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Abstract 
This study addresses the processing of nonwoven fibrous materials obtained by centrifugal spinning 
method, namely Forcespinning®; a high yield and low production cost technique little explored in this field. 
Poly(D, L-lactic acid) (PDLLA) and poly(3-hydroxybutyrate) (PHB) were used as matrices and reinforced 
with zinc oxide nanoparticles (n-ZnO). The morphology, mechanical, and thermal performance of the 
developed composites were analyzed as well as the antibacterial effect of n-ZnO. Fibrous materials with n-
ZnO concentrations of 1, 3 and 5 wt. % for PDLLA and 1 and 3 wt. % for PHB were evaluated. The results 
showed that the incorporation of n-ZnO produces an increase in the viscosity of the precursor solutions for 
both polymeric systems, which caused an increase in the average fiber diameter, though the morphology 
was not affected, obtaining mostly long, continuous, and homogenous fibers. In addition, a decrease in 
thermal stability was observed to a greater extent in PDLLA systems. Regarding the mechanical 
performance, optimal properties were obtained at a concentration of 3 and 1 wt. % of n-ZnO for PDLLA 
and PHB, respectively. Antibacterial studies showed that PHB with 1 and 3 wt. % of n-ZnO effectively 
combat strains of E. coli and S. aureus, presenting 100% of strain growth inhibition. In the case of PDLLA, 
a higher n-ZnO concentration (5 wt.%) was required to reach a strain growth inhibition above 97%. Finally, 
cell viability tests demonstrated that the designed fibrous mats support cell proliferation, indicating their 
potential for use as scaffolds in bone tissue regeneration. 
 
Keywords: Forcespinning; centrifugal spinning; polymeric fibers; zinc oxide; poly(D, L-lactic acid); 
poly(3-hydroxybutyrate), antibacterial scaffolds 
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Running head: Processing-structure-property relationships of 
fibrous scaffolds  

 
 
 
1. Introduction 

Polymeric fibers have gained interest in the biomedical area given its attractive morphology and 

similarity with different extracellular matrices. A wide variety of nanofibrous systems have been 

developed to analyze cell adhesion, growth, and proliferation.1,2 However, it is important to note 

that this fiber morphology also presents a platform to the adhesion of pathogenic microorganisms, 

which could lead to serious infections.3 The successful performance of these nanofibrous scaffolds 

is highly dependent on their antibacterial properties.4–6 Consequently, researchers have focused 

their attention on the effect of incorporating biocidal agents (antibiotic, organic substances, metals 

and metal oxides). 

There are different metals and metal oxides nanoparticles (NPs), for example, MgO, Ag, Fe2O3, 

TiO2, CuO, Mg(OH)2 and ZnO, that have been used for biotechnological and biomedical 

applications. Among the above mentioned metal oxides, zinc oxide nanoparticles (n-ZnO) have 

shown excellent antimicrobial activity and biocompatibility.7 Studies have reported that n-ZnO 

have a selective toxicity for bacteria with minimal effect on human cells.8 In addition, they have 

shown to exert an osteoconductive and osteoinductive effect on mesenchymal cells.9 On the other 

hand, ZnO nanoparticles have a low production cost, offer simple routes for morphology control, 

and promote surface interactions with different functional groups.10,11  

Several studies related to the design of hybrid nanofibers based on biopolyesters and ZnO 

produced through the electrospinning technique have been published. Specifically, semi-

crystalline and amorphous biopolyesters, such as poly(lactic acid) (PLA),12–15 poly 

(hydroxyalcanoate)s (PHAs), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV),16–18 and 

This article is protected by copyright. All rights reserved.
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poly(3-hydroxybutyrate) (PHB), have been reported as matrices suitable for nanofiber 

development.19 Regarding the antibacterial performance, the approach has been directed towards 

strains of clinical interest, such as E. coli and S. aureus; in this regards, a greater antimicrobial 

effect of ZnO on S. aureus has been observed with a growth inhibition (GI) above 90% at a 

concentration ≥ 3 wt.% of n-ZnO.12,14,19  

Despite the academic popularity of the electrospinning technique, it still presents important 

limitations such as the need of solvents with specific dielectric properties, high energy cost due to 

the high voltage required, and for basic electrospinning systems, very low production rates 

(0.01mg·h-1). Although, new methods such as needless electrospinning have shown higher 

production rates (10 g·h-1)20 given the multiple jets originated in the drum, though the method is 

still governed by high electric fields. These constraints have promoted the development of 

alternative technologies such as centrifugal spinning, drawing, phase separation, self-assembly, 

template synthesis, freeze-drying synthesis, and interfacial polymerization to mention some. These 

alternatives circumvent some of the disadvantages of the electrospinning technique.21 Among the 

above mentioned technologies, centrifugal spinning (Forcespinning®) is the most competitive 

when considering potential for commercial use given the high production rate (50-100 g·h-1)22 and 

lower energy costs since there is no need for electric fields. Additionally, the conductivity and/or 

electrostatic charges of the polymer solution are not relevant parameters for fiber production; 

therefore, broadening the range of polymers that can be transformed into fibers.23  

Several studies focused on the design of fibrous materials using centrifugal spinning have been 

recently reported. Kegan et al.24 produced PHBV membranes functionalized with type I collagen; 

where the interaction with fibroblast cells showed the potential of these membranes to be used for 

tissue regeneration. Loordhuswamy et al.25 developed aligned PCL and gelatin fiber mats; through 

in vivo studies, the authors demonstrated the potential of these mats in wound healing applications. 

Additionally, Jaime and Rogalski in a Rotary Jet Spinning review, reported on several studies that 

have developed nanofiber systems (from PLA, PCL, polyvinylpyrrolidone (PVP), bacterial 

This article is protected by copyright. All rights reserved.
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cellulose (BC), crystalline forms of olanzapine, piroxicam and sucrose) for biomedical 

applications.26 Despite the increasing number of reports focusing on the design of hybrid materials 

using centrifugal spinning, the formulation used in this study has not been explored. This opens 

the possibility of establishing an understanding about the processing-structure-property 

relationship for n-ZnO reinforced poly(D, L-lactic acid) (PDLLA) and poly(3-hydroxybutyrate) 

(PHB) nanofiber membranes as well as exploring potential applications of these materials as 

antibacterial/scaffolds for bone tissue regeneration.  

