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ABSTRACT 

This work addresses a systematic study for the process development and optimization of poly(D,L-lactic 
acid) PDLLA sub-micron fibers utilizing the centrifugal spinning technique known as Forcespinning®. This 
study analyzes the effect of polymer concentration (8, 10, and 12 wt.%) and angular speed on the fiber 
morphology, diameter distribution, and fiber yield. The increase in polymer concentration and angular 
speed favored the formation of continuous and homogeneous sub-micron fibers with an absence of 
bead formation and higher output. The optimal conditions were established considering the 
morphological characteristics that exhibit a greater surface area (homogeneous and sub-micron fibers); 
and they were achieved at a polymer concentration of 10 wt.% at an angular speed ranging from 8000 
rpm to 10000 rpm. Optimization of PDLLA sub-micron fiber fabrication lays the groundwork for scaling 
up the process and serves as a platform to further develop promising applications of PDLLA nonwoven 
mats, particularly in the biomedical area such as in scaffolds for tissue engineering. 

 

1. INTRODUCTION 
 

In recent years the production of sub-micron fibers in the biomedical area has garnered considerable 
relevance given its attractive characteristics such as high surface area, high porosity, and ability to tailor 
pore size. These systems resemble the extracellular matrix, and therefore have great potential to be 
used in tissue regeneration1,2. Several methods have been explored to fabricate these sub-micron fibers, 
such as: melt blowing,3 phase separation,4 template synthesis,5 and electrospinning.6 Although, 
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electrospinning is highly popular, there are several disadvantages that have prevented its industrial 
production and therefore ultimate use for practical applications. This system produces minute amounts 
of fibers (~0.1 g/h), requires highly toxic organic solvents with specific dielectric properties, and presents 
a high cost of operation due to the need of high electric fields.7 Forcespinning® (FS), was recently 
introduced with the potential of alleviating the aforementioned disadvantages found within the 
electrospinning technique. FS utilizes centrifugal forces instead of electric fields, and fibers can be 
produced either from a polymeric solution or molten polymer. When a polymeric solution is used for 
producing fibers, the solvent employed does not require specific dielectric properties since there is an 
absence of an electric field, therefore it broadens the materials that can be used to produce fine fibers. 
Its yield has been reported as 50-100 gr/h at lab scales and hundreds of meters per minute at industrial 
scale.8–10 Figure 1 shows a basic scheme of the FS process. The process starts by placing the solution or 
pellets in the spinneret (Figure 1(A) depicts a spinneret for solution-based systems and used at a lab 
scale apparatus, spinnerets used at industrial scale systems do not use needles). As the angular speed is 
increased, it reaches a critical value where the centrifugal force exceeds the surface tension of the 
polymeric solution or melt, and fine fibers emerge from the tip of the needles following the developed 
aerodynamic field until they are deposited in the outer collector. Figure 1(B) depicts the direction and 
therefore friction with the air, which results in fiber stretching and thinning while solvent evaporates or 
melt cools down.  

 

 

Figure 1. (A) Basic configuration for the FS system and (B) fiber formation as the solution leaves the 
spinneret.  
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Different morphologies can be obtained when spinning a polymer solution; beads, fibers with beads, 
and fibers without beads (homogeneous systems). The fiber morphology is strongly related to instability 
principles such as the Rayleigh-Plateu.11–13 The rheological properties of the system coupled with the 
selected spinning parameters will dictate the influence of various instabilities. In this sense when the 
solution does not possess a critical polymeric chain entanglement, a spraying process will be favored 
thus forming polymer beads or beads-on-strings. On the other extreme, if the entanglement is too high, 
the applied centrifugal force might not be enough to overcome the surface tension of the polymeric 
fluid and will prevent the generation of fibers.12 The fiber morphology, namely diameter and porosity, 
strongly depends on viscosity and surface tension; which in turn intrinsically depend on molecular 
weight and polydispersity of the selected polymer, while extrinsically, the dependence is on the polymer 
concentration within the solution, selected solvent, and additives used to prepare the solution. It has 
been demonstrated that different process parameters would affect fiber formation. In this context, the 
spinneret configuration influences the fiber elongation/orientation, the angular speed greatly affects the 
forces that produce the fiber elongation, 9,11,12,14 the spinneret nozzle-to-collector distance directly 
influences the flight time of the ejected fluid which has an impact on solvent evaporation,6 and the 
environmental conditions (temperature and humidity) affect solvent evaporation rate and fiber surface 
morphology.15,16 

