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Abstract 

This work studied the potential of centrifugal spinning for the production of fibrous materials based on 

poly(D,L-lactic acid) (PDLLA) and poly(3-hydroxybutyrate) (PHB) with hydroxyapatite nanoparticles (n-

Hap). The influence of n-Hap concentration (5, 10 and 15 wt %) and spinneret angular speed on the final 

fiber morphology were analyzed. Further experimental evaluations were implemented to determine the 

effect of n-Hap on the thermal and mechanical performance. The optimum parameters that show a balance 

among high yield production of homogeneous fibers with the smallest fiber average diameter were found 

to be at 5 wt % of n-Hap processed at 7000 rpm for PDLLA, and 5, 10 and 15 wt % of n-Hap at 6000 rpm 

for PHB. The thermal stability, for both systems, was not significantly affected. The mechanical 

performance of PHB systems was improved with the addition of n-Hap. Osteoblast cell viability tests 

depicted a favorable cell response on the PDLLA systems. 

1. Introduction 

Hydroxyapatite nanoparticle (n-Hap) is a ceramic material mainly used in applications related to 

bone tissue, due to its resemblance to bone in structure and composition. Several recent studies 

reported that n-Hap contributes to important biological processes for bone tissue regeneration, 

This article is protected by copyright. All rights reserved.
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such as osteoconduction1 (bone growth at the superficial level), osteoinduction2 (pluripotent cells 

are stimulated to develop bone-forming cells, a process that induces osteogenesis) and 

osseointegration3 (stable anchorage of an implant, obtained by direct contact between the bone 

tissue and the implant). The major limitation in the use of n-Hap-based materials as bone implants 

is their poor mechanical behavior, increasing their fragility when they are manufactured in the 

form of scaffolds with high porosity to mimic the bone structure. Therefore, these ceramic 

compounds are commonly used as fillers or coatings in polymeric matrices.4 

The design of polymeric scaffolds with n-Hap has been widely explored due to their effective 

regenerative characteristics, mainly those based on synthetic and natural biopolymers.5 In the 

biomedical area, the approach has been tilted in the production of polymer fiber scaffolds as they 

are systems that provide a structural morphology similar to the extracellular matrix of various 

tissues within the human body. The interest in this type of hybrid materials has promoted their 

study with different line cells, obtaining promising results for applications in tissue engineering.1,6 –

9 

Several research teams have worked on the design of fibrous materials based on PHB/Hap 

produced by electrospinning. Ramier et al.7 reported changes in the roughness of the fiber which 

resulted in improvements in the mechanical properties (Young’s module, tensile strength), and 

increased adhesion and differentiation of human stromal mesenchymal cells (hMSc). Sadat-Shojai 

et al.6 results provided information that n-Hap have not a cytotoxic effect on mouse pre-osteoblast 

cells (MC3T3-E1) under in vitro conditions, thus suggesting further use for in vivo evaluation. 

Poly(L-lactic acid) (PLLA) has also been explored for the design of n-Hap hybrid nanofiber 

membranes through the same technique than PHB/Hap. Morelli et al.1 reported the influence of n-

Hap on surface morphology and average fiber diameter and observed a decrease in mechanica l 

performance (Young's modulus, tensile strength) by increasing the concentration of n-Hap to 50 

wt %. On the other hand, Novotra et al.8 designed polymeric fibers containing 5 and 15 wt % of 

n-Hap, with similar tensile mechanical performance (stiffness and % of elongation at break); 

This article is protected by copyright. All rights reserved.
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furthermore, in vitro tests demonstrated good support for adhesion, growth and osteogenic 

differentiation. Recently, Sánchez-Arevalo et al.9 observed changes in the surface morphology and 

diameter of PLLA fibers obtained at concentrations of 2, 4 and 6 wt % of n-Hap; and found that at 

a concentration of 2 wt % there was a decrease in macro and micro tensile mechanical properties 

(Young's modulus). 

