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Abstract 

Cancer cells exhibit distinct energy metabolic pathways due to multiple oncogenic events. In 

normoxia condition, the anaerobic glycolysis (Warburg effect) is highly observed in Head and Neck 

Squamous Cell Carcinoma (HNSCC). HNSCC is associated with smoking, chewing tobacco, 

consumption of alcohol or Human Papillomavirus (HPV) infection primarily HPV16. In recent 

years, the correlation of HPV with HNSCC has significantly expanded. Despite the recent 

advancement in therapeutic approaches, the rate of HPV infected HNSCC has significantly 

increased in the last few years, specifically, in lower middle-income countries. The oncoproteins of 

High-risk Human Papillomavirus (HR-HPV), E6 and E7, alter the metabolic phenotype in HNSCC, 

which is distinct from non-HPV associated HNSCC. These oncoproteins, modulate the cell cycle 

and metabolic signaling through interacting with tumor suppressor proteins, p53 and pRb. Since, 

metabolic alteration represents a major hallmark for tumorigenesis, HPV acts as a source of 

biomarker linked to cancer progression in HNSCC. The dependency of cancer cells to specific 

nutrients and alteration of various metabolic associated genes may provide a unique opportunity for 

pharmacological intervention in HPV infected HNSCC. In this review, we have discussed the 

molecular mechanism(s) and metabolic regulation in HNSCC depending on the HPV status. We 

have also discussed the possible potential therapeutic approaches for HPV associated HNSCC 

through targeting metabolic pathways. 

 

Keywords: HNSCC; HPV Infection; Glycolysis; Metabolism; Cancer therapy 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



3 

 

1. Introduction 

 

Despite the fact that Warburg phenomenon was first described centuries ago, however, the 

association between major metabolism regulators and oncogenes has fueled a renewed interest in 

the area of cancer cell metabolism in the last few years [1]. Although, every year with the incidence 

of 650,000 new cases, head and neck squamous cell carcinoma (HNSCC) has been recognized the 

sixth most common cancer worldwide [2]. HNSCC is classified into two subgroups, Human 

Papillomavirus negative (HPV
-
) and Human Papillomavirus positive (HPV

+
) HNSCC [3]. The most 

common cause of HNSCC malignancies includes smoking, chewing tobacco and alcohol 

consumption with the case of HPV
-
 HNSCC and Human Papillomavirus in HPV

+
 HNSCC (Fig.1) 

[4]. HPV
+
 HNSCC are commonly associated with oropharyngeal part of the Head and Neck, 

usually determined by the expression of p16 (surrogate marker) [5]. In corresponding to migration, 

invasion, and response to chemotherapy, HPV infected HNSCC has different clinical behavior, 

molecular and metabolic profiles [6]. The routine technique used for assessing HNSCC tumor is 

PET-CT scan imaging, which state the metabolic activity of the cells [7,8]. This suggests that a 

specific metabolic pathway may facilitate the promotion and progression of HNSCC tumor and can 

represent therapeutic targets. It has been reported that HPV
+
 HNSCC cells rely on mitochondrial 

respiration with decreased rate of glycolysis, whereas, HPV
- 

HNSCC cells depend on glucose 

metabolism for survival [9]. HNSCC meet their metabolic demands highly depending on the 

anaerobic glycolysis that helps cancer cells in rapid proliferation [10]. HNSCC cells with HPV
+
 

infection gets benefited hugely by glycolysis independently of the oxygen availability where it 

helps the HNSCC to resist the chemotherapeutic drug as well as detoxify the free radicals. 

Additionally, glycolytic regulation also produces pyruvate and lactate, which promote and confer 

radio resistance [11]. This review primarily focusses on the basic principle and mechanism(s) of 

cancer cell metabolism in HPV associated HNSCC, showing differential therapeutic outcome, 
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which may lead to the altered metabolic activity and possible intervention(s) for the effective 

treatment against different subtype of HNSCC. 

2. HPV in head and neck cancer 

Human Papillomavirus (HPV) is a double-stranded, non-enveloped DNA virus consisting of 

approximately 8000 base pairs and encoding a total of 8-9 proteins. More than 100 distinct HPV 

genotypes are identified till date [12]. The E6 and E7 HPV oncoproteins cooperatively promote loss 

of cell cycle control, inhibit apoptosis, promote uncontrolled cell proliferation and induce 

chromosomal instability through degrading two major tumor suppressor genes, p53 and pRb 

[13,14]. It has become clear over the last few decades that HPV not only causes cervical cancer, but 

also causes a subset of HNSCC [15]. HNSCC patients with HPV infection are reportedly younger 

in age and also have different clinical characteristics where tobacco remains a contributor to the 

disease. [16]. HPV
+ HNSCC as compared to the HPV

- HNSCC samples have poorly characterized 

histology. Additionally, the HPV
+ 

tumors are tend to be diagnosed at small tumor stage. 

Interestingly, patients with HPV
+ status show improved performance rate and a better prognosis as 

compared to HPV
- patients (Fig.1). The continuous increase in HPV infected HNSCC cases in the 

last few years, is picking up people’s attention globally. The epidemiology of HPV associated 

HNSCC is largely relying on the tumor subset and the region [17].  

Among the report of 500,000 annual cases of HNSCC disease a approx. number of 85,000 is 

reported to be HPV
+  which suggests that most common HPV infected tumor site is of  head and 

neck region [18]. Studies show that HPV infection causes about 30–60% of oropharyngeal 

carcinoma, 12% of pharyngeal cancer and 3% of oral cancer [3]. Oropharyngeal cancer shows the 

most accepted site for HPV associated tumors after cervical cancer as compared to the other tumor 

sites of oral cavity (12%) and the oropharynx (14%) (Fig.1) [19,20]. HPV associated oropharyngeal 

carcinoma occurs primarily in the tonsils, back of the tongue, or in the palatine region. Recent study 

suggests that 62% of the tongue based tumors are HPV
+
, whereas 25% are HPV

- [21].  
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3. Genetic alterations in HPV
+ and HPV

- head and neck cancer  

HPV
+ and HPV

- HNSCC present differences in terms of epidemiology, etiology, genetic alterations, 

metabolism, molecular properties and response to the treatment [22]. p53 and pRb pathways are 

frequently altered and inactivated in both HPV
+ and HPV

- HNSCC. While the inactivation 

mechanism of both p53 and pRb remains quite different [23]. As described above, the inactivation 

of p53 and pRb is caused by E6 and E7 oncoproteins in HPV
+ HNSCC. In contrast, p53 is highly 

mutated in HPV
- HNSCC [18,24]. The higher mutation rate in HPV

- HNSCC has been reported in 

several studies as compared to HPV
+ HNSCC [25,26]. Other studies have reported that there is a 

difference in genomic aberration profile and not the mutation rate in both groups. For instance, 

