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Irrigation Decisions in Response to
Groundwater Salinity in Kansas

Juhee Lee and Nathan P. Hendricks

Understanding the interaction between groundwater salinity and irrigation decision making has
important implications for groundwater management. Econometrics models were estimated using
observed farmer behavior in response to different groundwater salinity levels in a region of
Kansas. Estimation results demonstrate that farmers in the face of groundwater salinity change
their irrigation decisions on irrigated acreage (i.e., extensive margin), crop choice (i.e., indirect
intensive margin), and water application depth (i.e., direct intensive margin). The empirical results
indicate an overall decrease in water use due to higher salinity, primarily through a decrease at the
extensive margin.

Key words: extensive margin, groundwater salinity, intensive margin, irrigation

Introduction

Many of the most productive agricultural areas of the world, including in the United States, depend
on groundwater. Dependence on groundwater for irrigation has grown rapidly over the last 20–40
years, even in areas with long dry seasons and/or regular droughts. The United Nations Food and
Agriculture Organization (FAO) estimates that more than one-third of the world’s irrigated lands
(303 million hectares) are served by groundwater and that most irrigation in the United States (59%
of its irrigated area) uses groundwater (FAO, 2019).

The value of groundwater depends on the sustainable availability of water that is of suitable
quality and adequate quantity. Much attention has focused on conserving quantity through
management strategies to reduce depletion of groundwater (e.g., Brozović, Sunding, and Zilberman,
2006; Merrill and Guilfoos, 2018; Quintana Ashwell, Peterson, and Hendricks, 2018), yet relatively
little attention has been given to suitable quality. The likely reason for this can be attributed to the
fact that the degradation of groundwater quality—-due to its hydrogeographic position—-takes a
long time to be perceived by users. Even if it is noticeable, there exist difficulties in sampling and
quantifying the change in quality (Suarez, 1989).

Groundwater salinity in irrigated lands is a prominent issue in groundwater quality degradation
and closely aligned to an intrusion of saltwater into freshwater aquifers in the process of pumping
for agricultural production (van Weert, van der Gun, and Reckman, 2009). The natural intrusion of
saltwater is one reason for salinity, but excessive groundwater pumping triggers aquifer depletion
and may also change the intrusion rate or flow patterns of the salinity through alterations in
groundwater head (Rubin, Young, and Buddemeier, 2000). Because groundwater lateral flow is

Juhee Lee (juheel@ucr.edu) is an assistant professor in the School of Earth, Environmental, and Marine Sciences at the
University of Texas Rio Grande Valley and was formerly a postdoctoral scholar in the School of Public Policy at the University
of California, Riverside. Nathan P. Hendricks (nph@ksu.edu) is a professor in the Department of Agricultural Economics at
Kansas State University.
We thank anonymous reviewers and participants at the Agricultural and Applied Economics Association annual meeting for
helpful comments. Thank you also to Don Whittemore for providing the maps of groundwater salinity.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Review coordinated by Dayton M. Lambert.

mailto:juheel@ucr.edu
mailto:nph@ksu.edu
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


Lee and Hendricks Irrigation Decisions in Kansas 617

not instantaneous, an individual farmer’s pumping decisions have the largest impact on saltwater
intrusion at their well, but there is also spillover to neighboring wells. Therefore, farmers face a
private incentive to avoid saltwater intrusion at their well, but the externality on neighboring wells
means that farmers are unlikely to avoid saltwater intrusion in an economically efficient manner.
While farmers have an incentive to reduce pumping to avoid salinity intrusion, there is also an
incentive to increase the water application depth due to a washing effect to flush salts in the soils.
Overall, many effects on farmer irrigation behavior are indeterminate.

Many previous studies have found evidence that elevated salinity adversely affects agricultural
potential by reducing crop yields and increasing costs for salinity control (e.g., Haw, Cocklin, and
Mercer, 2000; Shani and Dudley, 2001; George, Clarke, and English, 2008). The majority of the
existing literature has highlighted crop responses to salinity rather than farmers’ responses—-mainly
in terms of reduction of crop yields. These studies presuppose that farmers make no behavioral
changes to adjust to losses from groundwater salinity. This assumption, however, might overestimate
the damages. The existing literature has also found that irrigation practice, current local hydrological
properties, and the climate were all causes of groundwater salinity (e.g., Scanlon et al., 2007; Foster
et al., 2018).

The limited economic literature examining groundwater salinity has focused on analyzing
salinity control via improved irrigation efficiency and changing cropping pattern using mathematical
programming approaches and calibration of crop-water production functions (e.g., Lee and Howitt,
1996; Heaney, Beare, and Bell, 2001; Schwabe, Kan, and Knapp, 2006). Some related papers have
examined crop choice in the context of water/land environment and irrigation technology changes
(e.g., Lichtenberg, 1989; Wu, Mapp, and Bernardo, 1994), policy or energy prices changes (e.g., Wu
and Segerson, 1995; Pfeiffer and Lin, 2014b), and climate changes (e.g., Fleischer, Mendelsohn,
and Dinar, 2011; Kurukulasuriya and Mendelsohn, 2008), yet few studies addressed groundwater
salinity. There is a lack of econometric studies that estimate how farmers adapt to higher salinity
through changes in irrigation decisions with observed behavior. Quantifying how farmers adapt to
groundwater salinity has direct implications for agricultural stakeholders. These adaptations provide
insights to water managers about what types of policy interventions are most likely to be effective.

Unlike the previous literature, we estimate econometric models using observed farmer behavior
in response to different groundwater salinity levels in south-central Kansas. We analyze responses
in terms of three main irrigation decisions: irrigated acreage, crop choice, and water application
depth. In particular, we observe changes in such decisions in the context of total groundwater use
and decompose them into extensive, indirect intensive, and direct intensive margin effects.

Background and Data Description

To understand how groundwater salinity impacts farmers’ responses, it is necessary to provide
background on the region’s environmental setting. We focus on well-level decision making by
constructing panel data of 1,749 unique wells during 1991–2014 from the High Plains Aquifer
(HPA) in the eastern portion of Big Bend Groundwater Management District No. 5 (GMD5)
underlying the Great Bend Prairie Aquifer of south-central Kansas (Figure 1).

Environmental Setting in GMD5

The eastern portion of GMD5 (outlined with the thick line in Figure 1) shows high salinity
contamination in groundwater. The source of salinity is ascribed to natural saltwater intrusion
from the Permian bedrock into the freshwater aquifer, called the Great Bend Prairie Aquifer. Since
the Great Bend Prairie Aquifer is not effectively separated from the underlying Permian bedrock
containing ancient brine (i.e., halite, known as rock salt, which is composed of sodium chloride in
mineral form), saltwater in the bedrock intrudes freely into the base of the aquifer, then disperses
upward in the aquifer with groundwater flow. As a result, the base of the Great Bend Prairie
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Figure 1. Map of the Kansas Portion of the High Plains Aquifer (HPA) and Study Region
Notes: The hatched lines illustrate the study region.

Aquifer shows a salinity pattern similar to Permian bedrock wells (Buddemeier, Sophocleous, and
Whittemore, 1992).