Electrospinning has been the preferred method to produce the needed nanofiber membranes.1 0  

However, this technique has certain limitations such as the need to use solvents with specific 

dielectric properties, high energy cost due to the required high voltage, and for lab scale single-

needle electrospinning systems, low production rates (typically 10-100 mg·h-1).11 Alternat ive 

technologies have been developed with the purpose to overcome some of the electrospinning 

limitations. One of these technologies is the centrifugal spinning, a competitive option given its 

high production rate (50-100 g·h-1)12–14 and lower operational cost since there is no need for 

electric fields and can easily be used for solvents or melts (further decreasing cost).  

In this work, the process conditions for obtaining hybrid materials based on homogeneous PDLLA 

and PHB fibers with n-Hap are reported using the centrifugal spinning technique, Forcespinning®. 

In addition, an analysis of the influence of such nanoparticles on the morphological characterist ics 

of the obtained fibers was established. Finally, aspects related to the influence of n-Hap on the 

thermal and mechanical performance as well as the interaction of the design materials with 

osteoblast cells were addressed to assess their potential application as bone scaffolds. 

2. Experimental Methodology 

2.1. Materials and reagents 

Poly(D, L-lactic acid) (PDLLA) provided by NatureWorks LLC (Ingeo 6362D) with 𝑀𝑀𝑤𝑤=160 kg 

mol-1 and Ɖ = 1.646, and poly(3-hydroxybutyrate) (PHB) supplied by Goodfellow with 𝑀𝑀𝑤𝑤= 381 

kg mol-1; Ɖ = 3.53, were used as the polymer matrices. Chloroform, ACS grade, was purchased 

This article is protected by copyright. All rights reserved.
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from Fisher Scientific. Hydroxyapatite (Hap), Dp ≤ 200 nm and 97% of purity, was obtained from 

Sigma-Aldrich. 

2.2. Preparation of precursor solutions 

Several dispersions with different n-Hap concentrations were prepared using chloroform as the 

liquid medium. The n-Hap was dispersed using an ultrasound bath (Cole-Parmer 8891) for 50 min. 

Once the dispersion process was finished, the polymer was added to the system in an amount 

corresponding to the established concentration. In the case of PDLLA, the solution was carried out 

under constant stirring for 22 h at room temperature, while for PHB the system was maintained at 

a temperature of 55 °C, during a stirring time which varied between 12-16 h. 

The viscosities of the biopolyester solutions were determined using an Anton Paar rheometer, 

physical model MCR 301 with a cone-plate configuration (diameter 50 mm, angle of 2 ° and gap 

of 0.205) at 25 °C. 

 

 

2.3. Centrifugal spinning process 

The prepared solutions were subjected to a centrifugal spinning process in a Cyclone™ L-1000M 

(FiberRio Technology, Corp.), which consist of a cylindrical spinneret with two nozzles equipped 

with regular beveled needles (30-gauge length, Becton, Dickinson and Company) and 8 collectors 

in the form of metal bars arranged around the spinneret at a distance of 15 cm from the nozzles. 

For each run, 2 mL of polymer solution were added to the spinneret, and fiber spinning was carried 

out for 5 min at a temperature of 24.1 °C ± 1.5 °C with a relative humidity of 54.3% ± 8.7%. It is 

important to mention that the fiber characterization in the optimization stage was determined from 

the fibers collected from a single run (5 min). Once proper parameters were established, the 

resultant mats were obtained by the collection of 7-runs (5 min each). The fibers were placed in a 

This article is protected by copyright. All rights reserved.
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vacuum oven at 30 °C for 24 h, to remove any residual solvent. Finally, the fibers were stored in 

plastic bags in the presence of a desiccant for moisture control. 

2.4. Experimental design 

Table 1 presents the precursor solution concentration and intervals of angular speed (ω) used in 

the production of the fiber-based mats. 

Table 1.- Experimental conditions used during the centrifugal spinning process.   

 Cp 
(wt %) 

 

 

      

  

 

ω 
(rpm) 

CHap 

(wt %) 

 

 

 

  

Identification 

PDLLA 10 

6000-9000 5, 10, 15 

PDLLA-Hap 5% 
PDLLA-Hap 10% 
PDLLA-Hap 15% 

PHB 9 PHB-Hap 5% 
PHB-Hap 10% 
PHB-Hap 15% 

*ω= angular speed, Cp = polymer concentration and CHap = Hap concentration 

For the selection of the optimum ω, resultant fiber morphology, fiber diameter, and ultimate yield 

were considered. The yield/output of the process (𝜼𝜼p) was estimated by Equation 1. 