This work reports the development of composite nonwoven fibrous materials, n-ZnO reinforced 

PDLLA and PHB fibers systems produced by the Forcespinning® technique. The study also 

presents an analysis of the influence of the n-ZnO nanoparticles on the rheology of the precursor 

solutions, fiber morphology, and mechanical, thermal and antibacterial performance of the 

developed nanofibrous systems. Finally, the interaction of the developed systems with osteoblast 

cells was addressed to assess their potential application as scaffolds for bone tissue regeneration. 

 

2. Experimental Methodology 

2.1. Materials and reagents 

Poly(D, L-lactic acid) (PDLLA) provided by NatureWorks LLC (Ingeo 6362D) with 𝑀𝑀𝑤𝑤=160 

kg·mol-1 and Ɖ = 1.646, and poly(3-hydroxybutyrate) (PHB) supplied by Goodfellow with 𝑀𝑀𝑤𝑤= 

381 kg·mol-1; Ɖ = 3.53, were used as polymer matrices. n-ZnO nanoparticles were synthesized 

through a reaction in methanolic solution assisted by microwave. The solvent used for the polymer 

solution was chloroform, ACS grade, provided by Fisher Scientific. 

2.2. Synthesis of n-ZnO 

This article is protected by copyright. All rights reserved.
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The synthesis of the n-ZnO was carried out following the procedure described by Rodríguez-

Tobías.27 In a poly(tetrafluoroethylene) (PTFE) reactor, 18 mL of Zn(CH3CO2)2 solution (0.32 

mol.L-1) were added and subjected to vigorous stirring, 54 mL of KOH solution (0.64 mol.L-1) 

were added dropwise. The solutions were prepared using methanol as the solvent. The reaction 

mixture was placed in a multimodal CEM microwave equipment, model MARS 6, and irradiated 

for 20 min at 80 °C. The precipitate was subjected to three wash cycles; the first with deionized 

water and the last two with methanol. Finally, the system was dried in an oven at 70 °C. 

Crystallographic structure and chemical analysis were performed by X-ray diffraction (XRD, 

Siemens model D5000) and FTIR-ATR spectroscopy (Thermo Scientific NICOLET iS50), 

respectively. The morphology was evaluated by scanning electron (SEM, Carl Zeiss, SigmaVP) 

and transmission microscopy (TEM, FEI, Titan 80-300). The average particle size was determined 

by measuring the diameters of 300 particles obtained from several TEM micrographs, using the 

Image J software version 1.48. 

2.3. Preparation of the precursor biopolyester solutions 

Dispersions of n-ZnO in chloroform were prepared by using an ultrasound bath (cole-Parmer 8891) 

for 30 min. Once the dispersion process was completed, the biopolyester was added to the system 

to obtain the corresponding solution at the established concentration (Table 1). In the case of 

PDLLA, the solutions were carried out under constant agitation for 22 h at room temperature, 

while PHB solutions were prepared at a temperature of 55 °C under stirring for 12-16 h. 

The viscosities of the biopolyester solutions were determined using an Anton Paar rheometer, 

physical model MCR 301 with a cone-plate configuration (diameter 50 mm, angle of 2 ° and gap 

of 0.205) at 25 °C. 

2.4. Centrifugal spinning process 

This article is protected by copyright. All rights reserved.
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The prepared solutions were subjected to a centrifugal spinning process in the Cyclone™ L-1000M 

(FiberRio Technology, Corp.), which consist of a cylindrical spinneret with two nozzles equipped 

with regular beveled needles (30-gauge length, Becton, Dickinson and Company) and 8 collectors 

in the form of metal bars arranged around the spinneret at a distance of 15 cm from the nozzles. 

For each run, 2 mL of polymer solution were added to the spinneret, and fiber spinning was carried 

out for a period of 5 min at a temperature of 23 °C ± 3 °C with a relative humidity of 59.3% ± 

9.6%. The fibers were placed in a vacuum oven at 30 °C for 24 h, to remove any residual solvent. 

Finally, the fibers were stored in plastic bags in the presence of a desiccant for moisture control. 

2.5. Experimental design 

The concentrations of the precursor solutions were established based on the optimization study 

carried out in a previous work and shown in Table 1.28 In relation to the angular speed (ω), an 

adjustment was made taking into account the n-ZnO influence on the rheological behavior of the 

precursor solutions. Table 1 also lists the intervals of angular velocities (ω) used in the process. 

Table 1.- Experimental conditions used during the centrifugal spinning process.   

 

For the selection of the optimum ω, the output variables considered for the evaluation of the fibers 

were mainly fiber morphology and fiber diameter dispersion. Additionally, the yield/output of the 

process (ηp) was taken into account according to Equation 1. 

𝜂𝜂𝑃𝑃 = 𝑀𝑀𝑚𝑚𝑚𝑚

𝑆𝑆𝑆𝑆
𝑥𝑥100          (1) 

where 𝑀𝑀𝑚𝑚𝑚𝑚 and 𝑆𝑆𝑆𝑆 are the grams of fibers collected per run (5 min) and the total solids (polymer 

+ NPs) contained in 2 mL of polymer solution, respectively.  

2.6. Fiber characterization 

This article is protected by copyright. All rights reserved.
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The morphological analysis was carried out using a scanning electron microscope (Carl Zeiss, 

SigmaVP). The images obtained were analyzed with the Image J software (v. 1.48) to estimate 

average fiber diameters (𝐷𝐷𝑓𝑓���) and average pore size (interfibrillar spaces). Diameter distributions 

were obtained by measuring 100 fibers (20 fibers per micrograph) with three measurements per 

fiber, making a total of 300 measurements per sample. Obtained data was represented by means 

of box-bars charts, where the boxes reflect 50% of the population of values that located between 

quartile 1 (Q1 = 25% of the population) and 3 (Q3 = 75% of the population) and the bars represent 

the amplitude of the distribution according to the most probable values or those that appear more 

frequently. 

