patterns of single electric appli-
ances to untrustworthy neighbours. However, several studies
on Non-Intrusive Load Monitoring (see, e.g., [18], [19]) prove
that the power consumption patterns of individual appliances
can easily be inferred from house-aggregated measurements.
Data perturbation is an approach which is widely employed
in combination to data aggregation in order to counteract such
kind of attacks: the authors of [20] propose a secure game-
theoretical framework for distributed appliance scheduling,
which provides integrity and accountability to the messages
exchanged among the players. The protocol also includes a
multi-party computation scheme which allows a single player
to obtain the aggregate consumption curve of all the remaining
players by exposing a noisy version of his individual power
consumption data, obtained by adding a random amount (either
positive or negative) to the actual consumption. However, no
discussion on the statistical characterization of the added noise
is proposed, whereas in our study we evaluate the dependency
of the privacy level on the power of the injected noise. The

same paper discusses how to prevent dishonest nodes from
cheating by declaring increased electric energy usages. Though
our paper assumes that players behave according to an honest-
but-curious adversary model, such countermeasures can be
easily integrated in our framework.

Data perturbation in the context of energy management
systems is achieved in [21] by relying on batteries installed
at the customers’ premises, which can be configured to
disguise the actual appliance electricity consumption. That
paper also defines three similarity metrics computed over the
load consumption curves to evaluate the trade-off between
energy cost minimization and information privacy leakages.
Our scenario does not assume the usage of batteries and
quantifies the achieved privacy level by means of the Kullback-
Leibler divergence, which is computed from the probability
density function of the stochastic process modeling the energy
consumption curve, and not from the realizations of the
process.

III. THE PRIVACY-FRIENDLY LOADS SCHEDULING
FRAMEWORK

In this paper, we consider a generic smart grid model in
which a group of residential users, U , has to efficiently allocate
its power demand over a 24-hour time period divided into a
set, T , of time slots. We assume that each end-user u ∈ U has
a set of non-preemptive electric appliances, Au, that must be
executed only once during the day. Each appliance a ∈ Au is
characterized by a load profile having a duration of Na time
slots. The power consumption of a in the nth time slot of
its load profile (with n ∈ Na = {1, 2.., Na}), lan, is constant
within the time slot. Each user u has to decide the starting time
slot of each appliance a within a time window delimited by
a minimum starting-time slot, STau, and a maximum ending-
time slot, ETau. The price of electricity at time t ∈ T , ct, is
modelled as an increasing function of the total power demand,
yt, of the group of users U at time t. The objective of each user
is to minimize his daily bill by means of optimally scheduling
the usage of his/her appliances.

A. Load Scheduling Game

The load scheduling problem is modelled as a game G =
{U, {Iu}u∈U , {Pu}u∈U}, defined by: the players representing
the users in the set U , the strategy of each player u, Iu,
corresponding to his/her loads scheduling, and the utility
function of each user u, Pu, which coincides with his/her
daily electricity bill. Specifically, the strategy of the player u
is Iu , {xat}a∈Au

, where xat are binary variables defined for
each appliance a ∈ Au and for each time slot t ∈ T . These
variables are equal to 1 if the appliance a starts in the time
slot t, 0 otherwise. The utility function of each player, Pu, is
defined as a function of I , {Iu}u∈U as follows:

Pu(I) =
∑
t∈T

yut · ct(yt) (1)

where yut represents the amount of electricity bought by
user u at time t and is a function of xat, whereas ct is a



function of yt =
∑

u∈U yut, which represents the total power
demand of the players at time t .

Let P be the total price paid by all the players to the electric-
ity retailer. One can prove that G is a potential game if ct(yt)
is convex with respect to yt, with P(I) being the potential
function. Potential games have several properties, such as the
existence of at least one pure Nash equilibrium. Furthermore,
such games have the Finite Improvement Property (FIP): any
sequence of asynchronous improvement steps is finite and
converges to a pure equilibrium. Particularly, the sequence of
best response update converges to a pure equilibrium.
In this paper, we assume that ct(yt) is linear with respect to yt,
thus the load scheduling game is a potential game. As a con-
sequence, best response dynamics always converge to a Nash
equilibrium. Moreover, we consider a simple implementation
of the best response dynamics: each player, in an iterative
fashion, defines his optimal loads scheduling strategy based on
electricity tariffs (calculated according to the strategies of the
other players) and communicates his energy plan (i.e., his daily
power demand profile) to the next user of the set U1. At every
iteration j ∈ J of the best response dynamics, energy prices
are updated and, as a consequence, other users can decide
to modify their schedules. In the jth iteration, the optimal
schedule of the user u is obtained by solving the following
Mixed Integer Non-linear Programming (MINLP) model:

min
∑
t∈T

(
cjt · y

j
ut

)
(2)

s.t.