 

In this regard, several reports have been published. For example, Padron et al.9 studied the effect of 
spinneret filling, geometry and orientation of the needle, angular speed, and polymer concentration on 
the ultimate fiber diameter of polyethylene oxide fibers. They concluded that in the FS method, the 
angular speed and polymer concentration were the most significant variables for fiber production. For a 
6 wt.% PEO solution, average fiber diameters of 315 nm and 130 nm were obtained for an angular speed 
of 2500 and 6000 rpm, respectively. Increasing polymer concentration to 10 wt.% increased the fiber 
diameter from 130 to 400 nm for samples spun at 6000 rpm. 

 

Badrossamay et al.11 studied the influence of the nozzle geometry at different angular speeds (4000, 
8000, and 12000 rpm) for poly(L-lactic acid) (PLLA) at concentrations of 4, 6, 8, and 10 wt.%, using 
centrifugal spinning. The authors reported that low polymeric concentrations produced mostly beads; 
meanwhile homogeneous fibers were mainly obtained at 8 wt.%, independently of the selected angular 
speed. Further increasing concentration up to 10 wt.% produced homogeneous fibers only at 12000 
rpm. These behaviors were explained in terms of the degree of entanglement and stability of the 
polymeric fluid. 
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Ren et al.12 worked with mixtures of PLLA and polyvinylpyrrolidone (PVP), and reported the influence of 
polymer concentration (5, 8 y 10 wt.%) and angular speed (3500, 5000, 7000 and 9000 rpm) on the 
morphology and average fiber diameter of the fibers engineered by FS. Homogeneous fibers composed 
entirely of PLLA, were obtained at a polymer concentration of 8 and 10 wt.% at all evaluated speeds, 
except for 3500 rpm. In the case of the polymer blends, it was observed that by increasing the 
concentration of PLLA in the blend, fiber production was facilitated. Following a similar premise, Lu et 
al.14 reported a decrease in fiber diameter at low concentrations of polyacrylonitrile when exposed to 
high angular speed. Conversely, Vasquez et al.17 studied the effect of angular speed and concentration 
of poly(vinyl difluoride) on fiber morphology obtained by FS, and reported that the diameter was not 
significantly altered when changing angular speed from 4000 to 8000 rpm, for polymer concentrations 
of 18 and 21.5 wt.%, respectively. Recently, Serthat et al. 18 reported an optimization study for the 
production of sub-micron fibers of thermoplastic polyurethane (TPU), and identified (among three 
studied variables: nozzle diameter, angular speed, and polymer concentration) that the polymer 
concentration has the greatest effect on fiber diameter, with a contribution of 77.5%.  

 

The production of homogeneous fibers is not a trivial issue as demonstrated by the previously cited 
publications, and in the case of PDLLA there is a lack of background related to centrifugally spun fibers. 
For this reason, this article reports a systematic study to determine the optimum processing parameters 
for obtaining sub-micron PDLLA fibers by means of the FS technique. The opportunity to find optimum 
parameters for the production of PDLLA nonwoven systems will open up the door to further research on 
the potential use of these nonwoven fiber mats as materials for tissue engineering. 

 

2. EXPERIMENTAL SECTION 
 

2.1 Materials 

Poly(D,L-lactic acid) (PDLLA) was purchased from NatureWorks LLC (Ingeo 6362D) with an average 
molecular weight of 160 kg·mol-1 and a polydispersity of 1.65. Chloroform was purchased from Fisher 
Scientific and used as received. 