The distribution and dispersion of the n-ZnO within the fibers were determined using energy 

dispersive X-ray spectroscopy (EDS, EDAX Octane Super) and transmission electron microscopy 

(FEI, Titan 80-300). 

For the calculation of the scaffold’s porosity, an adjustment of the equation reported by Wang 29 

was used (Equation 2) 

∅ = �1 − 𝑚𝑚
𝑍𝑍∗𝐴𝐴∗𝐻𝐻∗𝜌𝜌

�*100         (2) 

Where m, Z, A, H and ρ are the mass, thickness, width, and length of the scaffold and the density 

of the polymer or mixture of polymer with n-ZnO in the corresponding case, respectively. 

The thermal properties were evaluated through thermogravimetric analysis (TGA) (TA 

Instruments, Q400) and differential scanning calorimetry (DSC) (TA Instruments, Q200). To 

perform the TGA, the sample was heated from 30 °C to 600 °C under a nitrogen atmosphere, at a 

heating rate of 10 °C·min-1. Regarding the DSC, the heating was carried out from -70 to 200 °C at 

a speed of 10 °C·min-1, the sample was isothermally maintained at 200 °C for 2 minutes and then 

cooled down at the same rate to -70 °C. A second heating cycle under the same conditions was 

This article is protected by copyright. All rights reserved.
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conducted. The crystallinity of the systems manufactured with PHB was determined using 

Equation 3:30 

𝑋𝑋𝑐𝑐 = ∆𝐻𝐻𝑚𝑚
∆𝐻𝐻𝑚𝑚°×𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃

× 100         (3) 

Where ∆𝐻𝐻𝑚𝑚 and ∆𝐻𝐻𝑚𝑚°  are the melting enthalpies of the PHB sample and a 100% crystalline PHB 

respectively, being ∆𝐻𝐻𝑚𝑚°  = 146 J·g-1. 31 The XPHB is the PHB weight fraction within the sample.  

The mechanical properties of the fibrous materials were determined by tensile tests using the 

universal testing machine (Tinius-Olsen, H10KS). To this end, test pieces of 30 mm long and 3 

mm wide were cut and conditioned for 24 h at room temperature (23-25 °C). The tensile test was 

carried out at a deformation speed of 2 mm·min-1 with a clamp separation of 27.5 mm, using a 50 

N load cell (5 repetitions). 

It is important to mention that the fiber characterization in the optimization stage was determined 

from the fibers collected from a single run (5 min). Once proper parameters were established, the 

resultant mats were obtained by the collection of 7-runs (5 min each). 

2.7. Antimicrobial properties 

The antimicrobial activity of the fibrous materials was evaluated taking as reference the Japanese 

Industrial Standard, Z280126.32 The test was performed for two microorganisms of clinical 

importance, Escherichia coli ATCC-25922 and Staphylococcus aureus ATCC-29213. For the test, 

2x2 cm samples under aseptic conditions were inoculated with 4 mL of a microorganism 

suspension in trypticase soy broth, equivalent to 50000 colony forming units per mL (CFU·mL-1). 

Subsequently, the samples were incubated at a temperature of 37 °C and 90% humidity for 24 

hours. At the end of the incubation time the population of microorganisms present in the samples 

was determined (the tests were done in quadruplicate), and the antimicrobial activity (R) was 

calculated using Equation 4: 

This article is protected by copyright. All rights reserved.
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𝑅𝑅 = �𝑙𝑙𝑙𝑙𝑙𝑙 𝐵𝐵𝑡𝑡
𝐵𝐵0
− 𝑙𝑙𝑙𝑙𝑙𝑙 𝑀𝑀𝑡𝑡

𝐵𝐵0
�         (4) 

Where 𝐵𝐵0 and 𝐵𝐵𝑡𝑡 are the quantities in CFU·mL-1 of bacteria that survive in the presence of the 

blank (material without n-ZnO) before and after 24 hours of incubation, respectively. 𝑀𝑀𝑡𝑡 is the 

number of bacteria that survive after 24 hours of incubation in the presence of the antimicrobial 

material (material with n-ZnO). Additionally, inhibition to bacterial growth (GI) was determined 

by means of Equation 5: 

𝐺𝐺𝐺𝐺 = �𝐵𝐵𝑡𝑡−𝑀𝑀𝑡𝑡
𝐵𝐵𝑡𝑡

� 𝑥𝑥100          (5) 

2.8. Cell viability test 

Mouse preosteoblast cells (MC3T3-E1, ATCC) were cultured in a minimum essential medium-α 

(MEM Alpha-1X, Gibco ™) containing 2.2 g.L-1 of NaHCO3, 15% of fetal bovine serum (FBS, 

Fisher) and 1% of Penicillin-Streptomycin-10,000 U/mL (Gibco ™). 30000 cells in MEM Alpha 

culture containing serum and penicillin-streptomycin were deposited on PDLLA and PHB mats of 

1x1 cm in dimension, the mats had been previously sterilized by 10 min exposure to UV light. 

After seeding, samples were incubated at 37 °C, under controlled atmosphere with 5% CO2, for a 

period of 1, 3, 5 and 7 days. After incubation, cells were rinsed with fresh medium in order to 

eliminate residue from cell culture. 300 µL of resazurin solution (0.2% w/v, ACROS Organics™) 

on culture medium (1:10) was then added to the samples and was allowed to react for 4 h. 150 µl 

were taken from each sample and fluorescence was measured at 570 nm using an iMark™ 

Microplate Absorbance Reader (BioRad). 