HPV
+ HNSCC has a higher number of mutations in genes, such as TRAF3, FGFR2/3, PIK3CA, 

MLL2/3, DDX3X, KRAS, E2F1; while in HPV
- HNSCC, TP53, MLL2, NSD1, EGFR, EPHA2, 

NOTCH, PIK3CA, FGFR2/3, FGFR, CUL3, CDKN2A, DDR2, CASP8, HRAS genes are mutated 

[27]. Certain genetic modifications are shared in HNSCC irrespective of the HPV status; however, 

others have been specifically related to either HPV
+ or HPV

- HNSCC [28]. Comparative genomic 

and sequencing studies have shown the amplifications in chromosome 3q, 8q, and 20p in HNSCC. 

Also, chromosome arms 3p and 9p are frequently lost, whereas, 11q13 is highly amplified in HPV
- 

HNSCC [29]. Several genes like SOX2, PIK3CA and TP63 are located in the 3q26-28 region [30]. 

CDKN2A and CCND1 encoding p16INK4A and Cyclin D1 are located on 9p and 11q13 are 

associated in pRb signaling and therefore the success rate of modification is less in HPV associated 

HNSCC [31]. Similarly, HPV infected HNSCC samples reportedly have TP53 mutations widely 

while not much in HPV
- HNSCC [32]. In addition, EGFR and FGFR1 amplifications are observed 

specifically in HPV
+ HNSCC. Contrary, 14% of deletion or 8 % of mutation has been reported in 

receptor-associated factor 3 (TRAF3), which is mainly involved in the innate and acquired antiviral 

immune response, is overexpressed in HPV
+ 

HNSCC [33]. Studies in HPV
+ 

HNSCC have reported 
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elevated levels of TpC mutation frequencies and CpG transversions in HPV
- HNSCC, whereas the 

presence of HPV infection quite likely does not affect the overall mutation rate [34]. 

4. Cellular metabolism in HPV infected HNSCC 

Adenosine triphosphate (ATP) provide energy to the cells and that utilize through carbohydrate, 

protein and fat metabolism [35]. End products such as the pyruvate and acetyl coenzyme-A is the 

result of metabolism of glucose, amino acids and other intermediaries, such as glycerol and fatty 

acids. The subsequent metabolic activity of acetyl-CoA in the Tricarboxylic acid cycle (TCA) and 

OXPHOS cycle results in the generation of energy products such as flavin adenine dinucleotide 

(FADH2), nicotinamide adenine dinucleotide (NADH), and ATP [36]. Cancer cells undergo 

metabolic reprogramming to obtain their energy requirements since their energy requirements differ 

from those of normal cells (Fig.2) [37]. 

4. 1. Glycolysis  

As compared to normal cells, glycolysis is highly upregulated in HNSCC, despite in the existence 

of oxygen [1]. The alteration in the levels of expression and regulation of certain tumor suppressor 

genes, oncogenes, and various other glycolytic enzymes and transporters determines the regulation 

of glycolysis in HNSCC [38]. During aerobic condition, the cells produce two ATPs with the help 

of glycolysis. Whereas, TCA cycle produces 36 ATPs by utilizing pyruvate through OXPHOS. 

Under aerobic conditions pyruvate has the fate to produce lactate with the help of the enzyme 

lactate dehydrogenase (LDH-A). Apart from the less production of energy in the form of ATP 

glycolysis has been stated to be a major feature for cancer cell metabolism [39]. Subsequently the 

less utilization of pyruvate and deteriorated OXPHOS, cancer cells produce less ATP through 

OXPHOS. Cancer cells perform glycolysis aggressively in order to maintain energy balance. The 

rapid generation of energy during glycolysis promotes aggressive proliferation of HNSCC [4,36]. 

Certain evidence suggests the involvement of HPV in metabolic reprogramming of HNSCC. 
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Interaction of E6 and E7 viral oncoproteins with several cellular partners have been reported to 

affect biological functions [40]. Studies have also shown the association between HR- HPV, E6 & 

E7 and Hypoxia-inducible factor-1 (HIF-1) and its downstream gene expression [41]. HIF-1α is a 

transcription factor responsible for regulating and reprogramming cancer cell metabolism, enabling 

tumor cells to survive via modulating glycolysis and pentose phosphate pathway (PPP). This helps 

in inducing angiogenesis, cell proliferation, erythropoiesis, invasion and apoptosis [42,43]. 

Overexpression of HIF-1α has been reported in several solid tumors, including HNSCC [44,45]. 

HIF-1 is a heterodimer protein which contains two subunits namely HIF-1α mostly regulated by 

oxygen and a constitutively expressing HIF-1β subunit [9]. The protein family, prolyl hydroxylase 

domain (PHD) mainly functions by stabilising both the subunits of HIF-1 [11]. However, HIF-1α is 

rapidly weaken under normoxia condition, because HIF-1α hydroxylated by PHD2, which discover 

a binding site for von Hippel-Lindau (VHL) which is a tumor suppressor protein. Further, E3 

ubiquitin ligase complex promotes fast deterioration of HIF-1α [46]. Under hypoxic condition, a 

complex formation of HR-HPV, E6 & E7 with HIF-1α and the PHD activity is prohibited by 

mutated VHL. This also detoriates the proteasomal deterioration of HIF- 1α via ROS and NOS 

which accumulates and stabilize the HIF-1α subunit [47]. After HIF-1α complex is stabilized this 

subunit specifically binds to the hypoxia response elements (HRE), which may present in the 

promoter site of target genes. This stimulates transcription of multiple genes, which has been 

associated within glucose metabolism, such as hexokinase (Fig.3) [48], glucose transporters 

(GLUT1 and GLUT3) [49.50], lactate dehydrogenase (LDH) [51], phosphoglycerate kinase [52], 

Na+ve/H+ve exchanger 1 (NHE1) and carbonic anhydrase IX (CAIX) [11]. 