The source of salinity is in the Permian bedrock, but intensive local pumping causes the water
table to decline (i.e., the surface of the saturated part of the aquifer), leading to the increased
upward movement of saltwater into the base of the aquifer. GMD5 in Kansas, which uses 99% of
pumped groundwater for irrigated agriculture (Pfeiffer and Lin, 2014a) is expected to be particularly
vulnerable to salinity during the growing season.

The slope and permeability of the aquifer results in greater salinity accumulation in the eastern
portion of GMD5. The water table in GMD5 slopes downward from west to east, resulting in a
west-to-east flow of the water. Thus, the depth to the water table (i.e., the distance between the
altitude of the land surface and the altitude of the water table) tends to increase toward the east, and
the eastern part of GMD5 becomes a discharge area for either saltwater or freshwater (Buddemeier,
Sophocleous, and Whittemore, 1992). If the aquifer has a confining layer, then saltwater intrusion
can be blocked. Nearly all rocks and sediments contain pores of diverse size. The fraction of the
pores through which water can flow relative to the total space is called porosity. Porosity depends on
the size of the soil particle—which determines soil texture—and is associated with the permeability
of soils (Nimmo, 2013). That is, clay—which has low porosity and small particles—can hold water
longer than sand—which has high porosity, more easily drained soils with large particles. The
GMD5—which has soils that are sandier and more easily drained than those in other regions—
may be more prone to exposure to saltwater intrusion due to the lack of a confining layer acting as a
saltwater shield.

GMD5’s salinity by natural saltwater intrusion into the freshwater aquifer gives insights to other
regions like Australia, which is a naturally salty continent with limited capacity to drain salt and
water. Since Australia’s salinity is formed from weathering rocks, Australian agriculture is likely to
share similar aspects with GMD5. Given irrigated agriculture is a major human activity often leading
to secondary salinity of water resources in conditions with less water availability, farmers’ responses
to salinity in GMD5 help build a better understanding of other areas facing salinity challenges (e.g.,
California’s Central Valley, other western states, and arid and semi-arid regions worldwide).
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Irrigated Acreage, Crop Proportion, Depth of Water

We construct three dependent variables for three irrigation decisions: (i) the number of total
irrigated acres during the water-use year (i.e., acres_irr in Table S1 in the online supplement, see
www.jareonline.org), (ii) probability of planting each of the crops, and (iii) depth of water applied
conditional on crop choice (i.e., depth_inches in Table S1). These dependent variables are from
a unique database known as the Water Information Management and Analysis System (WIMAS)
administrated by the Kansas Department of Agriculture’s Division of Water Resources (KDA-
DWR) and the Kansas Geological Survey. WIMAS contains spatially referenced information on
groundwater wells or surface water intakes, place of use, authorized quantity, reported water use,
crop type, irrigation system type, along with an identification number and information on each
farmer and the well. Farmers are required by law to report this information to the KDA-DWR
annually. WIMAS does not report the number of acres planted to each crop nor the water applied
to each crop. Because of this, we follow Hendricks and Peterson’s (2012) methodology and simply
assume that if k crops were grown, the proportion for each crop was calculated as 1/k.

Based on this methodology, we identified seven major irrigated crops commonly grown in the
study region. Corn (61.46%), soybeans (20.71%), and multiple crops (16.74%) account for the
majority of the seven major crops, while alfalfa (6.79%), sorghum (3.87%), wheat (6.75%), and
other crops (3.40%) comprise relatively small shares of the observations. “Multiple” is defined as
more than one type of crop, but the specific crops grown were not indicated by farmers. “Other”
is defined as the mixed composition of oats, barley, rye, dry beans, sunflowers, orchard grass, golf
course, truck farm, and nursery. To constitute a more appropriate crop choice, this paper reduces the
choice to four field crops by combining alfalfa, sorghum, and wheat into “other” crops. The four
field crops include corn, soybeans, multiple crops, and other crops.

Groundwater Salinity

Total dissolved solids (TDS), the sum of all the substances dissolved in water, are generally
used to measure of salinity. However, in regions where chloride or sulfate predominate, either
chloride or sulfate concentration can be a better measure of groundwater salinity. GMD5 mainly
displays chloride-type water and hence we use the level of chloride concentration with four salinity
classifications: (i) freshwater (< 500 mg/L), (ii) low to moderate (500–1,000 mg/L), (iii) moderate to
strong (1,000–5,000 mg/L), and (iv) very strong (> 5,000 mg/L). The first level, called freshwater, is
used as the base category. This level appears where there is no salinity or very slight natural saltwater
and does not cause yield losses.

The spatial variation of salinity is obtained from image files displaying maps of chloride contours
for the Permian bedrock, the base, and the upper of the unconsolidated aquifer in the eastern part
of GMD5. These maps of salinity concentrations were updated in 2017 from maps generated in
a previous Kansas Geological Survey report (Whittemore, 1993). The 2017 updated maps were
provided to us via personal communication (D. Whittemore, Kansas Geological Suvey). The base,
which has a salinity pattern similar to the bedrock, is located at the lower part of the aquifer and
has a higher concentration of salt than the upper portion of the aquifer because groundwater with a
greater density due to its salt content naturally sinks toward the bottom.

Our key measure of salinity that impacts farmer behavior is the measure of salinity at the base
of the aquifer. Groundwater wells typically pump from the lower portions, but not necessarily the
base, of the aquifer (Whittemore, 1993). Nevertheless, the degree of salinity in the base should affect
farmers’ pumping decisions because farmers want to avoid intrusion of the salinity into the portion
of the aquifer from which their well pumps (Whittemore, 1993). Pumping more water for irrigation
increases how much salinity moves upward and thereby affects how much salinity is applied to
the cultivated crops and, ultimately, crop yield. Another key advantage of using the salinity in the
base of the aquifer as our measure of salinity is that it is not something the farmer can control

https://www.jareonline.org
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(i.e., it is exogenously determined by natural causes). Salinity of the aquifer in the upper portion is
endogenous because the amount of pumping causes changes of the salinity of the upper portion.

Based on the map of chloride concentrations for the base of the aquifer, we extract attribute
values by georeferencing in ArcGIS and spatially merge the data to the well. Figure S1
illustrates an original image file and a new map by georeferencing for the spatial distribution of
chloride concentrations at a point in time.1 According to Whittemore Whittemore (1993), chloride
concentrations at some sites remained almost constant, some slightly decreased or increased, some
noticeably decreased or increased, while others fluctuated, but most wells overall exhibit constant
salinity over time. Unfortunately, the only map of chloride concentrations available from the Kansas
Geological Survey was for a single point in time, so data availability constrains us from incorporating
changes over time.

Soils, Hydrology, and Weather

In addition to the primary variables of interest—the four salinity levels—we use soil characteristics,
hydrological properties, and weather conditions as control variables that affect irrigation decisions.
Table S2 reports the means and standard deviations for these explanatory variables. Crop prices and
input costs are controlled by including year fixed effects in our regression models.