3. Results 

3.1. Synthesis of n-ZnO 

This article is protected by copyright. All rights reserved.
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The morphology of n-ZnO and the corresponding particle size distribution and elemental 

composition can be observed in Figure S1a-b-Supplementary Information. The shape of the 

particles is quasi-spherical with an average diameter of 6.36 ± 2.08 nm. In agreement with results 

presented in the literature, the obtained morphology is the expected one according to the technique 

and conditions used for its synthesis.11,33 EDS analysis reflected the composition to be, Zn and O 

as 80.54 and 19.45 wt. %, respectively; which is equivalent to a 1:1 molar ratio (Figure S1c- 

Supplementary Information). 

The X-ray spectra of the synthesized n-ZnO shows seven well-defined peaks,34,35 the 2θ values of 

31.7 °, 34.5 ° and 36.2 ° can be assigned to the crystalline planes (100), (002) and (101) of the 

hexagonal phase of ZnO (Figure S1e-Supplementary Information). In addition, the amplitude of 

the signals shows that the size of the ZnO structures is in a nanometric scale according to the 

average particle diameter (𝐷𝐷𝑝𝑝����) determined through TEM micrographs (Figure S1d-Supplementary 

Information).  

3.2. Rheological study of the PDLLA or PHB solutions with and without n-ZnO  

The apparent viscosity of the polymer solutions was evaluated as a function of the shear rate for 

10 and 9 wt. % of PDLLA and PHB, respectively, with and without n-ZnO (Figure 1). In general, 

no significant influence of shear rate on the systems’ viscosity was observed for the analyzed 

range. In the case of the solutions formulated without NPs, a Newtonian behavior was observed, 

while the solutions containing 1, 3 and 5 wt. % of n-ZnO exhibited a pseudo-plastic behavior. 

Regarding the effect of the n-ZnO on the rheological behavior of the solutions, a dependency of 

the biopolyester nature was observed. Both systems exhibited, at a particular concentration of NPs, 

an increase in solution viscosity. In the case of PDLLA solutions, there was a considerable increase 

in viscosity up to 3 wt. % of ZnO, while at 5 wt. % the viscosity values decreased. On the other 

hand, PHB solutions showed an increase in viscosity at a concentration of 1 wt. % and above that 

This article is protected by copyright. All rights reserved.
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concentration, there were no changes. The increase in viscosity suggests a better particle 

distribution and possible hydrogen bonding interactions between the carboxyl groups of the 

biopolyester and the hydroxyl groups of the NPs.36,37 

 

Figure 1.- Rheological behavior of a) PDLLA solutions at 0, 1, 3 and 5 wt. % of n-ZnO and b) PHB 
solutions at 0, 1 and 3 wt. % of n-ZnO. 

 

 

3.3. Effect of n-ZnO on fiber formation 

3.3.1. PDLLA 

The results show that the concentration of n-ZnO did not have a significant influence on the fiber 

appearance, fibers are mostly long, continuous, and homogeneous (i.e. no beads are observed) and 

all exhibited superficial cavities evenly distributed throughout the length of the fiber (Figure S2-

Supplementary Information). Similar results were observed by Xuyuan et al.13 with electrospun 

PLLA fibers, formulated in a concentration range of 0.4 to 2 wt. % of ZnO. 

Regarding the 𝐷𝐷𝑓𝑓���, it was observed that the incorporation of n-ZnO caused an increase of the 

interval Q1-Q3 as well as an extension of its dispersion (Figure S2d-Supplementary Information). 

The fibrous materials containing 1 wt. % of n-ZnO exhibited a Q1-Q3 interval of 0.71-1.65 μm 

while for 3 wt. % and 5 wt. % of n-ZnO the intervals were 0.84-2.06 μm and 1.21-2.48 μm, 

respectively. These are higher than the results obtained in PDLLA fibers without NPs (0.36-1.08 

μm). The resulting fiber morphology corresponds to the obtained rheological behavior of the 

precursor solutions, as viscosity increases due to the addition of the n-ZnO, the resistance to 

This article is protected by copyright. All rights reserved.
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elongation increases, resulting in fibers of higher  𝐷𝐷𝑓𝑓��� at the same angular speed (ω = 9000 rpm).38,39 

The incorporation of NPs also caused changes in the dispersion of fiber diameters.  

Taking as reference that fibrous materials with a greater surface area (𝐷𝐷𝑓𝑓��� <1 μm)40 have 

characteristics that promote cell adhesion and proliferation, the ω that favors the aforementioned 

morphological characteristics was identified. In this sense, ω was evaluated from 9000 to 11000 

rpm, obtaining at 11000 rpm mostly fibers with homogeneous morphologies and diameters 

displaced towards lower values. It is important to mention that, in most of the systems the 

production yield was ≥ 60% (Figure S3 and S4-Supplementary Information). 

3.3.2. PHB  

These fibers, mostly had a relatively homogeneous appearance with some bumps and surface 

irregularities; due not only to the presence of certain n-ZnO agglomerates, but also to the wide 

molecular weight distribution (Ɖ = 3.53) within the PHB (Figure S5-Supplementary Information). 

Regarding the values of 𝐷𝐷𝑓𝑓���, the addition of 1 wt. % n-ZnO led to a slight increase in diameters in 

the interval Q1-Q3 compared to the system without n-ZnO, from 1.00-1.67 μm to 1.35-2.11 μm. 

This behavior was attributed to an increase in the viscosity of the precursor solution as observed 

in the rheological study. 

The influence of the angular velocity on the morphology, diameters, and fiber yield was evaluated 

from 6000 to 9000 rpm. Unlike the PDLLA, the increase of ω did not cause a systematic decrease 

in fiber diameter. The yield for all tested parameters was above 60%. The systems that presented 

homogeneous fibers and a displacement of the Q1-Q3 interval towards smaller diameters were 

obtained at 7000 rpm. (Figure S6 and S7-Supplementary Information) 

3.4. Morphological, thermal, mechanical and antibacterial characteristics of the 

centrifugal spun materials manufactured with PDLLA-ZnO and PHB-ZnO  

This article is protected by copyright. All rights reserved.
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3.4.1. Morphology of PDLLA-ZnO systems 

In Figure 2, SEM images of the fibrous materials obtained at 1, 3 and 5 wt. % of n-ZnO are shown. 