HNSCC associated with HPV has favorable outcomes as compared to the HPV
- [53]. It has 

been observed that in HPV
+ HNSCC, a differentially regulated metabolic machinery is shown to 

play major role [54]. Additionally, HIF-1α has been reported as an important hypoxia biomarker in 

radioresistance and crucial metabolic regulator in cancer cells [40]. In 2017, Jennifer et al., have 
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reported the higher expression of HIF-1α in HPV
+ HNSCC as compared to HPV

- in normoxia 

condition [55]. This was followed by the correlation between HPV16-E7 and HIF-1α. This 

suggests that there is a positive association between the expression of HPV and HIF-1α. Under 

hypoxic condition, upregulation of HIF-1α in both HPV
+ and HPV

- HNSCC cells has been 

reported. However, the absolute increase in protein and hypoxia expression signal was higher in 

HPV
+ cells as compared to HPV

- [41]. HIF-1α activates transcription of glycolytic enzymes as well 

as glucose transporters, leading to an aggressive tumor behavior [56]. Rodolico et al., in 2011 

stated in his findings that there is a steady linkage between the formulation of HPV16-E7 and HIF-

1 in HPV16 infected oral squamous cell carcinoma tissue specimens collected from 62 randomly 

selected patients who underwent surgical resection [57]. As discussed above, HIF-1α binding to 

the HRE promoter region stimulates the transcription of multiple genes associated with 

glucose metabolism.  HIF-1α increases the expression of glucose transporters. This leads to an 

increase in glucose uptake and induces phosphorylation of glucose by increasing the activity of 

HK-II activity [58]. The entire pathway of glycolysis is regulated by HIF-1α via upregulating 

the major enzymes responsible for glycolysis such as HK-II, LDH-A and 

phosphofructokinase1 (PFK1). Furthermore, upregulation of these glycolytic enzymes, favours 

the utilisation of glucose in glycolysis and export of lactate into the extracellular space. This 

promotes the tumor cell angiogenesis and survival [59]. Hence, HIF-1α is a major pathway 

causing metabolic alteration in HNSCC. Because under normoxia, non-metastatic HNSCC cells 

utilise less glucose and HIF-1α, suggesting that HIF-1α dysregulation may induce warburg effect. 

The development of [
18

F]fluorodeoxyglucose positron emission tomography imaging (FDG-PET), 

co-ordinated with recent findings has been shown to have been associated with aggresive cancer 

phenotypes [60]. Therefore, it is very important to investigate the role of HIF pathway in HPV
+ 

associated HNSCC to provide an insight for the development of potential therapeutic strategies.  
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p53 is a tumor suppressor gene and is found to be mutated in various cancers, including 

HNSCC. Also, p53 is reported to be a major regulator of metabolic mechanism such as glycolysis 

and OXPHOS [61]. Degradation of p53 by HR- HPV-E6, mediates metabolic reprograming in 

HNSCC [15]. The highly important cell nutrients, which may synthesize carbon sources and 

macromolecules in the cells, do not freely diffuse through the lipid bilayer and are hydrophilic. 

These molecules need specific transporters present in the cell membrane to pass through. For 

instance, GLUT facilitate the entry of glucose in the cell [62,63]. Additionally, oncogenes 

including RAS, Myc and SRC induce the overexpression of GLUT1 and GLUT3 to maintain the 

Warburg phenomenon and mediate the entry of glucose in the cell (Fig.5) [64]. GLUT-1 

upregulation provides several metabolic advantages to cancer the cells helping them into energy 

and biomass production for their survival. Also, GLUT-1 expression leads to the production several 

glycolytic intermediates which are further utilised by other metabolic pathways such as PPP, 

nucleotide production or synthesis of lipid [64]. A huge interpretation of GLUTs has been shown in 

the majority of cancers including HNSCC. The transcriptional regulation of p53, represses GLUT1 

and GLUT4 indirectly, and limiting the uptake of glucose in the cancer cells, therefore, weaken 

their growth [65]. HR-HPV-E6 mediated degradation of p53, upregulates the expression of GLUT1 

& GLUT4, and therefore elevate glucose uptake [66]. SGLT Na
+
 /glucose co-transporters through 

Na
+ve

 /K
+ve

 ATPase secondary active transport mediate glucose internalization in epithelial cells, 

which is coupled to Na+ve entry. The low concentrations of glucose, SGLT1 Na+ve/glucose co-

transporters present in HPV
+ HNSCC facilitates glucose accumulation [67]. HPV

+ HNSCC shows 

significant over-expression of GLUT1 in HNSCC, correlating with the highest accumulation of 

FDG and thus higher uptake of glucose (Fig. 4). However, HPV
+ 

patients have a significantly better 

disease free survival rate as compared with the HPV
- HNSCC patients [68]. GLUT1 upregulation in 

HPV
+ tumors has been observed in central locations. In HPV

- tumors, the expression of GLUT1 

was either indifferent within the nests of solid tumor or overexpression was observed at the 
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margins, and decreased in central location [69]. The mRNA expression level of GLUT1 was 

significantly higher in HPV
+ 

HNSCC cells as compared to HPV
-
. Additionally, Warburg effect is 

enhanced by HPV16-E6 & E7 oncoproteins, which interact with HIF-1α and promote its 

degradation by VHL, which significantly upregulates the expression of GLUT1 [47]. 

Hexokinase-II (HK-II) is a rate limiting enzyme of glycolysis, converts glucose to glucose-

6-phosphate (G6P) in many tissues, such as adipose and muscle [70]. The regulation of glycolysis 

by HPV mediated upregulation of HK-II, facilitates the promotion of cancer cell survival, 

associated with poor prognosis [71,72]. Four isoforms of HK has been reported, among which the 

upregulation of HK-II is highly observed in the majority of cancers including HNSCC. HK-II 

mediates the stimulation of aerobic glycolysis and plays a major role in generating building blocks 

for tumor cell growth [10]. Additionally, HK-II supplies intermediate metabolites and stimulates 

TCA cycle by utilizing glutamine derived carbon in anaplerosis [73]. Moreover, HK- II regulates 

autophagy by suppressing proapoptotic molecules Bax and Bad at the outer mitochondrial 

membrane. It plays a critical role in metabolism through integrating apoptosis and glucose 

metabolism [52,73,74]. Also, interaction of HK-II with VDAC (voltage dependent anion channel), 

outer mitochondrial pore- forming protein supply cellular ATP by coupling OXPHOS and 

glycolysis [75]. The VDAC/HK-II interaction blocks apoptosis through multiple mechanisms [76], 

such as by disturbing the pore formation of mitochondrial permeability transition [77] and by 

proapoptotic protein inhibition, which targets outer mitochondrial membrane [78]. Several studies 

have shown the potential of HPV oncoproteins, E6/E7, to induce expression of HK-II [79]. It is 

interesting, since it provides a direct link between the HPV oncogenes and the expression of major 

cellular enzymes responsible for apoptotic resistance and metabolic reprogramming in cancer cells. 