 

2.2 Preparation of the PDLLA precursory solutions 

In the study reported herein, polymeric solutions were employed to obtain the fibrous materials and 
they were prepared by dissolving the corresponding amount of PDLLA pellets in chloroform11 in order to 
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obtain polymer concentrations of 8, 10, and 12 wt.%. The solutions were magnetically stirred for 22 
hours at room temperature in properly closed glass vials. Before processing the solutions by the 
Forcespinning® technique, rheological studies of the resulting precursory solutions were performed in an 
Anton Paar rheometer (MCR 301) with a cone-plate system (50 mm in diameter, angle of 2° and a gap of 
0.205) at 25°C.19 

 

2.3 Forcespinning® of the PDLLA-based solutions 

The developed solutions were subjected to centrifugal spinning using a Cyclone L-1000M from Fiberio 
Technology Corporation. A cylindrical spinneret equipped with two 30-gauge needles (0.5 inches in 
length), and an eight-pillar collector system positioned 15 cm away from the tip of the needles were 
used. In each run, the spinneret was filled with 2 mL of polymeric solution, and the Forcespinning® 
process was conducted at room temperature (23-25°C and at a relative humidity of 59 ± 9%)9. Two sets 
of materials were engineered, for the optimization, only one Forcespinning® run was carried out, while 
for the mats fabricated under optimal conditions, 7 runs were needed. After collection of the 
centrifuged samples, the samples were placed in an oven at 30°C under vacuum for 24 hours to remove 
solvent residues20. Finally, the obtained mats were stored in plastic bags with desiccant to prevent 
moisture absorption. 

 

As previously described by several authors9,11,12,14, polymer concentration and angular speed have been 
deemed as the parameters that effectively influence the process. Table 1 shows the variables used in 
this study. Fiber yield (ηp) (equation 1) and feasibility of fiber collection (fiber deposition that allows the 
collection of homogenous nonwoven fiber mats) were among other studied parameters. 

Equation 1 estimates the production of fibrous material that can be obtained under the operating 
conditions of the Forcespinning® (𝜼𝜼P). For the calculation, the total solids (quantity of polymer) contained 
in 2 mL (the volume used in each run) of the polymeric solution were taken as the reference; assuming a 
yield of 100% of transformation of the total solids into fibrous material.  

𝜂𝑃 = 𝑊𝑓 
𝑇𝑆
𝑥100         (1) 

where, Wf  and TS are the weight of the collected fiber per run (5 min) and total solids contained in 2 mL 
of solution, respectively. 
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Table 1. Parameters analyzed during the optimization process in the production of centrifugally PDLLA 
spun fibers  

Variables Levels 

Concentration of PDLLA (wt.%)  8 10 12 

Angular Speed ×10-3 (rpm) 4-10 4-10 4-10 

 

2.5 Materials characterization 

Morphological analysis of the obtained materials was performed in a scanning electron microscope 
(Sigma VP, Carl Zeiss). The images were utilized for estimating the average fiber diameter by using the 
software ImageJ version 1.48, 100 fibers were measured per sample taken from at least 20 fibers per 
micrograph and conducting 3 measurements per fiber, thus resulting in 300 measurements. 

The optimized PDLLA mats were further analyzed by means of thermogravimetric analysis (TGA) (TA 
Instruments, Q400) and differential scanning calorimetry (DSC) (TA Instruments, Q200). In the case of 
TGA, the samples were heated from 30°C to 600°C at a heating rate of 10°C/min under N2 atmosphere 
(flow rate = 40 mL/min). In the case of DSC, the samples were subjected to a heating-cooling-heating 
cycle at a heating rate of 10°C/min from -70°C to 200°C. For the sake of comparison, the same thermal 
analyses were carried out for PDLLA pellets (raw material). 

 

3. RESULTS AND DISCUSSION 
 

This section is divided in three sub-sections. The first one (3.1) presents the rheological behavior of the 
developed PDLLA solutions at 8, 10 and 12 wt.%. The second one (3.2) addresses the relation between 
processing parameters and fiber morphology, thus establishing the optimal conditions for the 
fabrication of PDLLA mats. The third section (3.3) focuses on the characterization of the PDLLA mats 
fabricated under the optimum conditions found in 3.2 to produce fibers with ˂ 1 µm diameters. 