𝜂𝜂𝑃𝑃 = 𝑀𝑀𝑚𝑚𝑚𝑚
𝑆𝑆𝑆𝑆

𝑥𝑥100          (1) 

where 𝑀𝑀𝑚𝑚𝑚𝑚  and 𝑆𝑆𝑆𝑆 are the grams of fibers collected per run (5 min) and the total solids (polymer 

+ NPs) contained in 2 mL of polymer solution, respectively.  

2.5. Fibrous material characterization 

The morphological analysis was carried out using a scanning electron microscope (Carl Zeiss, 

SigmaVP). The images obtained were analyzed with the Image J software (v. 1.48) to estimate 

This article is protected by copyright. All rights reserved.
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average fiber diameters (𝐷𝐷𝑓𝑓���) and average pore size (interfibrillar spaces). Diameter distribut ions 

were obtained by measuring 100 fibers (20 fibers per micrograph) with three measurements per 

fiber, making a total of 300 measurements per sample. Obtained data was represented by means 

of box-bars charts, where the boxes reflect 50% of the population of values that located between 

quartile 1 (Q1 = 25% of the population) and 3 (Q3 = 75% of the population) and the bars represent 

the amplitude of the distribution according to the most probable values or those that appear more 

frequently. 

The distribution and dispersion of the n-Hap within the fibers were determined using energy 

dispersive X-ray spectroscopy (EDS, EDAX Octane Super) and transmission electron microscopy 

(FEI, Titan 80-300). 

For the calculation of the scaffold’s porosity, an adjustment of the equation reported by Wang15 

was used (Equation 2). 

∅ = �1− 𝑚𝑚
𝑍𝑍∗𝐴𝐴∗𝐻𝐻∗𝜌𝜌

�*100         (2) 

Where m, Z, A, H and ρ are the mass, thickness, width, and length of the scaffold and the density 

of the polymer with n-Hap in the corresponding case, respectively. 

The thermal properties were evaluated through thermogravimetric analysis (TGA) (TA 

Instruments, Q400) and differential scanning calorimetry (DSC) (TA Instruments, Q200). To 

perform the TGA, the samples were heated from 30 °C to 600 °C under a nitrogen atmosphere, at 

a heating rate of 10 °C·min-1. Regarding the DSC, the heating was carried out from -70 to 200 °C 

at a rate of 10 °C·min-1, the samples were isothermally maintained at 200 °C for 2 minutes and 

then cooled down at the same rate to -70 °C. A second heating cycle under the same conditions 

was conducted. The crystallinity of the systems manufactured with PHB was determined using 

Equation 3:16 

This article is protected by copyright. All rights reserved.
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𝑋𝑋𝑐𝑐 = ∆𝐻𝐻𝑚𝑚
∆𝐻𝐻𝑚𝑚

° ×𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃
× 100         (3) 

Where ∆𝐻𝐻𝑚𝑚 and ∆𝐻𝐻𝑚𝑚°  are the melting enthalpies of the PHB sample and a 100% crystalline PHB 

respectively, being ∆𝐻𝐻𝑚𝑚°  = 146 J·g-1.17 The XPHB is the PHB weight fraction in the sample.  

The mechanical properties of the fibrous materials were determined by tensile tests using the 

universal testing machine (Tinius-Olsen, H10KS). The tensile testing was made using the paper 

frame method.18,19 To this end, test pieces of 30 mm long and 3 mm wide were cut and conditioned 

for 24 h at room temperature (23-25 °C). The tensile tests were carried out at a deformation speed 

of 2 mm·min-1 with a clamp separation of 27.5 mm, using a 50 N load cell (5 repetitions). 