This leads to the increased oncogeneicity and decreased therapeutic sensitivity in the clinic [40]. 

Certain studies have stated that PI3K/Akt pathway is utilised via the HK-VDAC disruption which 

ultimately results in apoptosis. However, glycolysis may produce an enhanced levels of lactic acid 
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and which facilitates the tumor cells to outbreak from the detection of the immune system and allow 

rapid proliferation [80]. It has been reported that HPV mediated stimulation of HK-II are dependent 

on the overexpression of E6/E7 oncoproteins [81,82]. Two major mechanisms are involved in HK-

II stimulation by HPV. First, repression of HR-HPV16 results in downregulation of the MYC 

transcript [83] and protein levels, thereby repressing the transcription of HK-II [84]. Over-

expression of HR-HPV-E6 in Mouse Embryonal Fibroblast (MEF) associated the upregulation of 

HK-II expression through Myc [79]. Furthermore, stabilization of c-Myc by HR-HPV-E6 increases 

its protein turnover. Second, the expression of miR-143-3p is significantly induced by E6/E7 

repression, suggests that HK-II inhibitory miRNA is downregulated by the induction of E6/E7. 

Both the mechanisms result in HK-II stimulation by HR-HPV-E6 expression in HNSCC and 

cervical cancer cells [73]. Additionally, HR-HPV-E6 mediated p53 degradation regulates the 

transcription of HK-II by binding to its promoter region along with changes in the concentration of 

glucose, and oxygen [85]. c-Myc is a transcription factor which is reported to be a factor that 

interacts with HR-HPV-E6  and promotes the expression of glycolytic genes such as HK-II, LDH-

A, GLUTs, enolase A and phosphofructokinase (PFK) [86,87]. In HPV
+ and HPV

- HNSCC, the 

enhanced glycolysis is promoted by the upregulation of HK
-
II, which acts as a precursor as well as 

provides energy for the growth of the tumor [88]. In HPV
+ HNSCC, Zeng Q et al., (2017) has 

reported the upregulation of HK-II, leading to enhanced glycolysis in a c-Myc-dependent manner 

when there was an ectopic over-expression of HPV16-E6/E7 in mouse embryo fibroblasts [89]. 

This suggests that the oncoproteins E6/E7 directly activates HK-II expression and is responsible for 

the reprogramming of HPV transformed cells to regulate glycolysis [81]. Along with this, in HPV
- 

HNSCC anaplerosis, HK-II plays a major role in carbon utilization derived from glutamine, thus, 

supplying intermediates for the Krebs cycle and facilitates the maintenance of homeostasis by 

inducing autophagy in response to glucose deprivation [75].  
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Lactate dehydrogenase A (LDH-A) enzyme is responsible for catalyzing the final step of 

anaerobic glycolysis by converting pyruvate to lactate. LDH-A is shown to be highly upregulated in 

HNSCC [37]. There are five known active isoenzymes of LDH present in a human. LDH-A and 

LDH-B encode 2 extensive subunits A and B. LDH isoenzymes efficiently catalyze pyruvate to 

lactate if there are more A chains than B. Conversely, excess of B chains gives the advantage to 

catalyze pyruvate to acetyl-CoA. Conversion of pyruvate into lactate leads to the reduction of 

NADH to NAD
+
, which is again reused in the glycolytic cycle and drive the process of glycolysis in 

cancer cells. LDH-A is a major enzyme involved in maintaining the glycolytic phenotype in cancer 

cells [90]. Study shows that Myc oncogene regulates the expression of LDH-A [91]. Inhibition of 

LDH-A in HNSCC cells by siRNA has shown to reduce the growth of tumor [92]. This suggests 

that inhibiting LDH-A activity could be important and effective anti-tumor therapy [93]. The 

incidence of aggressive tumor behaviour could be explained by the accumulation of lactate even in 

the presence of oxygen (Warburg effect) by LDH-A [94]. This creates an intracellular acidic 

environment for cancer cells mediating secretion of metalloproteinases and hyaluronidase resulting 

in matrix degradation by tumor-associated fibroblasts (TAF) [95,96]. Additionally, the 

accumulation of lactate by LDH-A inhibits the activity of T Cells and dendritic cells contributing to 

the immunologic escape for HNSCC cells and thus inducing angiogenesis [97,98]. The tumor 

suppressor genes p53 and pRb gets inactivated after coming in contact with HPV oncoproteins, E6 

and E7, which successfully modulates the metabolic machinery in HNSCC [99]. HPV-E6 

oncoprotein facilitates the activity of mammalian target of rapamycin (mTOR) signalling pathway 

[100]. The accumulation leads to the induction of Warburg phenomenon by enhancing the 

glycolysis rate and LDH-A elevation, and lactate production [68]. Also, HPV-E7 oncoprotein leads 

to the induction of pyruvate kinase M2 (PKM2) isoform by acetylation and therefore promotes 

conversion of pyruvate to lactate by LDH-A. Additionally, HR-HPV-E2 oncoprotein promotes the 

HPV genome integration into host cell genome, and interact with the mitochondrial membrane. This 
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results in the production of reactive oxygen species (ROS). The generation of ROS positively 

correlates with the production of lactate by LDH-A [101]. This observation suggests that HPV 

associated infection in HNSCC cells leads to an acidification in the tumor microenvironment. In 

HPV
- HNSCC, the conversion of pyruvate to lactate by LDH-A creates an intracellular acidic 

environment by the accumulation of lactic acid inside the tumor cells and thus activates 

transforming growth factor-β (TGF- β), vascular endothelial growth factor (VEGF), and interleukin 

(IL), [102] even under normoxic conditions. It was reported that in HPV
- HNSCC cells (SCC-25, 

UMSCC89); there was a significant upregulation of LDH-A as compared to HPV
+ HNSCC cells 

(UD-SCC-2, UPCI:SCC90) [103]. This suggests targeting these metabolic pathways could 

represent a promise therapeutic strategy for HPV associated HNSCC. 

4.2. HPV in glutamine and TCA cycle  

The tricarboxylic acid (TCA) also known as Krebs cycle is a central metabolic pathway responsible 

for redox balance and macromolecule synthesis. Various enzymes involved in Krebs cycle, such as 

isocitrate dehydrogenase (IDH), aconitase (aconitase hydratase), succinate dehyrogenase (SDH), 

fumarase (FH), α-ketoglutarate dehydrogenase complex (KGDHC) are deregulated and mutated in 

the majority of cancers including HNSCC [91,92]. Data suggest that targeting TCA can pave a new 

pathway to generate new therapeutic invention for treating cancer [104]. To meet the energy needs, 

cancer cells also utilize other fuel sources besides glycolysis such as glutamine to feed the TCA 

cycle [105, 106].  