 

3.1 Rheological behavior of the developed solutions 

The viscosity of polymer solutions that will be subjected to the spinning process is a key property since it 
can be associated with chain entanglements. In this context, the viscosity of the developed solutions 
with different PDLLA concentration was evaluated as a function of shear rate, and the corresponding 
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values are plotted in Figure 2. PDLLA solutions exhibited negligible changes within the analyzed range of 
shear rate (1-1000 s-1). The usual pseudo-plastic behavior of PDLLA was not observed, the fluid tended 
to be Newtonian, especially for the 8 and 10 wt.% samples, since the systems consisted of diluted 
solutions. It can be observed that the viscosity values increased proportionally with PDLLA concentration 
up to almost one order of magnitude, thus suggesting the formation of chain entanglements. It is 
important to clarify that although the rheological studies presented herein were performed in a range of 
shear rate lower than that applied in a centrifugal spinning equipment, changes in viscosity can be 
neglected given that the PDLLA solutions were Newtonian fluids.  

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2  8 wt%  10 wt%  12 wt%

Vi
sc

os
ity

 (P
a.

s)

Shear Rate (s-1)
 

Figure 2. Viscosity as a function of shear rate and concentration of PDLLA solution (CHCl3 was used as 
the solvent at 25°C). 

 

For the level of chain entanglement of PDLLA in chloroform, the solution entanglements number 
(𝑛𝑒)𝑠𝑜𝑙 , was estimated using equation 2, previously reported by Shenoy et al.13 

(𝑛𝑒)𝑠𝑜𝑙 = ∅𝑝𝑀𝑤

𝑀𝑒
           (2) 

where, Øp  is the volumetric fraction of the polymer, Mw is the weight average molecular weight, and Me 
is the entanglement molecular weight (average molecular weight between entanglement junctions).21 
The value of Me for the PDLLA used in this work was obtained from literature and was equal to 5600 
g·mol-1. 22 The calculated (𝑛𝑒)𝑠𝑜𝑙  values were 2.82, 3.53 and 4.24 for 8, 10 and 12 wt.%, respectively. 
Shenoy et al.13 claimed that in the case of a polymer solution (polymer with a dispersity lower than 2) 
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subjected to electrospinning, there is a critical value of (𝑛𝑒)sol equal to 3.5, above which fibers with 
homogeneous morphology can be obtained. For the case of centrifugally spun polymeric fibers, there is 
no evidence that the same hypothesis applies, if so, only the PDLLA solutions in a concentration higher 
than 10 wt.% would generate homogenous fibers, which will be addressed in a subsequent section. 

 

3.2 Influence of processing parameters on the morphology of PDLLA-based materials 

In order to elucidate the effect of important parameters, namely angular speed and solution 
concentration on the final morphology of the centrifugally engineered PDLLA structures, these were 
analyzed by electron microscopy and the corresponding series of SEM micrographs are depicted in 
Figure 3-5. At first instance, the effect of PDLLA solution concentration on the morphology of the 
obtained materials could be perceived. At 8 wt. % (Figure 3), most of the materials are composed by 
beads and beaded fiber, while samples derived from solutions at 10 and 12 wt.% (Figures 4 and 5, 
respectively) resulted in a more homogeneous fibrous morphology, except for the solution of 10 wt.% 
spun at 4000 rpm. This finding confirms that the (𝑛𝑒)𝑠𝑜𝑙  values, 3.53 and 4.24 for 10 and 12 wt.% 
respectively (see previous section), can roughly predict the critical concentration to produce 
homogeneous polymeric fibers. It is important to note that fiber formation is driven by the intrinsic 
properties of the fluid and the forces that act upon it. At low concentrations, bead formation is expected 
given that as the fluid is ejected through the nozzle, it reaches a critical length and once the solvent 
evaporates it reverts into droplets, and later into beads. This occurs as a result of the surface tension, 
due to the fluid cohesion forces restrict the fluid elongation, confining it to a smaller surface (drops = 
beads) and it is known as the Rayleigh-Plateau instability.23,24 As the level of entanglement increases, the 
jet is more stable and eventually leads to fiber formation upon solvent evaporation. 