ETau−Na+1∑
t=STau

xjat = 1 ∀a ∈ Au (3)

yjut =
∑
a∈Au

∑
n∈Na :
n≤t

lanx
j
a(t−n+1) ∀t ∈ T (4)

yjut ≤ π ∀t ∈ T (5)

cjt = cMIN + s(yjut + pjut) ∀t ∈ T (6)

The objective function (2) minimizes the daily bill of the
user u. Constraints (3) guarantee that each appliance a ∈ Au

starts in exactly one time slot and is carried out in the required
interval [STau, ETau]. Constraints (4) determine the overall
consumption of the appliances in each time slot at iteration j,
which depends on the scheduling strategy. Constraints (5) limit
the amount of purchasable power, according to the capacity of
electricity meters, π. Finally, constraints (6) guarantee that the
electricity price cjt at iteration j in each time slot t ∈ T is a
linear increasing function of the total demand of the group of
users U . Specifically, in constraints (6), pjut is the total demand
of the other players of the set U received by user u at game
iteration j, whereas cMIN is the minimum electricity price
and s is the slope of the cost function.

The iterative process is repeated until convergence is
reached. Note that the number of iterations required to reach

1We assume that the order in which the players execute the protocol within
a single game iteration is predefined and fixed for the whole duration of the
game, which provides higher fairness w.r.t random ordering.

Fig. 1: The privacy-friendly communication protocol: initial-
ization round

Fig. 2: The privacy-friendly communication protocol: first
round

convergence (i.e., |J |) may vary for different instances of the
game.

B. The Privacy-Friendly Scheduling Protocol

We now detail the communication protocol run during the
execution of the load scheduling game presented in Section
III-A. During an initialization round (numbered as 0), each
player u generates two sequences φut, rut ∀t ∈ T , where
rut ∼ N(0, σ2) is a random variable representing AWGN
noise with zero mean and variance σ2 and the sequence φut
for t = 1, . . . , T is an arbitrary partition of the quantity∑

a∈Au,n∈Na
lan, i.e.:∑

t∈T
φut =

∑
a∈Au,n∈Na

lan (7)

Then, the first player (user 1) initializes a sequence Yj
u =

[Y j
u1, . . . , Y

j
u|T |] as Y 0

1t = φ1t + r1t ∀t ∈ T and forwards
it to the second player (user 2), who updates it by adding
to each variable Y 0

1t the corresponding quantity r2t + φ2t
(see Fig. 1). The procedure is repeated for all the players,
until user 1 obtains the final aggregated sequence of elements
Y 0
|U|t =

∑
u∈U φut + rut. Note that, since φut are arbitrarily

chosen and rut are random variables, the quantity rut + φut
does not leak any information about the preferential usage
periods [STau, ETau] of each appliance a ∈ Au. Constraint



(7) imposes that the overall declared electricity usage is
consistent with the actual cumulative power consumption of
the appliances to be scheduled. Once the initialization round
is completed, user 1 begins the first game round and calculates
the parameters p11t as:

p11t = Y 0
|U|t − φ1t ∀t ∈ T (8)

and solves the MINLP problem described in Section III-A.
Then, it computes:

Y 1
1t = p11t + y11t ∀t ∈ T (9)

where y11t is outputted by the MINLP solver, and forwards it to
the next player (see Fig. 2). This way, user u replaces the par-
tition φt∀t ∈ T with his/her own energy consumption curve,
aggregated over all the appliances he/she owns and computed
according to optimal solution of the MINLP problem. This
procedure is repeated by all the users until completion of the
first round of the game. In the following jth iterations (where
j ≥ 2), each user u behaves analogously, by replacing Formula
(8) with:

pjut = Y j
(u−1)t − y

j−1
ut ∀t ∈ T

where yj−1ut is the overall energy consumption pattern of user
u computed according to the most recent schedule (i.e., the
schedule obtained at the (j − 1)th iteration), and by applying
Formula (9) as follows:

Y j
ut = pjut + yjut ∀t ∈ T

It results that, at the jth round, pjut is the sum of the current
total energy consumption pattern (aggregated over the whole
set of users) and of the AWGN noise injected by each of the
users during the initialization round.