In HPV
- HNSCC, apart from glucose, another major source essentially playing role to fuel 

TCA cycle is amino acids [107]. Amino acids before entering into the TCA cycle is converted into 

the intermediates of α-keto acid: either oxaloacetate, pyruvate, acetyl-CoA or succinyl-CoA. The 

amino acid found in abundance in the human body is glutamine, which plays a major role in 

nitrogen transport in plasma membrane for biosynthesis of fatty acids and non-essential amino 
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acids, such as purines and pyrimidines, or entering the TCA cycle in the form of α-ketoglutarate (α-

KG) [108]. The process of glutaminolysis i.e. the conversion of glutamine by glutaminase (GLS) to 

glutamate complements provides high energy cofactors [109]. Due to upregulated glycolysis and 

conversion of glucose to lactate in head and neck cancer, HNSCC cells (HN30 and HN31) utilize 

anaplerotic reactions to replenish the intermediates of TCA cycle via glutaminolysis. For doing so, 

cancer cells are responsible for upregulating both glutamine transporters as well enzyme catalyzing 

glutaminolysis [110]. HR-HPV-E6 oncoprotein degrades the p53 through proteasomal degradation 

[111]. p53 is a tumor suppressor which regulates cellular metabolism via the regulation of 

glycolysis and OXPHOS by the transcriptional activation of its downstream gene, Tp53-induced 

glycolysis and apoptotic regulator (TIGAR) [65]. p53 also activates the expression of proteins, such 

as the oxidase 2 (COX2), cytochrome c, ferredoxin reductase (FDXR) and apoptosis-inducing 

factor (AIF), which facilitate mitochondrial integrity [112,113]. p53 activates OXPHOS in cancer 

cells via the inactivation of pyruvate dehydrogenase kinase 2 (PDK2). PDK2 is an enzyme 

responsible for the inhibition of pyruvate dehydrogenase complex (PDC). The PDK inhibition in 

cancer cells, induces the production of acetyl-CoA via PDC, an essential molecule in Krebs cycle 

[114]. p53 has been reported to play a critical role in glutamine metabolism pathway, an alternate 

path that feeds the Krebs cycle. Thus, p53 degradation by the HR-HPV-E6 oncoprotein plays a 

critical role in reprogramming tumor cell metabolism [115].  

4.3. HPV and oxidative phosphorylation  

The powerhouse of the cell, mitochondria is the centre for generating ATP [113]. Mitochondria 

plays important role in cell death and signalling through regulating multiple processes like 

OXPHOS, β-Oxidation of fatty acid and other aspects such as biogenesis, fusion and fission [116]. 

Therefore, the involvement of mitochondria is critical in cancer which helps the cells to adjust 

themselves according to their metabolic requirements. In addition, mitochondria play a major role 

in the treatment of cancers. It has been reported that HPV
+ HNSCC cells (UP90 and UP154) favour 
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mitochondrial respiration over glucose metabolism, because of the elevated levels of cytochrome c 

oxidase (COX), a respiratory related enzyme and the high ratio of COX/HKII (Fig.5) [10]. 

However, HPV
- 
and p53 mutated HNSCC cells favour glycolysis as compared to OXPHOS for their 

survival [79]. The HR-HPV-E2 oncoprotein is a negative regulator of E6 and E7 [117]. Whereas, 

the E2 protein aggressively moves between the nucleus and cytoplasm. The position of E2 protein 

majorly determines the incorporation of HPV genome to the host. As reported earlier, E2 protein 

can induce apoptosis in cytoplasm and DNA breaks and chromosomal instability in nucleus [118]. 

It was reported that mitochondrial membrane also contains E2, which changes the cristae 

morphology and enables elevated release of ROS, which leads to the modification in cellular 

respiration [119]. Mitochondrial ROS production is majorly mediated by proteins from complex III 

and ATP synthase, which regulates the cristae structure. Consequently, E2 protein could modulate 

the mitochondrial function and ROS release via the interaction with these proteins [119]. It has been 

reported that co-expression of E2 and E1 proteins negatively regulates of glutathione levels and 

superoxide dismutase levels through increasing the ROS levels in tumor cells [120]. Recently, the 

upregulation of CAIX in HPV
- as compared to HPV

+ also reported in HNSCC cells. CAIX has also 

been shown to reduce cell adhesion mediated through E-cadherin mediated-β- catenin axis in 

HNSCC [121]. 

5. mTOR, Akt and Myc regulation in HPV infected HNSCC  

The HPV-E6 oncoprotein is responsible for promoting high metabolic phenotype through 

increasing the activity of mTOR [122]. mTOR is highly upregulated and associated with metabolic 

dysregulation in HNSCC (Fig.5). mTOR increases the expression of PKM2, PDK1, HIF-1α, LDH 

and GLUT1 [74]. These pathways play important role in altering the function of cellular 

metabolism, which is directly mediated by HR-HPV-E6 & E7. It has been demonstrated in many 

studies that mTOR signalling is activated/upregulated in >80% of HNSCC. Over activation of 

mTOR results in the increased glucose uptake and uncontrolled glycolysis regulation in HNSCC, 
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which results in the increase in lactic acid production [108,109]. The expression of HR-HPV-E6 & 

E7 in HPV infected cells promotes the destabilization and degradation of p53 and pRb which leads 

to the initiation and propagation of cancer. With the help of signalling pathways such as 

PI3K/Akt/mTOR, these oncoproteins alter various cellular and molecular events [32]. The radiation 

sensitivity of HPV
+ HNSCC also correlates with Akt activation [123]. Studies have shown that the 

mTOR inhibitor CCI-779 plays a key role in inhibiting proliferation of HNSCC cells and 

tumorigenicity when combined with external radiation therapy (XRT) as well as chemotherapeutic 

agents. The transcriptional activity of p53 is linked with overexpression of Myc and increased 

expression of HK-II, which is closely linked with enhancing glutaminolytic flux via glutamate 

dehydrogenase [124].  