2.6. Cell viability test 

Saos-2 (osteoblast like) cells were cultured in a flask with McCoy’s culture media (Sigma, M4892-

10X1L) containing 2.2g·L-1 of NaHCO3, 15% of fetal bovine serum (Fisher Thermo Scientific, 

SH30396.03) and 1% of Penicillin-Streptomycin (Gibco, 15140–122). Culture media was changed 

after 24 h and then each 48 h until cell confluence. Third to fifth generation of cells were used to 

evaluate their interaction with the PDLLA or PHB surfaces. Cells were removed from the culture 

plates by rinsing in PBS and incubating in a trypsin solution. After trypsin inactivation, the cells 

were centrifuged for 5 min at 1200 rpm. The resulting pellet was resuspended in complete medium. 

30000 cells in McCoy’s culture media containing serum and penicillin-streptomycin were 

deposited on PDLLA and PHB samples of 1x1 cm, previously sterilized with UV light for 20 min, 

and incubated at 37 °C. After adhesion for the specified time, cells were rinsed with PBS in order 

to eliminate all the rests of culture medium. 300 mL of solution of resazurin (Aldrich, 1001140130) 

on culture medium (1:10) was then added to the samples and was allowed to react for 4 h. 150 µl 

were taken from each sample and fluorescence was measured at 570 nm using a spectrophotometer 

Elisa reader (BioRad mod.450). 

 

This article is protected by copyright. All rights reserved.
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3. Results and Discussion 

3.1. Effect of n-Hap concentration on fiber formation  

An optimization study was conducted for the PDLLA based systems using concentrations of n-

Hap at 5, 10 and 15 wt % in an interval of ω between 5000 and 8000 rpm, in order to evaluate the 

influence of n-Hap on fiber formation (Figure S1, Supplementary Information). It was evidenced 

that the higher n-Hap concentration promotes the formation of defects within the fibers. This effect 

occurs more pronouncedly at 5000 rpm, whereas at a concentration of 15 wt % of n-Hap fibers 

exhibited a high level of ovoid defects. This fact produced a decrease in the amount of collectib le 

material, affecting the process yield (𝜼𝜼p) (𝜼𝜼p < 20%). The opposite occurred as ω increased, 

homogeneous fibers at a concentration of 5 wt % in the range of 7000 to 8000 rpm were obtained. 

In view of the difficulties presented with the incorporation of n-Hap, the criterion for selecting the 

best conditions was based on the fiber homogeneity and fiber yield. Therefore, the system obtained 

at 5 wt % of n-Hap and 7000 rpm was selected (𝜼𝜼p = 67%, Q1-Q3 = 0.44-1.70 µm, 𝐷𝐷�𝑓𝑓= 1.29 ± 1.14 

µm) as one of the most suitable. 

Figure 1 shows the influence of n-Hap concentration on fiber morphology and 𝐷𝐷𝑓𝑓���, it is compared 

to the system without n-Hap. Under the selected conditions, the incorporation of n-Hap did not 

have a pronounced effect on the material appearance, presenting a homogeneous morphology and 

a similar surface porosity. Regarding the 𝐷𝐷𝑓𝑓��� values, the effect was more pronounced, at 5 wt % of 

n-Hap where a wider dispersion (0.10 to 3.58 µm) and an increase of 𝐷𝐷𝑓𝑓��� from 1.03 to 1.29 µm was 

observed. This behavior was also observed by Morelli et al.1 and Sanchez et al.9 The increase in 

the amplitude of the fiber diameter distribution could be related to the n-Hap particle diameter 

distribution. Although 𝐷𝐷𝑝𝑝���� is around 44 nm, there is a small population with diameters ranging 

between 100 and 350 nm (Figure S2d, Supplementary Information), which could lead to the 

formation of thicker fibers.  

This article is protected by copyright. All rights reserved.

 10974628, 2021, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/app.50139 by T

he U
niversity O

f T
exas R

io G
rande V

allley, W
iley O

nline L
ibrary on [19/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 
 

The apparent viscosity of the polymer solutions was evaluated as a function of the shear rate with 

and without n-Hap (Figure 1d). As it can be observed, at 5wt % of n-Hap a decrease in viscosity 

was observed compared to the system without n-Hap.  