 

Figure 3-5 also show the influence of the angular speed on the morphology of the obtained PDLLA 
fibers. Ren et al.12 reported the formation of PLLA fibers produced by centrifugal spinning methods at 
different processing conditions. Their results showed that as the angular speed is increased, the 
centrifugal force is consequently increased, and the resultant force then exceeds the fluid resistance to 
be elongated, thus promoting the formation of homogeneous fibers. In this work, equivalent results 
were found at a PLLA concentration of 8 wt.%, where a significant reduction of beads was observed as 
the angular speed was increased. For the 10 wt.% samples, homogeneous fibers were obtained as the 
speed exceeded 5000 rpm, just as explained by Ren et al.12  

 

8 
 

This article is protected by copyright. All rights reserved.

 10974628, 2019, 22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/app.47643 by T

he U
niversity O

f T
exas R

io G
rande V

allley, W
iley O

nline L
ibrary on [19/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The change in morphology was quantitatively monitored through the fiber diameters, which were 
plotted as box charts in Figure 6 (the box denotes the 50% of diameter population between quartile 1 
(Q1) and quartile 3 (Q3)) and represented in Table 2. The higher concentration of PDLLA (12 wt.%) 
promoted the formation of thicker fibers, ranging in the interval Q1-Q3 from 0.5 to 1.5 µm 
approximately, compared to the fibers obtained using a more diluted solution (10 wt.%) whose values 
were mostly lower that 1 µm. This fact can be explained in terms of the rheological behavior, since 
higher viscosities will require longer relaxation times to fully elongate the ejected fluid.25,26 

 

Furthermore, a strong influence of the angular speed on the fiber diameter was evidenced for the 
materials spun from 10 wt.% solution. As it can be seen in Figure 6 and Table 2, the diameters of the 
interval Q1-Q3 experimented a shift to smaller diameters from 0.436-1.276 to 0.317-0.716 µm for the 
samples spun at 7000 and 9000 rpm, respectively. This result indicates that the centrifugal force 
associated with angular speeds ≥ 8000 rpm was enough to allow the elongation of the polymeric fluid. 
With respect to the materials derived from the 12 wt.% solution, relatively homogeneous fibers were 
obtained through the whole range of speeds without a significant variation in fiber diameter as 
previously noted by Vasquez et al.17 for PVDF fibers. The dissimilar behavior of the PDLLA solutions at 10 
and 12 wt.% can be explained by higher viscous forces (higher chain entanglements) at 12 wt.% than 
those at 10 wt.% thus preserving the diameter of the polymeric jet and consequently the dimensions of 
the resulting fibers, while the lower viscous forces at 10 wt.% enables the thinning of the polymeric jet. 

 

 

Figure 3. SEM micrographs of PDLLA fibers obtained from 8 wt.% solutions centrifugally spun at (a) 4000, 
(b) 5000, (c) 6000, (d) 7000, (e) 8000, (f) 9000 and (g) 10000 rpm (the scale bar is 20 µm).  

b) a) d) c) 

f) e) g) 
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Figure 4. SEM micrographs of PDLLA fibers obtained from 10 wt.% solutions centrifugally spun at (a) 
4000, (b) 5000, (c) 6000, (d) 7000, (e) 8000, (f) 9000 and (g) 10000 rpm (the scale bar is 20 µm). 

 

Figure 5. SEM micrographs of PDLLA fibers obtained from 12 wt.% solutions centrifugally spun at (a) 
4000, (b) 5000, (c) 6000, (d) 7000, (e) 8000, (f) 9000 and (g) 10000 rpm (the scale bar is 20 µm).  

 
Table 2. Morphological and statistical parameters of the homogeneous PDLLA fiber systems obtained by 
centrifugal spinning at different polymer concentrations (10 and 12 wt.%) and angular speeds (5000-
10000 rpm) with their corresponding process yield (ηP). 