In these systems, a correlation with the optimization process is observed regarding the 

homogeneity and surface morphology of the fibers, as well as fiber diameter distributions (Figure 

S2 and S3, Supplementary Information). 

 

Figure 2.- SEM images of PDLLA fibrous material at 1 wt. % (a and b), 3 wt. % (d and e) and 5 wt. % (g 
and h) of ZnO, box charts of fiber diameters and porosities (Ø) (c, f and i).   

The distribution of NPs within the fibers is observed in Figure 3b, e and h (points in the elemental 

mapping images). It can be observed that as n-ZnO concentration increases, the presence of some 

agglomerates becomes apparent. These results were corroborated by TEM images, in which it can 

be seen a quite homogeneous distribution at low n-ZnO concentration (1 wt. %), with agglomerates 

ranging from 10 nm to 200 nm (Figure 3c). In the case corresponding to 3 wt. % (Figure 3f) and 5 

wt. % (Figures 3g-i) of n-ZnO, the agglomerates have sizes that vary in the range of 10 to 450 nm 

and 15 to 500 nm, respectively. Taking into account that 𝐷𝐷𝑝𝑝���� of n-ZnO is 6.36 ± 2.08 nm, the 

agglomerates are relatively large. 

The scaffolds’ porosity (spaces between fibers, Figures 2c, f and i), calculated under the 

considerations described in section 2.6, is greater than 90%. Additionally, through the Image J 

software, the area distribution between fibers was determined and it was found that approximately 

50% of the areas have a dimension/size above 35 ± 10.5 μm2 and most of the values are distributed 

over a range from 2 to 200 μm2. These results show that the pores have sizes large enough to 

guarantee cellular migration (Figure S8-Supplementary Information).41 

 

This article is protected by copyright. All rights reserved.
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Figure 3.- SEM images (a, d and g), elemental mapping of zinc (b, e and h) and TEM images (c, f and i) 
of PDLLA fibrous material at 1 wt. % (a, b and c), 3 wt. % (d, e and f) and 5 wt. % (g, h and i) of n-ZnO ( 
images obtained by SEM-EDS).  

3.4.2. Morphology of PHB-ZnO systems 

In Figure 4, SEM images of PHB fibers containing 1 wt. % (a and b) and 3 wt. % (d and f) of n-

ZnO are presented. In these images, the characteristic irregularities of the fibers with their rough 

surface morphology can be appreciated. In general terms, the fiber surface appearance is 

heterogeneous and depends on the fiber thickness; behavior that can be better appreciated at a 

concentration of 3 wt. % of n-ZnO. Unlike the PDLLA, the dispersion of fiber diameters of both 

systems showed significant variations in comparison with the dispersion obtained in the 

optimization phase (Figure S7-Supplementary Information). 

As observed for PDLLA system, the presence of some agglomerates was also evident (Figure 5b 

and e). Through the analysis of several TEM images, it was determined that the sizes of the 

agglomerates fluctuated from 15 to 140 nm and 15 to 800 nm at a concentration of 1 and 3 wt. % 

n-ZnO, respectively (Figure 5c and 5f). With these results, a strong tendency of n-ZnO to form 

aggregates was evidenced mainly due to the NP’s size and possibly to a lesser interaction with the 

polymeric matrix, in comparison to PDLLA. 

The porosities (Figure 4c and f) and the pore sizes in the scaffolds were found to be similar to 

those observed in PDLLA (Figure S9-Supplementary Information).  

 

Figure 4.- SEM images of PHB fibrous material at 1 wt. % (a and b) and 3 wt. % (d and e) of n-ZnO, box 
charts of fiber diameters and porosities (Ø) (c and f).   
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Figure 5.- SEM images (a and d), elemental mapping of n-zinc (b and e) and TEM images (c and f) of PHB 
fibrous material at 1 wt. % (upper images) and 3 wt. % (bottom images) of n-ZnO (images obtained by 
SEM-EDS). 

3.4.3. Thermal properties of PDLLA-ZnO systems  

In Figure 6a, the thermo-degradation patterns of the materials formulated at different 

concentrations of n-ZnO are presented. In the first instance, it is evident that the residues after the 

heat treatment slightly disagree with the original n-ZnO concentration (1.1, 2.4 and 3.8 wt. %, for 

1, 3 and 5 wt. %, respectively). These results could suggest a non-homogeneous distribution of 

NPs derived from their tendency to form agglomerates, losses of NPs during the fiber production 

process, or a combination of both. 

For thermal stability, the temperature at which the degradation rate reaches its maximum value 

(Td), obtained by means of the derivative of the thermogram, was taken as the reference. The Td 

of the materials containing 0, 1, 3 and 5 wt. % of n-ZnO were 362, 291, 277 and 274 °C, 

respectively (Figure S10, Supplementary Information). It is evident that ZnO promoted a decrease 

in the thermal stability of the polymer, showing a more pronounced effect at a concentration of 1 

wt. %. Different publications attribute this behavior to the fact that ZnO promotes reactions of 

transesterification and depolymerization of PLA.42–45 At 3 and 5 wt. % of n-ZnO concentration 

there were no significant changes in the degradation temperatures, possibly due to the 

agglomerates of n-ZnO, which cause a decrease in the available active sites and therefore less 

interaction with polymer chains.44 

Concerning the thermal transitions of the materials, in Figure 7a the DSC thermograms of one 

heating-cooling-heating cycle are presented. Regarding the reference system (without n-ZnO), in 

the first heating, an endothermic transition can be observed at 64.9 °C, which occurs just after the 

glass transition temperature (Tg) of the PDLLA (62.0 °C) (Table 1, Supplementary Information). 