The interaction among the Hap and PLA has been reported in several studies such as Neuendorf 

et al.20 where they performed surface tension measurements to determine the work of adhesion 

between Hap and all stereochemical forms of PLA (-DL, -D and -L), they found that the adhesion 

strength between Hap and PDLLA (-DL) is 20% greater in comparison with the other 

stereochemical forms.The obtained value, 63 J/m2, can be associated with physical bonding across 

the organic/inorganic interface. On the other hand, Zhou et al.21 reported the presence of hydrogen 

bond between the C = O group of the PDLLA and the OH groups present in the Hap. These studies, 

and taking into consideration that the size of the NPs (44.4 ± 36.3nm) is in the order of the radius 

of gyration of the polymer (30-40 nm),22 provide information to suggest that the incorporation of 

the n-Hap produced a conformational change in the polymer chains (the chains are adsorbed on 

the surface of the particles) leading to a lower proportion of free polymer chains interacting with 

the solvent.23 This phenomenon could then explain the observed decrease in the viscosity for 

samples containing 5 wt % of n-Hap. Additionally, this particle-polymer interaction provides a 

faster rate of solvent evaporation during the fiber formation process therefore leading to larger 

fiber diameters. 

In the case of PHB, the interval of ω selected for the optimization study was 6000-9000 rpm at the 

same n-Hap concentrations evaluated for the PDLLA systems (Figure S3, Supplementary 

Information). In contrast to the latter, the formation of mostly homogeneous fibers was presented 

in the selected interval. Considering the obtained results, it could be established that the best 

angular speed for the manufacture of PHB scaffolds is 6000 rpm. The developed systems present 

a narrower diameter distribution and a higher fiber yield (Figure S4, Supplementary Information) 

(𝜼𝜼p> 70%, Q1-Q3 for 5, 10 and 15 wt % of n-Hap are 1.27-2.40, 1.07-1.74, 1.02-1.78 µm, and the 

corresponding 𝐷𝐷𝑓𝑓��� are 1.96 ± 0.87, 1.44 ± 0.46, 1.44 ± 0.59 µm, respectively). 

This article is protected by copyright. All rights reserved.
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Figure 2 shows the effect of n-Hap concentration on the morphology and fiber diameter 

distribution for the PHB systems. The micrographs show small protrusions exclusively at 10 and 

15 wt % of n-Hap, which could be associated with the formation of agglomerates, in a similar way 

to what was observed by Ramier et al.7 in electrospun fibers. On the other hand, at a concentration 

of 5 wt % of n-Hap, an increase in the Q1-Q3 interval diameter and its dispersion was observed, in 

comparison with the system obtained without n-Hap, reflecting an increase of 0.92-1.76 µm to 

1.27-2.40 µm. On the contrary, at 10 and 15 wt % there was a decrease in fiber diameter, 

maintaining a similar range to that of the reference system.  

Based on the apparent viscosity of the polymer solutions (Figure 2f), PHB solutions showed an 

increase in viscosity for samples containing 10 wt % of n-Hap, while at 15 wt % a slight decrease 

was observed possibly due to the presence of agglomerates which prevented particle-polymer 

interaction. When the viscosity increases, the resistance to elongate the polymeric solution 

increases as well; therefore resulting in fibers with a larger diameter for the same angular speed. 
24,25 The results at 5 wt % of n-Hap described in the previous paragraph presented an increase in 

the 𝐷𝐷𝑓𝑓���. In the case of 10 and 15 wt % of n-Hap, the big agglomerates presence may have had an 

additional effect on fiber diameter. Due to the agglomerates the well dispersed concentration of n-

Hap in the precursor solution is less than the initially established concentration. Consequently, the 

results of the fiber diameters will not necessarily reflect the expected influence with the increase 

in n-Hap concentration. The agglomerates were observed to act as thinning points resulting in 

fibers of smaller diameters. 

This article is protected by copyright. All rights reserved.
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Figure 1.-SEM images of PDLLA systems at 0 wt % (a) and 5 wt % (b) of n-Hap obtained at ω of 7000 
rpm, box charts of fiber diameters for each system (c) and rheological behavior of PDLLA solutions at 
0 and 5 wt % of n-Hap (d). 
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Figure 2.- SEM images of PHB systems at 0 wt % (a), 5 wt % (b), 10 wt % (c) and 15 wt % (d) of n-Hap 
obtained at ω of 6000 rpm, box charts of fiber diameters for each system (e) and rheological behavior of 
PHB solutions at 0, 5, 10 and 15 wt % of n-Hap (d). 