Soil characteristics are collected from the Soil Survey Geographic (SSURGO) and include soil
organic carbon, bulk density, the proportion of cropland with a pH less than 6 and with a pH greater
than 7.5, root zone available water storage, and the log of slope. These variables were selected based
on the Soil Quality Indicator Sheets from the Natural Resources Conservation Service’s Soil Health
Assessment (US Department of Agriculture, 2019) and are the same variables selected by Hendricks
(2018). Soil organic carbon improves soil structure or fertility by providing energy sources for soil
microorganisms and nutrient availability through mineralization, which promotes plant growth. High
bulk density indicates low soil porosity and soil compaction, which restricts root growth and impedes
the movement of air and water through the soil. Soil pH, a measure of soil acidity or alkalinity, is
an indicator of soil health. Soil pH levels that are too high or too low cause declines in crop yields,
suitability, or plant nutrient availability, resulting in soil health deterioration. For example, if the
pH is less than 6 or greater than 7.5, yields for most crops decrease due to limited availability of
phosphate to plants. Root zone available water storage is plant-available water-holding capacity
at the root zoon depth and supports crop yield potential and stability. The slope of the land affects
crop productivity in relation to soil loss (e.g., soil loss tends to increase with steep slopes). The slope
variable is skewed, with a few fields highly sloped, so we use the log of slope as our control variable.
This specification implies that relative differences in slope matter rather than absolute differences.

For hydrology, we use predevelopment saturated thickness obtained from the Kansas Geological
Survey. Saturated thickness is the distance from the Permian bedrock to the water table, representing
the amount of water available. The current level of saturated thickness is endogenous with
irrigation decisions because areas with more water use have less saturated thickness. Therefore,
we use predevelopment saturated thickness rather than the current saturated thickness to avoid
potential endogeneity issues because predevelopment values are estimated before the withdrawal of
significant amounts of groundwater. In other words, variation in predevelopment saturated thickness
is driven by natural causes rather than irrigation decisions. Saturated thickness can affect water use
in two different ways. First, a larger saturated thickness means that farmers can extract the water at
a faster rate (i.e., a larger well capacity), which is valuable to provide water to crops during seasons
with high crop water demand. Second, a larger saturated thickness means that the distance to the
water table, and therefore the cost of pumping water to the surface, is smaller.

Additionally, we construct January–April and May–August growing season precipitation and
May–August growing season reference evapotranspiration using daily precipitation and maximum

1 The original map, shown in Figure S1, contains eight categories of salinity, but not the particular salinity value for each
point. We condense these eight categories into four categories for our econometric analysis.
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and minimum temperatures from the PRISM climate group to represent well-level weather
conditions. Reference evapotranspiration (ET0) is defined as the loss of water from the soil (i.e.,
evaporation) and crops (i.e., transpiration) of a grass landcover. Therefore, high evapotranspiration
causes both soil and plants to lose water faster, which impacts water use.

We do not include temperature as a separate control because temperature is embedded in the
calculation of ET0. With reference to Allen et al. (1998) and Hendricks (2018), in calculating
reference ET0, a reduced-set Penman–Monteith method that requires only maximum and minimum
temperature is used as an alternative to the full Penman–Monteith method, which demands additional
information on solar radiation, vapor pressure, and wind speed in addition to minimum and
maximum temperature.

Conceptual Model

We consider a farmer’s total water use from a well as a function of groundwater salinity, Si. For
each well i over time t, let IAit(Si) denote irrigated acreage, let Citj(Si) denote the proportion of
irrigated acreage for each of the possible j = 1, . . . ,J crop choices and let Witj(Si) denote water
applications depth per acre (inches per acre) for each of the possible j = 1, . . . ,J crop choices. The
summation of Citj(Si)×Witj(Si) constitutes average water applied per acre. Total water use is derived
by multiplying the irrigated acreage by the average water applied per acre:

(1) TWit︸︷︷︸
total

water use

= IAit (Si)︸ ︷︷ ︸
irrigated
acreage

×
J

∑
j=1

Cit j (Si)︸ ︷︷ ︸
crop

choice

Wit j (Si)︸ ︷︷ ︸
water

application depth︸ ︷︷ ︸
average water applied

per acre

.

Differentiating each component in equation (1) with respect to Si and multiplying by 1/TWit in order
to display the decomposition of the total water use as a percentage change in total water use due to
the salinity gives

∂TWit

∂Si︸ ︷︷ ︸
total

margin

1
TWit

=

[
IA′it

J

∑
j=1

Cit j (Si)Witj (Si)︸ ︷︷ ︸
extensive
margin

+ IAit (Si)
J

∑
j=1

C′it jWit j (Si)︸ ︷︷ ︸
indirect intensive

margin

(2)

+ IAit (Si)
J

∑
j=1

Cit j (Si)W ′it j︸ ︷︷ ︸
direct intensive

margin

]
1

TWit

where primes denote first derivatives. Similar to Hendricks and Peterson’s (2012) definitions, we
refer to the first term in equation (2) as the “extensive margin” effect, the second as the “indirect
intensive margin” effect, and the third as the “direct intensive margin” effect.

The extensive margin effect measures the effect of an incremental expansion in irrigated acreage
holding the crop choice decision, Citj, and water application depth on the crop, Witj, constant. The
indirect intensive margin effect is a change in water application depth per acre through a change
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of crop choice decision, holding total irrigated acres, IAit , and water application depth on the crop,
Witj, constant. The direct intensive margin effect captures a change in water applied per acre through
changes in the water applied on each crop choice, holding total irrigated acres, IAit , and the crop
choice decision, Citj, constant.

Table S3 summarizes the expected sign for each of the marginal effects of an increase in salinity.
Excessive pumping causes aquifer depletion, which leads to salinity intrusion in the upper parts of
the aquifer. Accordingly, an increase in the level of salinity in the base of the aquifer will cause
farmers to avoid future saltwater intrusion into the regions of the aquifer from which water is
extracted. It is also possible that we are capturing the effect of existing salinity on crop productivity.
For example, perhaps farmers irrigate fewer acres in regions with higher salinity because the salinity
has already decreased crop yields.

Farmers may switch their crops due to salinity for one of two reasons. First, farmers may switch
to more salt-tolerant crops to cope with higher salinity levels. Whether the switch in crops increases
or decreases water use depends on whether these salt-tolerant crops are also water-intensive crops.
If farmers switch to more salt-tolerant crops that happen to be less water-intensive, then pumping
decreases. Alternatively, if farmers switch to more salt-tolerant crops that happen to be more water-
intensive, then pumping increases. The second reason farmers may switch crops is to plant less
water-intensive crops to reduce pumping and avoid future salinity intrusion. In summary, the sign of
the effect of salinity on the indirect intensive margin is indeterminate.

The impact of groundwater salinity on water application depth per acre, conditional on crop
choice, is expected to emerge from two different effects. On the one hand, if more water is applied,
then the aquifer becomes more depleted, and salts move from the lower portions of the aquifer into
the higher portions, so that pumping more means that there will be effectively more salinity in the
water. Thus, farmers with greater salinity in the base of the aquifer would be induced to decrease
the irrigation intensity to avoid saline groundwater application, which implies that greater salinity
leads to less irrigation intensity (hereafter called “salinity intrusion effect”). On the other hand, lower
irrigation intensity would lead salts to accumulate in the soil over time. In response to this, one might
expect farmers to increase their irrigation intensity because the application of more water can flush
out the salts in the soils (hereafter called “salinity washing effect”). Consequently, more salinity in
the groundwater could lead to greater irrigation intensity. The overall impact of salinity on intensity
is indeterminant because it comes down to whether the “salinity intrusion effect” or the “salinity
washing effect” is larger.