This behavior denotes the presence of certain arrangement within the polymer chains formed by 

This article is protected by copyright. All rights reserved.
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the uniaxial stretching experienced during the spinning process. A similar behavior was observed 

at 1, 3 and 5 wt. % of n-ZnO, but in these cases the endothermic peak occurred at a slightly lower 

temperature, with a progressive decrease in the enthalpies of relaxation as the concentration of 

NPs increased. These results indicate that in the process of elongation of the polymeric fluid, the 

NPs interfere with the alignment of the polymeric chains, leading to a lower structural order. On 

the other hand, during the cooling cycle and second heating, after polymer chain relaxation, only 

a second order transition (Tg), typical of an amorphous polymer was observed, as expected. 

3.4.4. Thermal properties of PHB-ZnO systems 

The TGA thermograms corresponding to the PHB fibers containing 1 and 3 wt. % of n-ZnO 

(Figure 6b) reflect concentrations closer to the established values, being 1.4 and 3.4%, 

respectively. It is important to note that although the PHB has a thermal stability lower than that 

of PDLLA, n-ZnO did not show a pronounced effect on the degradation temperature of the 

material, which agrees with that reported by Anz Lovar et al.43 who carried out a study of the 

thermal degradation of PLA-ZnO and PHVB-ZnO, and showed that the metal oxide of interest 

degrades PLA to a greater extent. The Td of the materials formulated at 0, 1 and 3 wt. %, were 272, 

267 and 264 °C, respectively (Figure S10, Supplementary Information). 

Figure 7b shows the DSC thermograms of the heating-cooling-heating cycle. Taking as a basis 

that the PHB used is composed of 95% poly(3-hydroxybutyrate) (3-PHB), 4% poly(4-

hydroxybutyrate) (4-PHB) and 1% polyhydroxyvalerate (3-PHV), composition obtained through 
13C NMR (Figure S11, Supplementary Information), in the first heating two endothermic peaks at 

48 °C and 170 °C were identified, corresponding to the fusion of the crystalline phases of the 4-

PHB and 3-PHB, respectively. 46 The n-ZnO caused a slight decrease in the percentage of polymer 

crystallinity, being 47.5, 46.6 and 45.2 wt. % at 0, 1 and 3 wt. % of n-ZnO, respectively. In the 

cooling process a reduction of the temperature and enthalpy of crystallization occurred when the 

concentration of n-ZnO increased. This behavior indicates that the n-ZnO NPs are delaying the 
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crystallization process of the polymer, possibly because they interfere with the packing of the 

polymer chains, in a similar way to that observed in PHBV-ZnO systems.18 In the second heating 

process, two fusion transitions appear with the addition of n-ZnO, which may be related to 

compositional heterogeneity, multiple crystalline forms, or a fusion-recrystallization-fusion 

process (Table S2-Supplementary Information).  

Figure 6.- Degradation patterns derived from TGA of the centrifugally spun PDLLA fibers (a) and PHB 
fibers (b) obtained at different concentrations of n-ZnO. 

 

Figure 7.- DSC thermograms derived from one cycle of heating-cooling-heating of a) PDLLA and b) PHB 
fibrous mats at different concentration of n-ZnO. 

3.4.5. Mechanical properties of PDLLA-ZnO and PHB-ZnO systems 

In Figure 8a the Young's modulus (E) and the tensile strength (σ) of PDLLA materials are plotted 

as a function of n-ZnO concentration. The results show that for the 1 wt. % sample, there is no 

influence of n-ZnO on the mechanical performance of the materials, while at 3 wt. % an effect is 

observed (E = 32.24 MPa, σ = 0.878 MPa) attributed to the stiffening of the material by the 

interaction of the n-ZnO with the polymeric matrix. When increasing the concentration to 5 wt. % 

of n-ZnO there was a considerable decrease in tensile strength (E = 5.06 MPa, σ = 0.155 MPa), 

which is attributed to the presence of agglomerates, which act as stress concentrators and crack 

initiators.13,14 

On the other hand, the mechanical performance of PHB materials with and without n-ZnO, is 

presented in Figure 8b. At a concentration of 1 wt. %, the incorporation of n-ZnO improved the 

mechanical properties of the material, reflecting a more pronounced effect on the σ. At a 

concentration of 3 wt. %, no significant changes were observed in the properties (E = 8.985 MPa, 

σ = 0.643 MPa).  
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Figure 8.- Young's modulus (E) and tensile strength (σ) of the materials obtained with PDLLA (a) and 
PHB (b) at different concentrations of n-ZnO. 

3.4.6. Antibacterial properties of PDLLA-ZnO and PHB-ZnO 

To evaluate the antibacterial effect of the developed materials, a study was carried out with bacteria 

of clinical interest such as E. coli and S. aureus. In Table 2, the antibacterial efficiency is presented. 

In the case of PDLLA, at a concentration of 5 wt. %, an inhibition of bacterial growth for both 

strains exceeded 97%. On the other hand, the PHB showed an excellent antibacterial performance 

against both microorganisms, observing a slightly higher efficiency at a concentration of 1 wt. %.  

Table 2.- Antimicrobial activity (R) and bacterial growth inhibition (GI) of the fibrous materials 
based on PDLLA and PHB at different concentrations of n-ZnO. 