In HNSCC, p53 also dysregulate the glycolysis and energy supply through GLUT1 and 

GLUT4 [65]. It has been reported that p53 can also suppress the transcription and expression of 

GLUT3 through blocking NF-κB activation [125]. TIGAR is a downstream target of p53 and have 

an enzymatic activity similar to the bi-functional enzyme 6-phosphofructo-2-kinase/fructose-2,6-

bisphosphatase (PFK-2/FBPase-2), which is responsible for the degradation of fructose-2,6-

bisphosphate (Fru-2,6-P2) [126]. Fru-2,6-P2 allosterically activates PFK1, rate limiting enzyme in 

glycolysis. Therefore, p53 leads to the downregulation of Fru-2,6-P2 via TIGAR, thereby 

deactivates PFK1 and inhibits the flow of glycolysis in HNSCC cells. Additionally, p53 plays a 

major role in PPP by inhibiting it in a glucose 6-phosphate dehydrogenase (G6PD)-dependent 

manner [127]. PPP is correlated with the biosynthesis of nucleotides through involving p53 in 

restricting the tumor growth by limiting the nucleotides supply required for DNA replication during 

cell division. Whereas, the mutant p53 have been reported to play an important role in the 

upregulation of HIF-1α, resulting in the increased glycolysis, fibrosis, angiogenesis contributing to 

cancer progression (Fig. 6) [128]. 
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The transcription network of c-Myc is linked to majority of biological processes such as 

cellular growth and proliferation, development, cell cycle, apoptosis and energy metabolism. It has 

been reported that HPV-E6 and Myc binds to the DNA and modulates cell proliferation and cell 

differentiation through activating the telomerase reverse transcriptase (Fig.5) [86]. In majority of 

cancers, including HNSCC, the frequent dysregulation of Myc alters cellular metabolism and 

induce new blood vessels formation through HIF-1 signalling [84]. The specific markers 

responsible for alteration in HNSCC such as HK-II, PDK1, LDH and VEGF are targets of HIF-1 

and are regulated by c-Myc [117, 118]. Myc is also responsible for transcriptionally activating the 

key enzyme regulating glutaminolysis is and TCA cycle. Myc promotes glutamine import into the 

cells through upregulating glutamine transporters, such as ASC amino acid transporter 2 (ASCT2) 

and system N transporter (SN2) [129]. Myc also converts glutamine to glutamate through activating 

glutaminase (GLS1) via transcriptional suppression of its negative regulator miR23a/b [130]. It 

plays major role in oxidation of fatty acids and metabolites into the TCA cycle through 

overexpression of fatty acid transporters such as fatty acid-binding protein 4 and hydroxyacyl-CoA 

dehydrogenase [131]. 

6. Impact of the oral microbiome on oral cancer 

The oral microbiota plays crucial role in the human health. It maintains and controls the balances 

between host and microbes in oral cavity. Disbalances in the association between microbes and host 

in oral cavity leads to the development of oral disease. This is generally caused by bacteria and 

viruses that can eventually lead to the development of cancer [132]. Combination of smoke, viral 

infection (HPV),  poor oral hygeine, alcohol consumption enhances the risk of OSCC. Research 

shows tobacco consumption and viral infection modulates the oral microbiota profile. Stewart et al., 

2018 showed  the effect of  tobacco consumption and use of electronic ciggarettes (EC) on the oral 

microbiome. It was observed that use of EC had no certain effects on the oral microbiome. 

However, consumption of tobacco and constant smoking had a significant effect on the resident 
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bacterial population on the oral microbiome. Also, tobacco consumption resulted changes in the 

sputum microbiota [133].  In another study, Sharma et al., 2020 identified DNA damage in the oral 

cavity at much higher rates in persons with high tobacco consumption. The smoke in tobacco 

results in exposure to carcinogens and toxic constituents, and further development of malignancies 

such as oral cancer. The tobacco specific two carcinogens, nitrosamine 4-(methylnitrosamino)-1(-3-

pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN) have been shown to trigger alterations 

that interfer with the replication, transcription, and DNA repair machinery in the oral microbiota. 

The altered oral microbiome due to tobacco consumption can cause disruption of host cell defense 

mechanisms, causing chronic inflammatory conditions resulting in a cascade of changes causing 

DNA damage [134]. Smoking can also result in disruption in the structure of microbial biofilm in 

the oral microbiome and can cause unstable colonization, rising the susceptibility to bacterial 

infections in smokers by modulation of innate and adaptive immunity. Additionally, smoking can 

result in disruption of commensal niches. Furthermore, studies have revealed the involvement of 

Streptococcus spp. as a cofactor in the transformation of oral keratinocytes by HPV resulting in 

malignancy. The infection of  Mycoplasma also enhances the HPV infection rate in the oral 

microbiota. This resulted in modulation of glutamate metabolism, and metal transport triggering the 

infection [135]. However, the effect of the virus and its potential role in the metabolic activation 

and alteration of oral microbiome is still unclear and needs further investigation. The chronic 

infection constitutes the major factors responsible for cancer pathogenesis, manifesting the resident 

microbiota which regulate oral surrounding homeostasis [136-138]. The changes in oral microbiota 

modulate the association between human diseases and oral microflora. Oral microbiota seems to 

modulate oral carcinogenesis via modulation of cell metabolism, for example modifying the 

vitamins and nutrients constituents, thereby increasing the production of various cytokines known 

to play a critical role in various pathological conditions [139]. The upregulation of several 

inflammatory markers and cytokines result in the alteration of various metabolic pathways which 
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ultimately result in cancer progression. For example, the protein expression of RAGE changes 

significantly after peridontal infection caused by oral microbiota which leads to carcinogenesis 

[140]. Additionally, viruses such as HPV and gram negative bacteria, secrete IL-6, TNF-a by 

binding to leucocytes TLR receptors. These inflammatory markers supports tumor spread by 

creating a pro-angiogenic environment [141]. In the oral microbiome, the chronic infection caused 

by virus or bacteria result in metabolic changes such as sulfur compounds, free radicals, and acid 

generation [142]. Also, certain bacteria can metabolize alcohol to acetaldehyde that leads to 

genotoxicity and consequently neoplastic transformation. Furthermore, L-tryptophan metabolism in 

the oral microbiome to secondary metabolites such as pyruvate, indole have been shown to be 

associated with cancer progression. Another mechanism by which microbiota modulates the host 

miRNAs expression is by the production of various metabolites that results in significant changes in 

the metabolism of host-cell. This results in gene alteration and changes in the miRNA expressions 

which favors again the OSCC progression [143-145].  