 

10 wt.% 12 wt.% 

Angular 
speed (rpm) 

Q1-Q3 

(µm) 
𝐷𝑓���  

(µm) 
𝜼𝜼p 

(%) 
Q1-Q3 

(µm) 
𝐷𝑓���  

(µm) 
𝜼𝜼p 

(%) 

5000 0.34-1.42 1.12±1.16 56.7 0.71-1.56 1.18±0.63 30.4 

b) a) d) c) 

f) e) g) 

b) a) d) c) 

f) e) g) 
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6000 0.39-1.07 0.93±0.87 76.1 0.78-1.40 1.12±0.49 43.6 

7000 0.44-1.28 1.03±0.78 66.3 0.74-1.61 1.18±0.62 54.6 

8000 0.22-0.61 0.55±0.52 60.9 0.70-1.13 0.97±0.39 73.0 

9000 0.32-0.72 0.57±0.38 61.7 0.67-1.19 0.95±0.35 73.7 

10000 0.27-0.50 0.46±0.36 51.4 0.56-1.41 1.10±0.68 68.7 

Q1= quartile 1, Q3= quartile 3 and 𝐷𝑓��� = average fiber diameter. 
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Figure 6. Box charts of PDLLA fiber diameter as a function of angular speed applied to solutions 
containing 10 (a) and 12 (b) wt.% of PDLLA in chloroform. Boxes indicate the interquartile range (IQR) 
between Q1 and Q3, the upper and lower whiskers represent 1.5 times the IQR and the minimum value 
of the distribution, respectively. The horizontal line is the median, the small square inside the box is the 
mean (the average fiber diameter, 𝐷𝑓���� ) and the points next to the box are the dispersion values. 

 

Centrifugally spun PDLLA fibers exhibited another interesting morphological characteristic, which can be 
observed in the SEM micrographs shown in Figure 7. The fibers showed a rough surface along the entire 
structure, and this characteristic was independent of processing conditions. This surface structure is the 
result of using a highly volatile solvent in combination with relatively high atmospheric humidity ca. 60% 
as it has been observed by other authors in fibers obtained by either electrospinning or centrifugal 
spinning.13,16,27 It is noteworthy to mention that the obtained PDLLA fibers have contrasting 
morphologies at the core and its surface. There is no presence of pores in the core of the fibers, as 
corroborated by SEM images from the cross-section of the fibers. Considering the study reported by 
Natarajan et al.28, thermally induced phase separation (TIPS) is the mechanism that can explain the 
aforementioned morphological characteristics of spun PDLLA fibers. The TIPS mechanism is based on the 
phenomenon produced when the temperature is suddenly decreased due to flash solvent evaporation. 
This event leads to a thermodynamic instability of the fluid, inducing phase separation of polymer-rich 
and solvent-rich domains. In addition, the cooling generates water vapor condensation from the air into 
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droplets on the jet surface. Therefore, in the elongation and solidification process the polymer-rich 
domain forms the fiber matrix, whereas the solvent-rich domain and water droplets control the fiber 
surface granting its rough appearance, as pores or small cavities.29,30 

 

 

 

Figure 7. SEM micrographs of PDLLA fibers depicting a rough surface (a-b) and cross-section (c–d), which 
were engineered from a solution of 10 wt.% at 9000 rpm (the scale bar is 1 µm).  

 

The obtained results provide the ideal concentration and angular speed for obtaining PDLLA fibers with 
homogeneous morphology and average diameter lower than 1 µm. PDLLA solutions of 10 wt.% 
subjected to an angular speed ≥ 8000 rpm were prone to generate sub-micron fibers. However, only 
those PDLLA fibers obtained at an angular speed of 9000 rpm were selected for the fabrication of mats 
due to fiber collection feasibility, narrow dispersion of diameter values and higher throughput (61.7%) in 
comparison with the system obtained at 8000 rpm (60.9%) and 10000 rpm (51.4%) (Table 2). It is 
important to emphasize that the mats were manufactured under the selected conditions and 
description established in the experimental section.  
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3.3. Morphological and thermal characterization of mats based on submicron PDLLA fibers 