3.2. Morphological characteristics of the designed hybrid materials  

3.2.1. Centrifugally spun PDLLA-Hap materials 

The images of the materials obtained under the conditions selected in the optimization stage are 

presented in Figure 3. The fibers mostly show a homogeneous appearance over their entire length 

(Figures 3a and b). The diameters dispersion was wider and shifted towards larger diameters (0.29-

4.69 µm) when compared to the optimized system (0.10-3.58 µm). Regarding the n-Hap 

distribution, the presence of phosphorus was observed throughout the analyzed area (green dots in 

Figure 3d), indicative of a good distribution of the nanoparticles. The dispersion of the NPs was 

moderate, with some agglomerates along the fiber (Figure 3e). In addition, Figure 3g shows that 

n-Hap is mostly embedded within the fibers, probably due to its interaction with the polymer (see 

previous section), and as such preventing nanoparticles from transferring out of the matrix. A 

similar behavior was reported by Rizzi et al.26, where under the same procedure of incorporating 

n-Hap into polymeric films based on polycaprolactone (PCL) and PLLA, NPs were observed to 

be embedded in the PLLA films, which evidences the presence of strong interactions between n-

Hap and the polymer. 

Additionally, fibers show a rough surface along the entire length. This roughness occurs mainly 

when a very volatile solvent (in this case, CHCl3) is used for the preparation of the precursor 

solution, in combination with the fiber production in a relatively high atmospheric humid ity 

(54.3% ± 8.7%).27–29 Although the aforementioned variables are highly relevant to the surface 

appearance of the fibers, there are other factors such as solvent interaction with atmospheric water, 

water diffusion coefficient, and solubility parameters that also play key roles in surface 

morphology. 30 

The scaffold’s porosity is above 90%, similar to fibers developed in our previously reported 

work.31,32 Figure S5, Supplementary Information, shows the estimated scaffold pore sizes (spaces 

This article is protected by copyright. All rights reserved.
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between fibers), specifically the 50% of the population which has an area above 30.52 µm2 with 

most of the distribution in the 5 to 200 µm2 range. These results pose promising potential for 

applications in tissue engineering.33,34 

 

 

3.2.2. Centrifugally spun PHB-Hap materials 

Figure 4 shows the morphological characteristics of the PHB materials containing 5, 10 and 15 wt 

% of n-Hap, obtained at 6000 rpm. The fibers showed the expected behavior based on the 

previously performed morphological analysis; that is, mostly homogeneous fibers with a rough 

surface. The fiber diameter dispersion (Figures 4c, f, i) exhibited intervals similar to those observed 

in the optimization phase. However, in this case, the Q1-Q3 interval did not show significant 

variations between the systems, ranging from 1.2 to 2.3 µm. 

Regarding the scaffolds’ porosity, the values ranged from 93 to 96% (Figures 4c, f and i), while 

50% of the pore population have an area above 31.8 ± 8 µm2 and most of the population is 

distributed in a range from 2 to 200 µm2 (Figure S6, Supplementary Information). In Figures 5a, 

d and g, the presence of phosphorus in the samples is shown. Through these images, a good 

distribution of the n-Hap is evidenced with agglomeration points that vary as n-Hap concentratio n 

increases. These results are consistent with those observed in the TEM images (Figures 5b, e and 

h), and the particles are mostly embedded within the fibers (Figures 5c, f and i). 

This article is protected by copyright. All rights reserved.
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Figure 3. SEM images (a, b and d), TEM (f, g), box chart of fiber diameter (c) and mapping of element 
phosporous obtained through EDS of PDLLA-Hap 5% system produced at ω 7000 rpm. 

This article is protected by copyright. All rights reserved.
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Figure 4.- SEM images (a, b, d, e, g, h) of PHB systems at 5 wt % (upper images), 10 wt % (middle images) 
and 15 wt % (lower images) of n-Hap, box charts of fiber diameters and their respective porosity (Ø) (c, f, 
i). 

This article is protected by copyright. All rights reserved.
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Figure 5.- Elemental mapping of phosphorous (a, b, g) and TEM images (d, c, e, f, h, i) of PHB systems at 
5 wt % (upper images), 10 wt % (middle images) and 15 wt % (lower images) of n-Hap. 