Econometric Model

To estimate the decomposition for margin effects in equation (2), we exploit three econometric
models, enabling us to accommodate each irrigation decision in response to groundwater salinity.
In each of the models, we exploit cross-sectional variation in salinity in the base of the aquifer that
arises due to natural causes after controlling for other soil, hydrology, and weather characteristics.
Intuitively, our models compare wells that are overlying areas with high salinity in the base of the
aquifer to similar wells overlying areas with low salinity. Our empirical strategy is analogous to that
of Hornbeck and Keskin (2014), who compare outcomes in counties overlying the Ogallala Aquifer
to similar counties nearby.

In panel data, observations within the panel typically share similar characteristics, thereby
accounting for within-cluster correlation of the error term is needed. Not considering within-cluster
dependence can lead to misleadingly narrow confidence intervals, large t-statistics, and low p-values
and can be consequently misleading (Cameron and Miller, 2015). We cluster standard errors by the
well. Standard errors from a spatial HAC (heteroskedastic and autocorrelation consistent) estimator
are substantially smaller than clustering by the well so we choose the simpler and more conservative
cluster standard errors (Cameron and Miller, 2015). Note that the consistency of our coefficient
estimates does not depend on whether we include random effects (Wooldridge, 2010).
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Irrigated Acreage Estimation

The regression model for irrigated acreage is

(3) IAit = α1 + βββ 1SSS′i + γγγ1XXX ′it + θt + εit ,

where IAit are irrigated acres for each well i in year t and SSS′i is a vector of indicator variables
for each salinity category at each well i, as mentioned previously. The matrix XXX ′it is a vector of
controls including soil organic carbon, proportion of cropland with a pH less than 6, proportion
of cropland with a pH greater than 7.5, root zone available water storage, bulk density, the log of
slope, saturated thickness, January–April precipitation, May–August precipitation, and May–August
evapotranspiration. Soil characteristics and predevelopment saturated thickness are time invariant,
but weather is time varying. The vectors βββ 1 and γγγ1 are vectors of parameters to be estimated. The
parameters θt are year fixed effects to estimate a separate parameter (i.e., intercept) for each year;
they capture the effect of macro-level shocks, which affect all wells (e.g., changes in crop prices,
energy prices, and other input prices). The variable εit is an idiosyncratic error term.

Crop Choices Estimation

This section describes the multinomial logit (MNL) model for crop choice, deriving the indirect
intensive margin effect by salinity. The probability of selecting crop j is

(4) Prob(Cit = j) =
exp
(

α
j

2 + βββ
j
2SSS′i + γγγ

j
2XXX ′it + ∑m λ

j
mCit−1,m

)
∑1 exp

(
α l

2 + βββ
l
2SSS′i + γγγ1

2XXX ′it + ∑m λ l
mCit−1,m

) ,
where Prob(Cit = j) is the probability that crop j is selected at the well i in year t. The index j
represents four crop choice decisions—with j = 1,2,3,4 for corn, soybeans, multiple crops, and
other crops, respectively—at different levels of salinity. The descriptions of βββ

j
2SSS′i and γγγ

j
2XXX ′it are the

same as in equation (3) because the controls used for the estimation for the irrigated acreage decision
are likely to have the same effect on the crop choice decision. The variable Cit−1,m is the proportion of
the well planted to each crop in the previous year. The parameters λ

j
m denote a regression coefficient

on each crop, m. The lagged crop choice decision is likely to affect each crop choice decision this
year due to the crop rotation patterns.

Water Application Depth Estimation

This section estimates the two-stage least squares (2SLS) model for water application depth. In
estimating the model of water application depth, one potential econometric issue is that crop choices
may be potentially endogenous due to omitted variables. Intuitively, potential unobserved factors
that cause crop choices can also influence the water application depth decision. Comparing water
use from a well cultivating corn to another well cultivating wheat may not give a reliable estimate
of the difference in water use due to crop choice (Hendricks and Peterson, 2012). Possibly some
unobservable characteristics of the farmer and the well where corn is grown may have corn selected
more often, and therefore more water is applied to corn relative to other crops.

To address the omitted variable bias, we use an instrumental variable estimation approach, using
1-year lagged proportions of each crop choice as the instrumental variable. The instrumental variable
should affect the outcome only via its connection with the endogenous variable. We assume that the
lagged crop choice affects the current crop choice due to crop rotation incentives but that the lagged
crop choice does not directly affect water use in the current year. One concern with this instrumental
variable is that unobserved soil characteristics that are correlated with current crop choice are also
likely correlated with lagged crop choice. This could induce bias in our coefficients on crop choice.
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Importantly, our main coefficients of interest are the coefficients on salinity levels, and any bias on
crop choice coefficients should only impact the indirect intensive margin results.

Also, considering a just-identified model with four endogenous variables instrumented by four
variables, we incorporate conditional crop choices into the 2SLS estimation with the same controls
used in other econometric regression models. Specifically,

(5)

 Wit = α3 + βββ 3SSS′i + γγγ3XXX ′it + ∑ j δ jĈit j + θt + uit · · ·2nd stage

↑
Cit j = α4 + βββ 4S′i + γγγ4XXX ′it + ∑m /0mCit−1,m + θt + nit · · · 1st stage


where the first stage estimates the impact of salinity and other controls on each crop choice decision.

In the first-stage crop choice model, Citj represents the choice of which crop is planted for each
well i in year t from among four choices (i.e., corn, soybeans, multiple crops, other crops). The
products βββ 4SSS′i and γγγ4XXX ′it are the same controls applied in the other econometric regression models
above. The term ∑m /0mCit−1,m represents 1-year lagged proportions of each crop choice and is used
as an instrumental variable to account for endogeneity at the second stage.

Results

The following estimation results support our hypothesis that groundwater salinity causes farmers’
decisions to change. First, we present our results on the change in irrigated acres. Then we show the
impact on crop choice and depth applied. Finally, we combine the results to show the decomposition
of salinity impacts on water use.

Irrigated Acreage Results

Increases in the salinity level cause a reduction in irrigated acreage from each well (Table 1).
Irrigated acreage decreases by 7.8 acres at the low to moderate salinity level compared to freshwater,
18.1 acres at the moderate to strong salinity level, and 10.3 acres at the very strong salinity level.
These results are all statistically significant at either the 1% or 5% level.

In particular, farmers decrease irrigated acreage by 18.1 acres for moderate to strong salinity in
the base of the aquifer (1,000–5,000 mg/L), the level at which the major crops in this region begin
to be affected by salinity, compared to the base category. Specifically, crop yields experience a 10%
yield loss when salinity concentration of the water applied reaches 605 mg/L for corn and 1,815
mg/L for soybeans (see Fipps, 2003). As the biggest reduction, this result implies that salinity in the
base of the aquifer decreases the likelihood of acreage being irrigated since salinity-induced water
quality degradation may cause yield loss, leading to lower farm profitability.