 

3.4.7. Cell viability test 

The cell viability test employs resazurin to evaluate cellular metabolic activity. Resazurin displays 

weak fluorescence under basal conditions. In mammalian cells, mitochondria are maintained as an 

organellar network responsible for the bulk of bioenergetic metabolism. Within the mitochondria 

of metabolically-active cells, resazurin is reduced by NADH dehydrogenase, Complex I of the 

mitochondrial respiratory chain, to produce resorufin, which displays strong fluorescence with a 

peak ~570-590 nm. Resorufin is excreted into the surrounding media, providing an effective 

indicator of cellular metabolic activity.47 

In Figure 9, the viability of the designed scaffolds without (blank) and with n-ZnO for both 

polymers is shown in relation to the positive control (Ctrl.+, cells alone). Regarding the influence 

of polymer nature, PDLLA scaffolds promotes greater metabolic activity than PHB scaffolds, with 
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viabilities above 80%: at days 5 and 7, PDLLA-grown cells displayed resorufin fluorescence 

equivalent or greater than controls, while PHB-grown cells showed less resorufin fluorescence 

than control cells. In addition, it was observed that after day 5, an increase in cell viability occurs 

for both systems. This suggests an adaptation period to the nanofiber environment during the first 

three days, followed by increased growth and proliferation on subsequent days resulting in 

increased resorufin signal. In addition, resorufin signal was observed above 100% by PDLLA 

scaffolds, suggesting that the positive control cells were close to their confluence; therefore, there 

were no significant changes in their metabolic activity for days 5 and 7. In contrast, PDLLA 

scaffolds, due to a greater surface area and adequate pore size distribution, allowed cells to 

continue proliferating. Finally, no statistically significant changes were observed between the cells 

grown on fibers with and without n-ZnO, demonstrating the ZnO concentrations employed do not 

have cytotoxic effects on MC3T3 preosteoblast cells as assayed.  

 

Figure 9.- Osteoblast cell viability evaluated after 1, 3, 5 and 7 days with resazurin for PDLLA (a) and 
PHB (b). A statistical analysis is shown measuring the standard deviation of the mean, n= 3 trial experiment 
(* p <0.05, ** p <0.01). 

4. Discussion 

Three-dimensional arrangement of polymeric fibers in a structure of interconnected pores, 

obtained by different spinning techniques,12–18 has allowed the design of scaffolds with potential 

use in the regeneration of different extracellular matrices.1,2 Zinc oxide reinforced PDLLA and 

PHB nanofibrous membranes were developed using the Forcespinning® technique, results showed 

high yields and potential to be use as scaffolds for biomedical applications. 

As it was observed in Figures 1, S2 and S3, the viscosity of the precursor solution has an influence 

on the fiber diameters. In this sense, it is necessary to consider that in the process of uniaxial 

stretching of a polymeric fluid the molecules are forced to align in the direction of the applied 
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stress. However, when the fluid has an elastic behavior and high viscosity, it presents a certain 

resistance to be elongated and the aligned chains tend to relax to assume their original non-aligned 

conformation, producing larger fiber diameters distributed in a wider range of values.48 This effect 

was evidenced to a great extent in PDLLA systems. 

On the other hand, the polymer chain entanglements have an important role in the homogeneous 

fiber formation. It was previously reported for a PDLLA system that the conditions under which 

it is possible to obtain homogeneous fibers by means of Forcespinning® were 10 wt. % polymer 

solution and ω = 9000 rpm.28 According to Chae et al.49 the incorporation of n-ZnO would 

reinforce the polymer chain entanglements, as a consequence of an increase in interfacial polymer-

nanoparticle interaction. Even though the presence of n-ZnO did not produce a significant effect 

on the fiber appearance, its influence on the chain entanglement was reflected on the mechanical 

performance. 

As evidenced in Figure 6, n-ZnO caused a decrease in the thermal stability of the materials, with 

a pronounced effect in PDLLA systems. Based on a study conducted by Anzlovar et al. [38] ZnO 

catalyzes and forms part of the degradation reactions of PLA and PHBV, with a minor effect on 

PHBV. Figure 7a shows a slight decrease in the Tg of PDLLA, results consistent with the observed 

decrease in thermal stability. In the case of PHB (Figure 7b) the decrease in the Tm and the 

percentage of crystalline phase observed in the first heating suggests that n-ZnO had some 

influence on the lamellar structure of the polymer50 and it acts as a retardant agent of 

crystallization. These results are in agreement with the decrease in the crystallization temperatures 

observed during the cooling phase. Finally, in relation to the second heating, the presence of n-

ZnO could have caused the crystallization of a secondary phase (less stable) during the cooling 

process, which melts at a lower temperature (157 °C, first melting peak), crystallizes and melts 

again at a higher temperature (167.3 °C, second melting peak) (Table 2-Supplementary 

Information).18 
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Comparatively, the materials based on PDLLA presented a better mechanical performance except 

for the system containing 5 wt. % of n-ZnO which showed large aggregates (Figure 3h-i). These 

aggregates diminished the concentration/number of active sites due to particle-matrix interactions 

while also act as stress concentrators promoting the failure of the material. Size and dispersion of 

the nanoparticles played a key role on mechanical performance.  

Concerning the antibacterial performance of the designed scaffolds, it was observed that there was 

a difference in the sensitivity of the strains and required n-ZnO concentration to combat the strains. 

Lower concentrations of n-ZnO (1 and 3 wt. %) show, a greater sensitivity of S. aureus to PDLLA 

scaffolds. These results are in agreement with those reported by Sirelkhatim et al.51 and Reddy et 

al.,52 where the growth inhibition of S. aureus bacteria (gram-positive) occurs at a lower n-ZnO 

concentration compared to E. coli bacteria (gram-negative). This behavior is attributed to 

variations in cell physiology, cell wall constitution and metabolism of the two strains.51 

Overall, PHB-ZnO fiber systems showed a better performance than PDLLA-ZnO against any of 

the analyzed strains. In the case of PDLLA, unlike the PHB, a greater interaction between n-ZnO 

and polymeric matrix was observed (see section 3.2), producing fibers with a high number of 

embedded NPs; characteristic that harms the material antibacterial properties as it was observed. 