IV. ATTACKER MODEL

We assume a scenario where the players behave according to
the honest-but-curious attacker model: they honestly execute
the protocol but try to infer the preferred time of use of the
owners of active electrical appliances (i.e., the time windows
[STau, ETau] of each appliance a used by every user u)2.

For the sake of easiness, we assume that each player runs
a single appliance, i.e. |Au| = 1∀u ∈ U and that all the
appliances are of the same type, i.e. they have the same energy
consumption profile, which is public and known to all the
players. Moreover, we assume that the duration of the time
interval [STau, ETau] is set to D time slots, i.e. ETau =
STa+D ∀u ∈ U , a ∈ Au and that STau is a random variable
with uniform distribution in [1, T −D].

Definition Consider a randomly chosen malicious player
um ∈ U and a target player uo within the set U \ {um}. Let
G0,G1 be two instances of the scheduling problem: the former
includes the time windows [STau, ETau] of the appliance a
used by every player u ∈ U , the latter includes the time
preferences expressed by all the players u ∈ U \ {uo} and

2For the sake of conciseness, the analysis of the effects of collusions of
multiple honest-but-curious users is left for future work.

an additional user owning one appliance with time window
[ST ′, ET ′], where ST ′ has the same statistical characteriza-
tion of the uniform random variables STau. This way, the
target user uo is substituted by a random user belonging
to the same population of the users in U . It follows that
the two instances G0,G1 differ by exactly one time window
([STauo , ETauo ] in G0 is replaced by [ST ′, ET ′] in G1). Let
v0,v1 be two k-dimensional multivariate random variables,
where k = |T | · J and J = max(|J0|, |J1|), defined as vb =
[p1Gbum1, · · · , p

1Gb
um|T |, · · · , p

JGb
um1, · · · , p

JGb
um|T |], where pjGbumt are J

sequences of |T | aggregated energy consumption measure-
ments received by um at each iteration of the load scheduling
game performed over instance Gb with b ∈ {0, 1} following the
privacy-preserving protocol described in Section III-B (in case
|Jb| < J , we set pjGbumt = p

|Jb|Gb
umt ∀t ∈ T , j : |Jb| < j ≤ J).

We now define the function f(G0,G1, um, uo) as follows:

f(G0,G1, um, uo) = DKL(Q0, Q1)

where Q0, Q1 are the probability density functions of the
multivariate variables v0,v1 and DKL indicates the Kullback-
Leibler divergence operator. The architecture provides γ-
privacy to the user uo if, for a given um, it holds that:

f(G0,G1, um, uo) ≤ γ ∀G0,G1 (10)

Intuitively, the lower is the divergence between the two density
function, the harder it is to discriminate among them. There-
fore, a low divergence makes it hard to detect whether user uo
belongs to the set of players. Thus, the lower is the value of γ
computed by means of Formula 10, the higher is the privacy
provided to the user.

In the next Section, we will numerically evaluate the privacy
level achieved by our proposed privacy-friendly DSM system,
depending on the cardinality of the set of users and on the
standard deviation σ of the injected noise.

V. NUMERICAL ASSESSMENT

In this section, we first describe the methodology used in
our tests, then we present the numerical results and the security
analysis obtained by applying Privacy-Friendly DSM method
on realistic instances defined according the Italian power grid
parameters and standard consumer profiles [22], [23].

A. Tests Methodology

In our tests, the 24-hour time horizon is represented by a
set T of 24 time slots of 1 hour each. Each user, connected
to the grid with a power limit, π, of 3 kW, has 1 appliance
(i.e., washing machine) whose load profile, lan, and activity
duration, Na are the same for all players U . The starting-time
slot of the appliances, STau, is randomly selected for each
user to represent a population of heterogeneous consumers.
On the other hand, the ending-time slot, ETau, is defined
as STau + Na + 6 thus guaranteeing 8 different possible
schedules for each device. As for the size of the group of
users, three different cases are investigated (i.e., 100, 300 and
500 consumers).
The electricity tariff used in our tests is defined according to