We find that wells with greater predevelopment saturated thickness (i.e., greater access to water
quantity) have larger irrigated acres, as expected. The other controls for soil characteristics and
weather conditions are mostly statistically significant. The significance of soil and weather variables
indicates that we have controlled for heterogeneity unrelated to salinity.

Crop Choice Results

The results in Table 2 indicate how a unit change in the independent variable affects the probability of
each crop choice. Note that the marginal effects for a given variable sum to 0 across crops. Our results
at the salinity level with very strong salinity (> 5,000 mg/L) conform to expectations, showing that
salinity causes a decrease in the acreage allocated to corn by 8.9%, increase in the acreage allocated
to soybeans by 3.6% and multiple crops by 7.6%, and decrease in the acreage allocated to other
crops by 2.4%. The marginal effects in Table 2 for very strong salinity are statistically significant.
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Table 1. Regression Model Estimates of Irrigated Acreage (N = 27,565)
Variables Coefficients
Low to moderate salinity: 500–1,000 mg/La −7.8487∗∗

(3.4783)

Moderate to strong salinity: 1,000–5,000 mg/La −18.0520∗∗∗

(3.7371)

Very strong salinity: > 5,000 mg/La −10.3458∗∗

(4.2419)

Soil organic carbon in 0–150 cm depth (kg/m2) −0.0034∗∗∗

(0.0008)

pH < 6 20.8806∗∗

(9.2507)

pH > 7.5 −18.7007∗∗∗

(7.0542)

Root zone available water storage (mm) 0.4026∗∗∗

(0.0614)

Bulk density (g/cm3) −74.3734
(46.5760)

Predevelopment saturated thickness (ft) 0.2516∗∗∗

(0.0385)

Log of slope (%) 2.7761∗∗

(1.2978)

January–April growing season precipitation (mm) 0.0580∗∗

(0.0277)

May–August growing season precipitation (mm) 0.0182∗∗∗

(0.0064)

May–August growing season evapotranspiration (mm) 0.8025∗∗∗

(0.1515)

Constant −425.4112∗∗∗

(127.7887)

Year fixed effects Yes
R2 0.1073

Notes: The dependent variable is irrigated acreage (ac). Single, double, and triple asterisks (*, **, ***) indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Robust standard errors clustered at the well level are reported in
parentheses.
a The four salinity levels are measured in chloride concentration. The base category for chloride concentration (< 500 mg/L)
indicates “freshwater” for groundwater.

These results suggest that farmers facing salinity tend to substitute away from salt-sensitive corn and
other crops while switching to salt-tolerant soybeans and multiple crops (see Rhoades, Kandiah, and
Mashali, 1992). Overall, the coefficients in low to moderate and moderate to strong salinity levels
are statistically insignificant, indicating that farmers may not be attracted to switching crops because
those levels do not significantly affect yield loss.

Another interesting result comes from the coefficient on multiple crops, indicated by significant
coefficients at all salinity levels, which implies that these multiple crops are more likely to be planted
in the presence of salinity, compared to the other crops as the base category. This, in large measure,
may show that farmers prefer a change from corn or soybeans with the single crop composition
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Table 2. Marginal Effects on the Probability of Crop Choices from the Multinomial Logit
Regression Model Estimates (N = 17,570)

Marginal Effects

Variables Corn Soybeans
Multiple

Crops
Other
Crops

Low to moderate salinity: 500–1,000 mg/La 0.0141 −0.0040 0.0218∗ −0.0320∗∗

(0.0156) (0.0117) (0.0107) (0.0107)

Moderate to strong salinity: 1,000–5,000 mg/La 0.0127 −0.0128 0.0244∗ −0.0243
(0.0185) (0.0125) (0.0109) (0.0134)

Very strong salinity: > 5,000 mg/La −0.0885∗∗∗ 0.0364∗ 0.0757∗∗∗ −0.0236
(0.0207) (0.0154) (0.0169) (0.0157)

Soil organic carbon in 0–150 cm depth (kg/m2) 0.0000 0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0000)

pH < 6 0.0520 −0.0272 0.0024 −0.0272
(0.0384) (0.0275) (0.0197) (0.0328)

pH < 7.5 0.0902∗∗ −0.0138 0.0382∗ −0.1146∗∗∗

(0.0322) (0.0225) (0.0172) (0.0271)

Root zone available water storage (mm) 0.0009∗∗ −0.0004∗ −0.0002 −0.0003
(0.0003) (0.0002) (0.0002) (0.0002)

Bulk density (g/cm3) −0.3001 0.1287 0.1155 0.0559
(0.2428) (0.1597) (0.1263) (0.1708)

Predevelopment saturated thickness (ft) 0.0041∗∗∗ −0.0005∗∗∗ −0.0004∗∗∗ −0.0006∗∗∗

(0.0002) (0.0001) (0.0001) (0.0001)

Log of slope (%) 0.0053 0.0062 0.0006 −0.0122∗∗

(0.0066) (0.0048) (0.0042) (0.0043)

January–April growing season precipitations (mm) 0.0004 −0.0005∗∗ 0.0001 0.0001
(0.0003) (0.0002) (0.0002) (0.0002)

May–August growing season precipitations (mm) −0.0001 0.0002∗∗∗ 0.0000 −0.0001
(0.0001) (0.0001) (0.0001) (0.0001)

May–August growing season evapotranspiration (mm) −0.0006 0.0001 0.0007 −0.0002
(0.0008) (0.0006) (0.0005) (0.0006)

One-year lagged crop choice for corn 0.3528∗∗∗ −0.0586∗∗∗ −0.3384∗∗∗ 0.0443∗∗

(0.0195) (0.0109) (0.0116) (0.0141)

One-year lagged crop choice for soybeans 0.3784∗∗∗ −0.0634∗∗∗ −0.2613∗∗∗ −0.0536∗∗

(0.0201) (0.0133) (0.0138) (0.0188)

One-year lagged crop choice for multiple crops 0.1212∗∗∗ 0.2235∗∗∗ −0.2410∗∗∗ −0.1037∗∗∗

(0.0215) (0.0120) (0.0110) (0.0191)

Year fixed effects Yes Yes Yes Yes

Notes: The dependent variable is the probability of planting each of the crops. Marginal effects are from the multinomial
logit model for crop choices. The category of “Other crops” is used as the base category. “Multiple” means multiple crops
were grown, but not which crops were grown. “Other” are mixed composition of oats, barley, rye, dry beans, sunflowers,
golf course, truck farm, orchard, and nursery, wheat. The pseudo-R2 value of this model is 0.20. Single, double, and triple
asterisks (*, **, ***) indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Robust standard errors
clustered at the well level are reported in parentheses.
a The four salinity levels are measured in chloride concentration. The base category for chloride concentration (< 500 mg/L)
indicates “freshwater” for groundwater.
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Table 3. Two-Stage Least Squares Regression Model Estimates of Water Application Depth
(N = 19,881)