These results agree with results observed by Virovska et al.12 and Rodríguez-Tobías et al.14 who 

were working with the effect to electrospinning/electrospraying and electrospinning techniques on 

the antibacterial performance of PLA fibrous material. They found that the incorporation of ZnO 

through the polymer solution it was not sufficient to produce a good antimicrobial performance of 

PLA. The concentration of n-ZnO necessary to inhibit bacteria growth above 95% was determined 

for PDLLA and PHB, as 0.1 mg/mL and 0.05 mg·mL-1, respectively. In the case of PHB, 

Rodríguez-Tobías et al.19 reported a concentration of 0.09 mg·mL-1, which is an approximate value 

to the one estimated in this study. 
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Finally, it was demonstrated that PLA and PHB fibers support the growth of mammalian cells 

(mc3T3 murine preosteoblasts). The cell viability study showed that PDLLA scaffolds presented 

a better performance than PHB scaffolds. This could be attributed to the larger surface area (fiber 

diameter distributions more displaced towards lower values, greater surface roughness and spaces 

between fibers) shown in the PDLLA fiber mats.41,53 As mentioned above, the concentration of n-

ZnO did not show a significant effect on the osteoblast cell viability. Similar results have been 

presented by Khader and Arinzeh when studying human mesequimal cell proliferation in 

policaprolactone/ZnO fibrous mats.54 However, several reports based on ZnO hybrid fibrous 

materials have presented a decrease on cell viability as ZnO concentration increases.13,55 

Therefore, complementary studies as osteogenic diferenciation and alkaline phosphatase activity 

could help to further  understand the effect of ZnO on cell behavior. 56 

5. Conclusions 

The incorporation of n-ZnO produced an increase in the viscosity of PDLLA and PHB precursor 

solutions, with a greater impact on PDLLA, resulting in an increase of average fiber diameter. The 

overall morphology was not affected by the presence of n-ZnO, fibers were in both cases, mostly 

long, continuous and homogeneous. The thermal stability decreases due to the presence of n-ZnO, 

to a greater extent in PDLLA systems, possibly due to the catalytic effect and higher interaction 

of the NPs with the PDLLA matrix. In the case of PHB, the incorporation of n-ZnO did not present 

a significant effect in its thermal stability. Mechanical evaluation showed an increase in Young's 

modulus and tensile strength at a concentration of 3 wt. % and 1 wt. % for PDLLA and PHB, 

respectively. For antibacterial applications, the mats produced with PHB at 1 and 3 wt. % of n-

ZnO presented an excellent alternative against both E. coli and S. aureus. In the case of PDLLA, 

a concentration of 5 wt. % of n-ZnO was required to observe antibacterial activity greater than 

97%. As for osteoblast cell viability, the PDLLA scaffolds provided better performance to be used 

for bone tissue regeneration. 
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 Table 1.- Experimental conditions used during the centrifugal spinning process.   

 Cp 
(wt. %) 

 

ω  
(rpm) 

CNPs 
(wt. %) 

Identification 

PDLLA 10 9000-11000 1 PDLLA-ZnO 1% 
3 PDLLA-ZnO 3% 
5 PDLLA-ZnO 5% 

PHB 9 6000-9000 1 PHB-ZnO 1% 
3 PHB-ZnO 3% 

*ω= angular speed, Cp = polymer concentration and CNPs = nanoparticles concentration 
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Table 2.- Antimicrobial activity (R) and bacterial growth inhibition (GI) of the fibrous materials 
based on PDLLA and PHB at different concentrations of n-ZnO. 

This article is protected by copyright. All rights reserved.

 10991581, 2020, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pat.4987 by T

he U
niversity O

f T
exas R

io G
rande V

allley, W
iley O

nline L
ibrary on [19/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



31 
 

 Escherichia coli Staphylococcus aureus 

PDLLA PHB PDLLA PHB 

ZnO 
(wt. %) 

GI 
(%) 

R GI 
(%) 

R GI 
(%) 

R GI 
(%) 

R 

1 8.12±2.49 0.04±0.01 100.00±0 -* 69.07 ±1.07 0.51±0.02 99.99±0 5.16±0.13 

3 25.50±12.20 0.13±0.07 99.99±0.01  69.01±36.92 0.73±0.53 99.97±0.01 3.60±0.15 

5 99.59±0.14 2.90±0.32 - - 97.07±2.63 1.64±0.32 - - 

*at 100% of inhibition the equation for the calculation of R (Eq. 4) presents limitations 
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Figure 1.- Rheological behavior of a) PDLLA solutions at 0, 1, 3 and 5 wt. % of n-ZnO and b) PHB 
solutions at 0, 1 and 3 wt. % of n-ZnO. 

Figure 2.- SEM images of PDLLA fibrous material at 1 wt. % (a and b), 3 wt. % (d and e) and 5 wt. % (g 
and h) of n-ZnO, box charts of fiber diameters and porosities (Ø) (c, f and i).   

Figure 3.- SEM images (a, d and g), elemental mapping of zinc (b, e and h) and TEM images (c, f and i) 
of PDLLA fibrous material at 1 wt. % (a, b and c), 3 wt. % (d, e and f) and 5 wt. % (g, h and i) of n-ZnO ( 
images obtained by SEM-EDS).  

Figure 4.- SEM images of PHB fibrous material at 1 wt. % (a and b) and 3 wt. % (d and e) of n-ZnO, box 

charts of fiber diameters and porosities (Ø) (c and f).   

Figure 5.- SEM images (a and d), elemental mapping of zinc (b and e) and TEM images (c and f) of PHB 
fibrous material at 1 wt. % (upper images) and 3 wt. % (bottom images) of n-ZnO (images obtained by 
SEM-EDS). 

Figure 6.- Degradation patterns derived from TGA of the centrifugally spun PDLLA fibers (a) and PHB 
fibers (b) obtained at different concentrations of n-ZnO. 

Figure 7.- DSC thermograms derived from one cycle of heating-cooling-heating of a) PDLLA and b) PHB 
fibrous mats at different concentration of n-ZnO. 

Figure 8.- Young's modulus (E) and tensile strength (σ) of the materials obtained with PDLLA (a) and 
PHB (b) at different concentrations of n-ZnO. 

Figure 9.- Osteoblast cell viability evaluated after 1, 3, 5 and 7 days with resazurin for PDLLA (a) and 
PHB (b). A statistical analysis is shown measuring the standard deviation of the mean, n= 3 trial experiment 
(* p <0.05, ** p <0.01). 
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