the dynamic pricing tariff currently used in Italy. Actually,
this pricing approach is not (yet) applied to residential users,
but only to large industrial consumers. For this reason, in
order to realistically define this tariff, the dynamic pricing
is computed by adding to the day-ahead market clearing
prices, the costs of ancillary services (e.g., electricity trans-
port, distribution and dispatching, frequency regulation, power
balance). Specifically, we fix the minimum electricity price
cMIN = 5 × 10−5 e and the slope of the pricing function
s = 23 × 10−11 e/kWh.
The AWGN used in the Privacy-Friendly load scheduling
game, rut, is generated randomly for each user. In order to
assess the performance of the Privacy-Friendly solution as
the noise increases, four different cases are considered for its
standard deviation, σ: 0, 100, 200 and 300 W.
For each scenario defined in our simulations, 50 different
instances are generated (for a total of 600 instances). In
Subsection V-B, we only report the average results obtained
for each test case.
In order to evaluate the performance of the proposed Privacy-
Friendly DSM game, we measure the following metrics:
• Social cost: is the electricity bill of the group of houses,
P (I).

• Peak demand: is the peak of the aggregated power de-
mand of the group of users U and is defined as maxt yt.

• Convergence time: represents the number of iterations of
the best response dynamics required to converge to the
Nash Equilibrium.

B. Performance Evaluation

Figures 3 and 4 illustrate, respectively, the social cost
and the peak demand obtained by using our proposed DSM
privacy-friendly mechanism, as a function of the standard de-
viation, σ, of the AWGN noise rut. Specifically, for each size
of the group of consumers, we report the results normalized
with respect to the benchmark scenario in which no noise is
injected (i.e., σ2 = 0), in order to show the net effect of the
privacy-friendly protocol on the performance of the DSM.
As it can be observed in Figure 3, the injection of AWGN noise
affects the performance of the demand-side management sys-
tem just slightly, in terms of social cost: in all the considered
cases, the gap between the overall consumers’ electricity bills
with respect to the benchmark scenario is always lower than
1%. Moreover, this gap decreases as the number of the users
grows.

The privacy-friendly protocol has worse performance when
considering the peak demand of the consumers. Specifically,
as shown in Figure 4, the peak of the aggregated power
demand of users increases up to 68% when adding noise
to the real power demand of the players. However, when
applying the proposed method to large group of users, this
effect is considerably decreased: as previously observed for
the social cost, the degradation of the DSM game performance
caused by the privacy-friendly protocol diminishes as the
number of consumers grows.
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Fig. 3: Normalized social cost of the DSM game equilibrium
as a function of the standard deviation of the AWGN noise,
for different cardinalities of U .
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Fig. 4: Normalized peak demand of the DSM game equilib-
rium as a function of the standard deviation of the AWGN
noise, for different cardinalities of U .

In Figure 5 we show the number of iterations required by
the loads scheduling mechanism to reach the equilibrium as
a function of the standard deviation of the AWGN noise.
As expected, the convergence time grows as the standard
deviation, σ, increases. This inherent limitation of the privacy-
friendly protocol appears to require a compromise between
the opposing needs of fast convergence rate and good privacy
level. However, a decrease of the convergence speed is actually
acceptable since no tight real-time constraint is imposed in
day-ahead load scheduling problems such as the one consid-
ered in this work.

C. Security Analysis

The privacy level achieved by our framework have been
evaluated by selecting one malicious user and one target
player for each instance and by computing the Kullback-
Leibler divergence as in the definition provided in Section IV.
Results reported in Figure 6 show that increasing the standard
deviation of the AWGN noise causes a consistent decrease in
the Kullback-Leibler divergence, thus providing a lower γ and
a higher user privacy. We also observe that the higher is the
cardinality of the set of users, the higher is the noise standard
deviation required to achieve a given privacy threshold (e.g.,
setting γ = 1000 requires a standard deviation of 100 W in
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Fig. 5: Number of iterations required to converge to the
equilibrium of the DSM game as a function of the AWGN
noise standard deviation, for various sizes of U .
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Fig. 6: Kullback-Leibler divergence as a function of the
AWGN noise standard deviation, for various sizes of U .

case of 300 users, whereas for 500 users the required noise
standard deviation is approximately 175 W).

VI. CONCLUSIONS

This paper proposes a privacy-preserving distributed de-
mand side management system for the scheduling of power
consumption requests generated by electrical appliances in a
Smart Grid scenario. The interactions among the appliances
owners are modelled by means of a load scheduling game
which operates by relying exclusively on aggregated and noisy
energy consumption data, which is perturbed by injecting
additive white Gaussian noise. We show that the performance
of the proposed system are only marginally affected by the
data perturbation mechanism, and we evaluate the number of
players and the noise power required to achieve a given privacy
level, which is computed by means of the Kullback-Leibler
divergence.
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