Variables Coefficients
Low to moderate salinity: 500–1,000 mg/La −0.0510

(0.2067)

Moderate to strong salinity: 1,000–5,000 mg/La −0.4380∗∗

(0.2067)

Very strong salinity: > 5,000 mg/La 0.1535
(0.2716)

Soil organic carbon in 0–150 cm depth (kg/m2) −0.0002∗∗∗

(0.0000)

pH < 6 0.0732
(0.5477)

pH < 7.5 0.9202∗∗∗

(0.3442)

Root zone available water storage (mm) 0.0032
(0.0039)

Bulk density (g/cm3) −6.0793∗∗

(2.6360)

Predevelopment saturated thickness (ft) −0.0021
(0.0025)

Log of slope (%) 0.2508∗∗∗

(0.0929)

January–April growing season precipitations (mm) −0.0013
(0.0022)

May–August growing season precipitations (mm) −0.0078∗∗∗

(0.0006)

May–August growing season evapotranspiration (mm) 0.0323∗∗∗

(0.0085)

Corn 3.4170∗∗∗

(0.7109)

Soybeans 4.4373∗∗∗

(1.2477)

Multiple crops 2.3505∗∗∗

(0.5546)

Constant 1.5682
(7.1123)

Year fixed effects Yes
R2 0.2552

Notes: The dependent variable is depth of water applied (in inches), conditional on crop choice. First-stage F-statistics are
484.59 for corn, 121.86 for soybean, and 206.50 for multiple crops. These are all larger than the rule-of-thumb value of 10
suggested by Staiger and Stock (1997). Single, double, and triple asterisks (*, **, ***) indicate statistical significance at the
10%, 5%, and 1% levels, respectively. Robust standard errors clustered at the well level are reported in parentheses.
a The four salinity levels are measured in chloride concentration. The base category for chloride concentration (< 500 mg/L)
indicates “freshwater” for groundwater.
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to multiple crops with mixed crop composition. Farmers may also lower the risk of salinity by
diversifying the crop composition.

Several of the marginal effects of characteristics for soil, hydrology, and weather are significant.
As expected, results indicate that wells with greater predevelopment saturated thickness and
available water storage in the soil are more likely to be planted with corn.

The marginal effects of the coefficients on the lagged crop choices are all statistically significant
at either the 1% or 5% level despite their different statistical signs. We find that planting corn in the
previous year increases the probability of planting corn in the current year by 35.3% and other crops
by 4.4%, compared to the case when other crops were planted in the previous year. Planting corn
in the previous year also decreases the probability of planting soybeans by 5.9% and multiple crops
by 33.8%, compared to previously planting other crops. Planting soybeans in the previous year
increases the probability of planting corn in the current year by 37.8% but decreases the acreage
allocated to all other alternatives (i.e., 6.3% decrease for soybeans, 26.1% for multiple crops, and
5.4% for other crops).

Water Application Depth Conditional on Crop Choice Results

Table 3 presents parameter estimates from the 2SLS model for water application depth. We have
hypothesized that there are two potentially opposing effects on water application depth per acre:
intrusion effect and washing effect. The intrusion effect would lower irrigation intensity to avoid
increasing water salinity, while the washing effect would increase irrigation intensity to wash salinity
out of the root zone.

Reduction in water application depth is most pronounced at the moderate to strong salinity level
(1,000–5,000 mg/L). At this level, salinity reduces irrigated groundwater application by 0.4 inches
relative to the base category of freshwater. This reflects that the salinity intrusion effect dominates the
washing effect. The effect is not statistically significant at the low to moderate salinity level (500–
1,000 mg/L), possibly because salinity at this level does not lead to crop yield loss; accordingly,
there may be minimal need to adjust water application depth to reduce intrusion or to increase the
washing effect. At the highest levels of salinity (> 5,000 mg/L), the effect is statistically insignificant,
potentially because the intrusion and washing effects are roughly the same magnitude at a higher
level of salinity.

The coefficients for water demand conditional on the choice of crop indicate that soybeans use
the most water in this region, followed by corn and multiple crops. Also, crop choice results in the
previous section indicated that farmers tend to switch from corn to soybeans, which are more salt
tolerant, as salinity increases. Considering these two results together implies that farmers switch to
more salt-tolerant crops that happen to be more water intensive, leading to increased pumping.

Weather controls all have the expected signs. An increase in precipitation during the May–
August growing season results in a decrease in depth applied and an increase in evapotranspiration
demand increases depth applied. Less water is applied to wells with a high bulk density since the
soil is less permeable to absorb water when bulk density is larger. More water is also applied to wells
with greater slope.

Marginal Effect Decomposition Results

Table 4 reports total marginal effect of an increase in the groundwater salinity decomposed into
the extensive and intensive margins measured in acre-inches, acre-feet, and the relative impact.
We compute each decomposed component using coefficients and predicted values from each
econometric model in Tables 1–3, according to equation (2).

The extensive margin effect shows that farmers reduce irrigated acres in the face of groundwater
salinity and the result is statistically significant. The indirect intensive margin effect shows that
farmers increase water use due to groundwater salinity through switching to more salt-tolerant
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Table 4. Total Margin Effect and Decomposition into Extensive, Indirect Intensive, and Direct
Intensive Margin Effects

Margin Effects Extensive
Indirect
Intensive

Direct
Intensive Total

Low to moderate salinity: 500–1,000 mg/L
Measured in inches −100.4628∗∗ 8.6447 −5.3887 −97.2068∗∗

(42.7553) (5.3603) (22.0922) (49.0433)

Measured in acre-feet −8.3719∗∗ 0.7204 −0.4491 −8.1006∗∗

(3.5629) (0.4467) (1.8410) (4.0869)

Measured in relative impact −0.0740∗∗ 0.0064 −0.0040 −0.0716∗∗

(0.0315) (0.0039) (0.0163) (0.0361)

Moderate to strong salinity: 1,000–5,000 mg/L
Measured in inches −231.0650∗∗∗ 4.6262 −46.2598∗∗ −272.6985∗∗∗

(49.5855) (6.1222) (21.2415) (56.2060)

Measured in acre-feet −19.2554∗∗∗ 0.3855 −3.8550∗∗ −22.7249∗∗∗

(4.1321) (0.5102) (1.7701) (4.6838)

Measured in relative impact −0.1703∗∗∗ 0.0034 −0.0341∗∗ −0.2009∗∗∗

(0.0365) (0.0045) (0.0157) (0.0414)

Very strong salinity: > 5,000 mg/L
Measured in inches −132.4258∗∗ 3.9298 16.2156 −112.2804∗

(57.9772) (11.8844) (27.7702) (67.4128)

Measured in acre-feet −11.0355∗∗ 0.3275 1.3513 −9.3567∗

(4.8314) (0.9904) (2.3142) (5.6177)

Measured in relative impact −0.0976∗∗ 0.0029 0.0119 −0.0827∗

(0.0427) (0.0088) (0.0205) (0.0497)

Notes: Single, double, and triple asterisks (*, **, ***) indicate statistical significance at the 10%, 5%, and 1% levels,
respectively. Robust standard errors clustered at the well level are reported in parentheses. Robust standard errors are
estimated using a cluster bootstrap with 400 replications.

crops that happen to be more water-intensive. Yet the indirect intensive margin is not statistically
significant. The direct intensive margin effect at the moderate to strong salinity level (1,000–5,000
mg/L) shows a statistically significant decrease in water use, indicating that farmers in the face
of groundwater salinity respond by reducing water application depth to avoid inducing saltwater
intrusion.