6. Therapeutic approach for targeting HPV
+ and HPV

- HNSCC  

Metabolic alteration in solid tumor is considered as a potential therapeutic target. Since cancer cells 

have an enhanced rate of proliferation, they follow the Warburg phenomenon to compensate their 

need for energy. Blocking the Warburg phenomenon by one or the other mechanism leads to the 

death of cancer cells selectively [144]. Additionally, it has also been demonstrated that the majority 

of cancer cell has functional mitochondria irrespective of the earlier known evidence that the 

mitochondrial activity is disrupted in cancer cells [22]. Glycolysis as well as functional 

mitochondria facilitate tumorigenesis in cancer cells. Earlier, it has been demonstrated that there is 

an explicit difference between HPV
+ and HPV

- HNSCC. Also, it has been shown that the prognosis 

rate of HPV
+ HNSCC is better as compared to HPV

- in response to the radiation treatment [145]. 

This clear difference facilitates the recognition of HPV
+ and HPV

- HNSCC as two separate 

diseases. Despite the fact, both HPV
+ and HPV

- HNSCC are treated in a similar manner. HPV
- 
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tumors have shown to be highly glycolytic than the HPV
+
, making it clinically more helpful to find 

novel targets for the HPV based subtypes of HNSCC. A major issue during the treatment process is 

the occurrence of toxicity. Therefore, gradually, nowadays research is focusing on developing new 

and innovative therapeutic strategies to improve the outcomes especially focusing on the cases of 

HPV
+ patients and with the aim of raising standard therapeutic strategies for HPV

- patients. 

Irrespective of enormous studies, there is still no effective cure for HPV related diseases. There are 

three vaccines available against HPV: Gardasil, Gardasil 9 and Cervarix [146], which can be used 

to prevent HPV associated cancers. Several components and drugs have been analyzed against the 

E1 and E2 viral proteins that are necessary for HPV genome replication (Table 1) [147].  

In addition, targeting the viral genome is one other alternative effective approach towards the HPV 

infected treatments.  One such compound belongs to the pyrrole-imidazole, which binds to the 

DNA Sequence specifically and targets the viral genome [148]. These compounds bind to AT-rich 

regions in the origin of HPV replication region where E1 and E2 binding sites are located, this 

affects the stability of episomal viral genomes. Also, antibody for epidermal growth factor receptor 

(EGFR) and radiation is considered as an alternative for HPV
+
 HNSCC [149]. Axalimogene 

filolisbac (AXAL or ADXS11- 001) is a novel immunotherapeutic based drug which is currently 

being used against HPV associated HNSCC [150,151]. The use of inhibitors targeting mitochondria 

is a possible consideration to treat HPV
+ HNSCC metabolism. Phenformin/metmorphin, for 

example besides activation of the PI3K pathway, inhibits Complex I of electron transport chain 

(ETC) and Krebs cycle intermediate in HNSCC cells [152]. Christopher T. Lucido et. al., (2018) 

demonstrated the expression of β2AR that was correlated with the enhanced mitochondrial 

metabolism in HPV
+ HNSCC as compared to HPV

- HNSCC. Targeting β2AR with β-blockers, 

such as propranolol has been shown to inhibit primary tumor growth in HPV
+ HNSCC cells 

[153,154]. Also, VLX600 has been shown to reduce mitochondrial metabolism in tumor cells, 

which along with DCA (glycolytic inhibitor) has been proven as an effective therapy against HPV
+ 
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HNSCC metabolism through targeting mTOR signaling [155]. On the other hand, since glycolysis 

is enhanced significantly in HPV
- HNSCC as compared to HPV

+
, anti-glycolytic drugs are 

considered as the best way for chemotherapy as to enhance the antitumor response rate. In 2008, 

Simons et al., reported the cisplatin cytotoxity in HNSCC xenografts, which is mediated by 2-

Deoxy-D-glucose (2-DG) [156]. Additionally, 3-bromopyruvate (3-BP) and lonidamine are the 

most commonly tested inhibitors against HK-II and are used in both pre-clinical as well as clinical 

model either in combination or alone with radiation therapy and chemotherapy [157]. 3-BP is 

responsible for inhibiting glycolysis by disrupting the connection between the outer membrane of 

mitochondria and HK-II, causes the deactivation of HK-II. It has been demonstrated that HK-II 

inhibition by using siRNA and a targeted HKII-VDAC complex induces apoptosis in cancer cells 

[158]. Tyrosine kinase (TK) inhibitor, for example imatinib, decreases glycolysis, hampers various 

glycolytic enzymes such as Hexokinase and Phosphofructokinase 1 via HIF-1 [114]. Recently, 

Zhang et al., 2017 reported the role of miR-143 in oral cancer and identified HK-II as a direct target 

of miR- 143 in patients’ tumor and oral cancer cells, suggesting that inhibiting HK-II by miR-143 

might be a therapeutic approach for treating oral cancer (Table 1) [159].  

Combinatorial effect of 2-DG with 6- aminonicotinamide, a PPP inhibitor results in 

increased cytotoxic effect, which proposed a new theory of targeting multiple metabolic pathways 

which could effectively treat the disease cancer [160]. This suggests that glycolysis via PPP plays 

an important role in contributing the tumorigenicity in HNSCC. AZD3965, most effective MCT1 

inhibitor is currently under clinical trial phase I and has been shown to decrease the growth of the 

tumor by inhibiting the release of lactate and has been an effective drug for HPV
+ HNSCC. 

Cetuximab inhibits proliferation of HPV
- HNSCC cells through inhibiting glycolysis via LDH-A by 

downregulation of HIF-1α, therefore reversing the Warburg phenomenon which is critically 

important for the survival and proliferation of cancer cells [161] Inhibitors, such as orlistat, blocks 
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the synthesis of fatty acids via fatty acid synthase which might be another effective approach to 

enhance the treatment response towards HPV associated HNSCC (Table 1) [162]. 

Tumor cell metabolism is being highly studied as a novel area for new biomarkers and 

assumed to be key targets for novel pharmacologic interventions. New metabolic targets continue to 

be identified in different types of tumor. Altogether, there is convincing evidence that HNSCC 

requires elevated rate of glucose uptake and conversion for cell survival and progression. This 

appears to make HNSCC susceptible to targeted therapies employing inhibitors to glycolytic genes 

or enzymes. Even the understanding of increased glycolysis mediating secondary energetic 

pathways such as glutaminolysis, Pentose Phosphate Pathway, serine pathway provides new targets 

to be inhibited for disease treatment. Identifying the key factors involved in oncogenic events and 

behind altered HNSCC metabolism may have important therapeutic implications. 