 

3.3. Thermal properties 

From the thermo-degradation patterns of the scaffolds formulated with PDLLA (Figure 6a) and 

PHB (Figure 6b) at different n-Hap concentrations and at ω of 7000 and 6000 rpm, respectively, 

it was shown that the residues after heat treatment correspond to the theoretical concentration of 

n-Hap. Regarding the degradation of the materials, and taking into account the temperature at 

which the degradation rate reaches its maximum value (Td) obtained by the derivative of the 

thermogram, it can be observed that the n-Hap did not produce a significant decrease in the thermal 

This article is protected by copyright. All rights reserved.
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stability of the materials. In the case of PDLLA, a Td of 369 and 349 °C was obtained at 0 and 5% 

of n-Hap; respectively. On the other hand, the systems formulated with PHB showed a Td of 272, 

262, 262 and 260 °C at 0, 5, 10 and 15wt % n-Hap, respectively. This behavior could be attributed 

to the hydroxyl groups of the Hap that act as a catalyst in the decomposition reaction of the 

polymer. 35 

Figure 7a shows the DSC thermograms of a heating-cooling-heating cycle of the PDLLA based 

scaffolds. In relation to the reference system (without n-Hap), in the first heating cycle an 

endothermic transition is observed at 62.5 °C with a relaxation enthalpy of 7,517 J·g-1, which 

occurs followed by the glass transition temperature (Tg) of the PDLLA (51.2 °C) (Figure S7, 

Supplementary Information). This behavior denotes the presence of a certain order of the polymer 

chains formed by the uniaxial stretching experienced by the polymeric fluid in the spinning 

process, a characteristic that had already been observed in previously published articles.31,36,37 A 

similar behavior was observed at 5 wt % of n-Hap, but in this case the endothermic peak occurred 

at a higher temperature (63.3 °C) and enthalpy of relaxation (8.55 J·g-1), which evidences some 

NPs-polymeric matrix interaction. On the other hand, during cooling and second heating, there 

was only a second order transition (Tg) typical of an amorphous polymer, as expected. 

In the case of PHB systems (Figure 7b) during the first heating cycle similar transitions are 

observed in systems with and without n-Hap, with negligible modifications to the melting 

temperatures. PHB is composed of 95% poly(3-hydroxybutyrate) (3-PHB), 4% poly(4-

hydroxybutyrate) (4-PHB) and 1% polyhydroxyvalerate (3-PHV), therefore, in the first heating 

two endothermic peaks at 48 °C and 170 °C are identified, corresponding to the melting of the 4-

PHB and 3-PHB crystalline phases, respectively.32 Regarding the percentage of polymer 

crystallinity (Xc), the n-Hap caused a slight increase in Xc at a concentration of 5 wt % and from 

10 wt % (with a greater impact to 15wt %) a decrease was observed, being 47.4, 49.2, 43.0 and 

40.0% for 0, 5, 10 and 15 wt % of n-Hap, respectively. In the cooling stage, a reduction in 

temperature and enthalpy of crystallization was evidenced by increasing the n-Hap concentration, 

This article is protected by copyright. All rights reserved.
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similar to that described by Sánchez-Arévalo et al.9 This behavior indicates that NPs are slowing 

the polymer crystallization process, possibly due to their interference during the packing of 

polymer chains. 

 

Figure 6. Degradation patterns derived from TGA of the centrifugally spun PDLLA (a) and PHB fibers 
(b) obtained at different concentrations of n-Hap.  
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Figure 7. DSC thermograms derived from one cycle of heating-cooling-heating of PDLLA a) and 
PHB b) fibrous mats at different concentration of n-Hap. 
 

3.4. Mechanical properties 

Figure 8 shows the stress-strain curves obtained from PDLLA and PHB control and hybrid 

systems; the Young´s modulus and the tensile strength are also shown. The fiber mats presented a 

linear elastic behavior in the first phase of deformation (elongation) and a maximum stress values 

before yielding at an elongation less than 10% and 20% for the PDLLA and PHB, respectively.  