The estimated total margin effect of salinity at the low to moderate salinity level (500-1,000
mg/L) illustrates that salinity of this level reduces total water use by 97.2 acre-inches (8.1 acre-feet)
relative to a well with access to freshwater. Average water use in the sample period was 1,357.1
acre-inches (113.1 acre-feet), so the relative impact is a 7.2% decrease in water use compared to
freshwater. The total margin effect of salinity at the moderate to strong salinity level (1,000–5,000
mg/L) indicates that salinity at this level reduces total water use by 272.7 acre-inches (22.7 acre-
feet) relative to a well with access to freshwater. The relative impact is a 20.1% decrease in water
use compared to freshwater. The estimated total margin effect of salinity at very strong salinity
(> 5,000 mg/L) demonstrates that salinity of this level reduces total water use by 112.3 acre-inches
(9.4 acre-feet) relative to a well with access to freshwater. The relative impact is an 8.3% decrease
in water use compared to freshwater.

Farmers facing salinity challenges primarily change their water use through changes at the
extensive rather than at the intensive margin. At the low to moderate salinity level (500–1,000 mg/L),
farmers reduce water use by 7.4% at the extensive margin, with a total decrease in water use of 7.2%
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compared to freshwater. At the moderate to strong salinity level (1,000–5,000 mg/L), farmers reduce
water use by 17.0% at the extensive margin, with a total decrease in water use of 20.1%. Similarly,
the extensive margin dominates the reduction in water use when the groundwater is very strong
salinity.

In general, where farmers face water availability constraints, high water usage, or water quality
degradation, farmers reduce water use by lowering irrigation water applications or irrigated acreage
and shifting to less water-intensive crops (Schwabe, Kan, and Knapp, 2006; Drysdale and Hendricks,
2018; Gollehon, Quinby, and Aillery, 2003). Among these mechanisms, reducing irrigated acreage
can fundamentally reduce water consumption. That said, the reduction in irrigated acreage reduces
the need for irrigation water itself. Foster, Brozović, and Butler (2014) support this by finding
that farmers reduce irrigated acreage rather than water use intensity once well capacities become
sufficiently constraining (i.e., a constraint in water quantity). Our estimates show that farmers adjust
mostly at the extensive margin to reduce the amount of water extracted to avoid inducing intrusion
of salt into the upper aquifer, which would harm water quality.

We provide two different robustness checks in the online supplement. First, we exclude crop
controls from the depth applied equation (Tables S4 and S5). This allows us to avoid using lagged
crop choice as an instrument but only allows us to estimate an overall intensive margin effect rather
than direct and indirect intensive margin effects. Overall, the results are similar when excluding
crop choice so none of our main results are affected by potential endogeneity of lagged crop choice.
Second, we show results when we model the effect of salinity on total water in a reduced form model
(Table S6). Impacts on total water use are similar to the results reported in Table 4.

Conclusions

Farmers face difficult decisions, such as whether and how much to irrigate, what to plant, and how
much water to apply. Multiple factors can influence this decision making, including the natural
environment, water supply, global markets, and government programs. Our study tests the hypothesis
that groundwater salinity may be an important driver of farmers’ irrigation decision making. To test
this hypothesis, we estimate econometric models using observed farmer behavior in response to
different groundwater salinity levels based on well-level panel data in south-central Kansas.

There are a couple of limitations of our study that are important to acknowledge. First, we
measure salinity at the base of the aquifer rather than in the upper portions of the aquifer to
avoid endogeneity problems where irrigation decisions impact salinity concentrations. Therefore,
the concentration levels do not reflect the concentration levels of water actually being pumped
for irrigation. These same salinity concentration levels would likely have much larger impacts on
irrigation decisions if they were naturally occurring in the upper portions of the aquifer. Second,
our estimates likely suffer from attenuation bias due to measurement error in salinity. The salinity
measures are interpolated so they are not a perfect measure at each well. Therefore, we are likely to
underestimate (i.e., bias toward zero) the impact of salinity concentrations on irrigation decisions.

Our results support the hypothesis that farmers in the face of groundwater salinity change their
decisions on irrigated acreage, crop choice, and water application depth. We find that farmers reduce
water use along the extensive margin by reducing irrigated acres in response to groundwater salinity.
Farmers increase water use along the indirect intensive margin by switching to more salt-tolerant
crops that happen to be more water intensive, though the effect is small and statistically insignificant.
Farmers decrease water use along the direct intensive margin by reducing water application depth
conditional on the same crops to avoid inducing saltwater intrusion. This result shows that the
salinity intrusion effect dominates the salinity washing effect. The overall impact of an increase
in salinity is a decrease in water use, predominantly through changes at the extensive margin.

There are at least a few important implications of our result that farmers adjust their irrigation
behavior to reduce saltwater intrusion. First, our results suggest that there are likely economic
gains from coordinated management to reduce salinity intrusion. The fact that farmers adjust their
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behavior to avoid intrusion is evidence that there are economic costs of salinity intrusion. Slow
lateral flows of the aquifer create private incentives to reduce intrusion and our results indicate that
these private incentives are large enough to affect irrigation behavior. However, we also know from
hydrology that salinity intrusion will eventually affect nearby farmers as well. If farmers are only
acting independently to mitigate intrusion, then they are likely to exert too little effort due to the
classic free-rider problem arising from sharing a common aquifer. Therefore, our results support
policy initiatives that would reduce water use to reduce salinity intrusion. Estimating the magnitude
of the economic benefits of coordinated management is an important topic for future research.

Second, our results indicate that these policy initiatives should focus on either reducing total
water use or reducing water use at the extensive margin. One approach is to support local
governance approaches that limit total water use (see Drysdale and Hendricks, 2018). However,
local governance has had only limited success in Kansas (Perez-Quesada and Hendricks, 2021).
Government intervention has tended instead to focus on incentivizing technologies to reduce
irrigation intensity (Pfeiffer and Lin, 2014a; Li and Zhao, 2018) or water right retirement (Tsvetanov
and Earnhart, 2020; Manning et al., 2020). Our results indicate that water right retirement to reduce
irrigated acres would be a more cost-effective approach since this is how farmers mostly respond to
the private incentives.

Third, our results indicate that policy makers and researchers should increase their emphasis on
water quality and not just water quantity in the High Plains Aquifer. There is a need for greater
data collection on salinity conditions (Stanton et al., 2017). There is also a need for more research
to quantify the economic impacts of salinity and optimal management approaches to achieving
sustainability in terms of both quantity and quality.