7. Conclusions and prospective  

Cancer cell metabolism plays important role in survival and progression with the help of major 

metabolic pathways that produce energy. So, this process of metabolic reprogramming has made its 

way into the hallmark of representing the disease.  In head and neck cancer, HPV plays critical role 

in modulating their metabolism, thereby facilitating the tumor progression. The HPV oncoproteins, 

E6 and E7, regulate several enzymes, which are involved in metabolic pathways in HNSCC. The 

altered metabolism in HNSCC, provides sufficient ATP through glycolysis, which helps in meeting 

the high-energy demands of HNSCC during cell proliferation, migration and invasion. Additionally, 

the E6/E7 oncoproteins, alter several signalling pathways including mTOR, Akt, c-Myc, HIF-1 etc., 

which in turn alter the metabolic phenotype in HNSCC. Although, there are invasive treatments 

available such as larger excision procedures, cryotherapy, electrosurgery, laser therapy etc. but not 

all HPV+ HNSCC respond properly to the treatment apart from it they acquire the ability to resist 

such chemotherapeutic strategies. This suggests that there is an urgent need of development of new 
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strategies to overcome these issues. Therefore, focussing on cancer cell metabolism associated with 

HPV status could effectively bring out new therapeutic development which could be helpful to 

manage the disease.  
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Figure Legends 

Figure 1. Factors associated with HNSCC. Consumption of tobacco products and alcohol are the 

major risk factors involved in HPV
-
 HNSCC. Whereas, HPV infection mediates HPV

+ 
HNSCC. 

The HPV
-
 HNSCC patients of younger age have a poor clinical outcome as compared to HPV

+
 

HNSCC, whereas the HPV
+
 HNSCC have an improved clinical outcome. The anatomical location 

of HPV
-
 HNSCC involve all head and neck cancer sites, while in HPV

+
 HNSCC, the oropharyngeal 

region is the major site of infection. Mutation in p53 and pRb are the major reason behind HPV
-
 

HNSCC, while E6 mediated inactivation of p53 and E7 mediated degradation of pRb is the major 

reason behind HPV
+
 HNSCC. 

 

Figure 2. In normal cells, the glycolysis and OXPHOS are regulated in a synchronized manner. 

Glusose is converted to pyruvate in aerobic conditions and generates 2 ATP through glycolysis. 

Pyruvate is then converted to acetyl CoA and regulated in OXPHOS for the generation of total 36 

ATPs. Under anaerobic condition, pyruvate is converted to lactate by LDH-A for the generation of 

ATP. In HNSCC cells, solid tumors favor glycolysis as compared to OXPHOS for the generation of 

ATP even in the presence of oxygen following Warburg phenomena. HNSCC cells shift the 

metabolic flow from OXPHOS to glycolysis. OXPHOS (Oxidative phosphorylation); ATP 

(Adenosine triphosphate); LDH (Lactate dehydrogenase). 

Figure 3. In HPV
+
 Hypoxia, VHL mutation and stimulation of growth factor such as 

PI3K/Akt/mTOR, MAPK,  EGFR causes accumulation and stabilization of HIF-1. Under hypoxia 

HIF1α and HIF-1β binds to the HRE in the DNA segment promotes the transcription of genes 

involved in metabolism (GLUT, HK, LDH, GADPH), regulation of pH, angiogenesis (VEGF, 

TGFβ), proliferation(TGF α, Cyclin G2), apoptosis(BNIP3, NIX). VHL(von Hippel-Lindau); 

GLUT(Glucose transporter); HK(Hexokinase); LDH(Lactate dehydrogenase); G6PD (Glucose-6-

phosphate dehydrogenase), VEGF (Vascular endothelial growth factor); TGF(Transforming growth 

factor); TGF(Transforming growth factor); BNIP3(BCL2 Interacting Protein 3). 

Figure 4. HR-HPV-E6 mediated degradation of p53, upregulates the expression of GLUT1 
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and elevates the uptake of glucose uptake in HNSCC. SGLT Na
+
ve /glucose co-transporters 

through Na
+
ve /K

+
ve ATPase secondary active transport causes glucose internalization in 

epithelial cells. SGLT1 Na
+ve/

glucose co-transporters present in HPV
+ 

HNSCC facilitates cells 

to accumulate glucose even in the presence of low concentrations of glucose. Highest 

accumulation of FDG can be detected using PET SCAN and resulting in poor patient survival. 

 

Figure 5. HPV infection promotes glycolysis in head and neck squamous cell carcinoma. The E6 

oncoproteins inhibits p53 by proteolytic degradation further activating HIF-1 which activates the 

glycolysis in head and neck squamous cell carcinoma. Akt/mTOR activation by E6 oncoprotein 

induces the high glucose metabolism promoting the cancer survival. E7 oncoprotein of the HPV 

activates the PKM-2 gene increasing the lactate production in the cancer cells. HPV presence, 

activates COX augments, upregulating ETC.  

 

Figure 6.  TIGAR, downstream target of p53 is a bi-functional enzyme 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), responsible for fructose-2,6-bisphosphate 

(Fru-2,6-P2) degradation. Fru-2,6-P2 allosterically activates PFK1 causing p53 mediated  

downregulation of Fru-2,6-P2 via TIGAR, thereby inhibiting the flow of glycolysis in HNSCC 

cells. p53 plays a major role in PPP by glucose 6-phosphate dehydrogenase (G6PD) dependent 

manner inhibiton. p53 have been reported to play an important role in the upregulation of HIF-1α, 

resulting in the increased glycolysis, fibrosis, angiogenesis contributing to cancer progression 
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HPV
+
 

Drug Target NCT No. 

Gardasil HPV 6, 11, 16, 18 NCT00092534 

Gardasil 9 16, 18, 31, 33, 45, 52, and 58; NCT03943875 

Pyrole-imidazole A-T regions of viral genome - 

Cetuximab EGFR receptor NCT01084083 

Axalimogene Immune-based therapy NCT02540928 

Propranolol Pyruvate dehydrogenase Kinase NCT02013492 

VLX600 Electron transport chain (ETC) - 

Cervarix HPV 16, 18 NCT00316693 

   

HPV
-
 

Silybin GLUT NCT03440164 

Lonidamide HK NCT00435448 

2-Deoxyglucose G6P isomerase NCT00633087 

TLN-232 PKM2 dimers NCT00735332 

Dichloroacetate PDK NCT01111097 

AZD-3965 MCT1 NCT01791595 

CPI-613 Pyruvate Dehydrogenase NCT03699319 

Gossypol LDH-A NCT00540722 

Galloflavin LDH-A Pre-Clinical Studies 

Daunorubicin GLUT-1 NCT02914977 

Gefitinib Tyrosine Kinase NCT00049543 

Erlotinib Tyrosine Kinase NCT02013206 

 

 

 

 

 

Table 1: Current therapeutic strategies for HPV
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