The selected fiber production method and chosen parameters significantly influence fiber 

orientation, polymer chain orientation, crystallinity, distribution of nanoparticles, as well as 

possible slipping between fibers, all of these factors then have an influence on the mechanica l 

performance of the mats.38,39 In the case of the PDLLA, a significant decrease in the Young’s 

modulus and tensile strength with the incorporation of n-Hap was observed, specifically the 

percentage of reduction was 66.6 and 68.7 %, respectively. Other studies have reported similar 

results using different concentrations of n-Hap;1,8,9 however, Gang Sui et al.,40 reported an opposite 

result, adjudicating the behavior to the formation of strong surface bonding between the n-Hap and 

the polymer. In the case of PHB, the mechanical performance improved as the n-Hap concentratio n 

increased. Nevertheless, the decrease in the tensile strength presented at 15% could be due to the 

formation of n-Hap agglomerates that eventually acted as sites for crack propagation. In spite of 

this behavior, the tensile strength at 15% was higher than that one obtained without n-Hap. Ramier 

et al.41 also observed an increase in the mechanical properties of hybrid fibrous mats obtained by 

the electrospinning technique. 

This article is protected by copyright. All rights reserved.
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Figure 8. Stress-strain curves, Young's modulus (E) and tensile strength (σ) of the fiber mats obtained 
with PDLLA (a) and PHB (b) at different n-Hap concentrations. 
3.5. Cell viability 

Cell viability is a measure of the cell metabolic activity. The test was carried out through the 

fluorescence emitted by a redox indicator, known as resazurin, which is effectively reduced in cells 

mitochondria producing resorufin. This final product is excreted to the culture medium, making it 

a source to evaluate the cell mitochondrial metabolic activity.  

It is important to highlight that for this test, only the systems obtained at 5% n-Hap and their 

corresponding references were evaluated for comparative purposes. In Figure 9, the influence of 

the designed materials on the behavior of Saos-2 (Osteoblast-like) cells can be observed. 

Regarding the polymer type, it is clear that PDLLA produced a better cellular response than PHB, 

This article is protected by copyright. All rights reserved.
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with a cell viability of around 60%. On the other hand, PDLLA-Hap 5% system promoted an 

increase of 10% in cell viability by day 7. The observed behavior could be attributed to the NPs 

disposition on the material, as they are mostly embedded in the fibers, avoiding the NPs direct 

interaction with the cells at first and third day of experimentation. With regard to the seventh day, 

it is likely that surface erosion (hydrolytic degradation)27 of the fibers produced the exposure of a 

greater number of NPs, causing an increase in the cell metabolic activity. In addition, different 

authors have reported that n-Hap promote the superficial mineralization of apatite;42,43 which could 

have had an effect on the final result. In the case of PHB-Hap 5%, no significant changes in cell 

viability were observed when compared to the PHB without n-Hap. The decreased viability with 

days of interaction could indicate the presence of a certain cytotoxic effect in the cells. Different 

works have reported similar results regarding the lack of n-Hap effect on the viability and 

proliferation of osteoblast cells, while its influence on other mechanisms that allow its osteogenic 

evaluation in different cell lines, have shown a notable positive effect.6,8,40,41,44 
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Figure 9. Osteoblast cell viability evaluated through days 1, 3, and 7 with resazurin. A statistical 
analysis is shown measuring the standard deviation of the mean, n= 3 trial experiment (* p <0.05, ** p 
<0.01). 

 

4. Conclusions 

PHB showed greater versatility for the production of homogeneous fibers at different n-Hap 

concentrations (5, 10 and 15 wt %) compared to PDLLA (5 wt %). The hybrid systems obtained 

presented rough surfaces, and thermal stability similar to those of fibrous materials without n-Hap. 

In addition, n-Hap acted as a reinforcement for PHB systems, in which a better mechanica l 

performance was observed at a concentration of 10 wt %; the contrary occurred in the PDLLA 

based systems. Regarding cell viability, PDLLA systems promoted higher cellular response than 

those formulated with PHB. Moreover, for PDLLA systems, the incorporation of n-Hap produced 

a significant difference in the metabolic activity of Saos-2 cells by day seven of the assay. On the 

other hand, no significant changes were observed in PHB systems. 
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