The engineered PDLLA mats showed homogeneous fibrous morphology under the conditions previously 
selected (see Figure 8). However, the diameters of the interval Q1-Q3 experimented a shift to higher 
values compared with the fibers obtained in the optimization stage, from 0.317-0.715 to 0.355-1.075 
µm. This behavior could be attributed to a slight variation on the centrifugally formed polymer jet 
throughout the seven runs used in this case for obtaining the corresponding mat. The porosity (∅) of 
the mat was calculated using equation 3.29 

∅ = �1 − 𝑚
𝑍∗𝐴∗𝐻∗𝜌

�*100         (3) 

where, m, Z, A, H and ρ, are the mass of the mat, thickness, width, length and density, respectively. The 
∅ value was higher than 90%, thus suggesting that this mat is highly promising for application related to 
tissue engineering.31 

 

Figure 8. SEM images of PDLLA fibers obtained (a) in the form of a mat (7 runs) and (b) in the 
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optimization stage (1 run). The corresponding box charts of fiber diameters are presented on the right 
side (scale bar is 20 µm). 

 

Fundamental thermal properties of PDLLA mats were assessed by TGA and DSC analysis. Figure 9a 
illustrates the thermal degradation pattern of centrifugally spun PDLLA mats and the corresponding bulk 
material (PDLLA pellets). It could be perceived that the fibers had two mass losses, the first one started 
at 62°C and ceased at 96°C, while the second one initiated at 284°C up to 381°C. The mass loss at the 
lower temperature range could be associated with the evaporation of residual solvent (boiling point of 
chloroform = 61°C at 760 mm Hg) and the mass loss at the higher temperature range is attributed to the 
degradation of PDLLA.32 These mass losses are clearly observed in the corresponding derivative TGA 
shown in Figure 9b, in which two peaks are evidenced and can be assigned to the maximum weight loss. 
Conversely, PDLLA in the form of pellets showed only one degradation step which started at higher 
temperature when compared to the PDLLA fibers (ca. 289°C). This delayed degradation could be 
explained in terms of material surface area exposed to the heat source.33 

 

Regarding the thermal transitions of the centrifugally engineered PDLLA mats, DSC thermograms are 
depicted in Figure 10. It could be observed an endothermic transition at 59°C occurring during the first 
heating. This behavior denotes the presence of an ordered phase of polymer chains, which can be 
attributed to the uniaxial stretching of the polymeric fluid produced by the centrifugal force during the 
spinning process. The same behavior was observed for the bulk material, thus suggesting that the tensile 
stress applied during the processing of PDLLA promoted partial alignment of the polymer chains. On the 
other hand, the thermograms of cooling and second heating exhibited the characteristics of an 
amorphous polymer, as expected. Similar results have been reported for fibers production by 
electrospinning,34 melt-spinning35 and wet spinning method.36 
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Figure 9. (a) Degradation patterns derived from TGA of the centrifugally spun PDLLA fibers obtained and 
pellets (bulk), and (b) the corresponding derivative graphs.  
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Figure 10. DSC thermograms derived from one cycle of heating-cooling-heating of PDLLA mat (solid 
lines) and pellets (dashed lines).  

 
4. CONCLUSIONS 

 
It was demonstrated that Forcespinning® is an alternative and straightforward technique to obtain 
PDLLA fibers in the sub-micron regime. The performed experiments showed that polymer concentration 
within the solution and selected angular speed have a strong influence on the morphology of materials 
derived from solutions of PDLLA in chloroform. Structures ranging from beads to homogeneous fibrous 
materials can be obtained. Furthermore, it was possible to establish the conditions under which sub-
micron fibers are obtained; ca concentration of 10 wt.% in a range of angular speed of 8000 to 10000 
rpm. At this concentration the production of homogeneous fibers was attributed to a suitable solution 
entanglement number (ca. 3.5), which was not significantly altered by the angular speed. The obtained 
fibrous materials have suitable morphological features (𝐷𝑓��� ≤ 1 µm, Ø > 90%, homogeneous fibers with a 
uniform surface roughness) for applications in tissue regeneration.  
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