[First submitted January 2021; accepted for publication August 2021.]
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Table S1. Mean and Standard Deviation for Dependent Variables 

 Dependent Variables Mean SD 

Irrigated acreage 

Irrigated acres (ac) i.e., acres_irr  105.4714 52.0769 

Proportion for corn  0.5036 0.4817 
   
Proportion for soybeans  0.1713 0.3521 

    

    

Crop choice 

Proportion for multiple crops  0.1379 0.3448 
   
Proportion for other crops  0.1873 0.3623 

    

    

Water application 
depth 

Volume of water applied measured in acre-feet 
(ac-ft) i.e., af_used  

113.0883 72.3639 

Depth of water applied measured in feet (ft) 
i.e., depth_feet = (af_used/acres_irr) 

1.0694 0.4278 

Depth of water applied measured in inches (in) 
i.e., depth_inches = (af_used/acres_irr)*12 

12.8333 5.1335 

  

 
*The material contained herein is supplementary to the article named in the title and published in the Journal 
of Agricultural and Resource Economics (JARE). 
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 
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Table S2. Mean and Standard Deviation for Explanatory Variables 

                                 Explanatory Variables  Mean SD 

Four salinity 
levelsa  

Freshwater: <500 (mg/L) 0.6324 0.4821 
Low to moderate salinity: 500-1,000 (mg/L) 0.1354 0.3421 
Moderate to strong salinity: 1,000-5,000 (mg/L) 0.1421 0.3492 
Very strong salinity: >5,000 (mg/L) 0.0901 0.2863 

    
    

Soil  
characteristics 

Soil Organic Carbon in 0‐150 cm depth (kg/m2) 6541.4460 2653.9180 
pH less than 6 0.0351 0.1466 
pH greater than 7.5 0.1265 0.2431 
Root zone available water storage (mm) 206.5541 32.4031 
Bulk density (g/cm3) 1.5294 0.0348 
Log of slop (%) 0.5385 1.0110 

    
    
Hydrological 
properties Predevelopment saturated thickness (ft) 128.8869 34.2058 

    
    

Weather 
conditions 

January-April growing season precipitations 
(mm) 

154.5996 60.5895 

May-August growing season precipitations 
(mm) 

389.0493 123.9330 

May-August growing season evapotranspiration 
(mm) 

655.1060 38.2282 

Notes: a The four salinity levels are measured in chloride concentration. The base category for chloride 
concentration (< 500 mg/L) indicates “freshwater” for groundwater. 
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Table S3. Expected Effects on Farmer Behavior in response to Groundwater Salinity 

Margin of Adjustment Expected Effects 

Irrigated  
acreage 

Extensive 
(negative sign) 

More pumping causes more depletion of the 
aquifer, thereby increasing saltwater intrusion 
from the lower portions of the aquifer into the 
higher portions of the aquifer, leading to 
greater salinity of water that is extracted from 
the aquifer. Consequently, farmers seek to 
reduce irrigated acres to reduce pumping that 
leads to intrusion.  

   
   

Crop  
choice 

Indirect Intensive 
(negative sign) 
 
or 
 

Farmers switch to more salt-tolerant crops that 
happen to be less water-intensive, leading to 
reduced pumping, or farmers switch to less 
water-intensive crops to reduce salinity 
intrusion. 

Indirect Intensive 
(positive sign) 

Farmers switch to more salt-tolerant crops that 
happen to be more water-intensive, leading to 
increased pumping. 

   
   

Water 
application depth 

Direct Intensive 
(negative sign) 
“Salinity intrusion 
effect” 
 
or 

More pumping causes more depletion of the 
aquifer, thereby increasing saltwater intrusion 
from the lower portions of the aquifer into the 
higher portions of the aquifer. This gives an 
incentive to reduce water application to avoid 
increasing water salinity.  

Direct Intensive 
(positive sign) 
“Salinity washing 
effect” 

Increasing irrigation intensity can flush the 
salts out of the soil and prevent the 
accumulation of salts in the soil over time.  
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Original image Newly georeferenced map 
 

 
 

 

 

 
 

Figure S1. Maps displaying chloride contours for the base of the unconsolidated aquifer in 
the eastern part of GMD5 
Notes: Points on the map denote groundwater points of diversion. 
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S1. Robustness check - excluding crop choice  

In our main specification, the lagged crop choice variables are included in the crop choice model 
and they are also included as instruments for crop choice in the model with depth applied as the 
dependent variable. A concern is that endogeneity of the lagged crop choice could bias our 
estimates. Unfortunately, finding a good instrument can be very difficult. As we mentioned in the 
manuscript, lagged crop choice is a strong. Conley et al. (2012) note that bias can be smaller when 
using an instrument with a strong first-stage that has some violation of the exclusion restriction. 
Hence, we think lagged crop choice is the best available option to measure the salinity impact for 
water application depth conditional on crop choice.  

To check the robustness of our results, another approach that we explore is to not explicitly 
model crop choice as a function of salinity. In other words, we estimate how salinity impacts 
irrigated acres and depth applied but do not include crop choice as a control so we do not need to 
use lagged crop choice as an instrument. This alternative approach allows us to estimate the 
extensive margin, the overall intensive margin, and the total effect of salinity. However, it does 
not allow us to estimate how much of the intensive margin was due to changes in crop choice.  

Total water use when excluding crop choice is defined as:  
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Differentiating each component in equation (S1) with respect to 𝑆! and multiplying by 1 𝑇𝑊!"⁄ 	in 
order to display the decomposition of the total water use as a percent change in total water use 
due to the salinity gives: 
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Table S4 shows the regression coefficients for the depth applied equation that does not 
include crop choice as control variable. Table S5 shows the decomposition of the marginal effects. 
In general, the results in Table S5 are similar to the results from the main manuscript. Therefore, 
even though there could be some concerns about endogeneity of lagged crop choices, it does not 
have any substantial effect on our main conclusions from the study. 
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Table S4. Regression Model Estimates of Water Application Depth when 
Excluding Crop Choice Controls 

Variables Coefficients 
Low to moderate salinity: 500-1,000 (mg/L)a -0.3935* 
 (0.2247) 
Moderate to strong salinity: 1,000-5,000 (mg/L)a -0.6111*** 
 (0.2080) 
Very strong salinity: >5,000 (mg/L)a -0.2188 
 (0.2751) 
Soil Organic Carbon in 0‐150 cm depth (kg/m2) -0.0002*** 
 (0.0000) 
pH less than 6 -0.0905 
 (0.5964) 
pH greater than 7.5 0.6726* 
 (0.3506) 
Root zone available water storage (mm) 0.0051 
 (0.0038) 
Bulk density (g/cm3) -6.8706** 
 (2.8643) 
Predevelopment saturated thickness (ft) 0.0016 
 (0.0023) 
Log of slope (%) 0.2208** 
 (0.1003) 
January-April growing season precipitations (mm) -0.0000 
 (0.0022) 
May-August growing season precipitations (mm) -0.0082*** 
 (0.0006) 
May-August growing season evapotranspiration (mm) 0.0298*** 
 (0.0092) 
Constant 8.7875 
 (7.7773) 
Year fixed effects Yes 
R2 0.2200 
Observations 23,577 

Notes: Single, double, and triple asterisks (*, **, ***) indicate statistical significance at the 10%, 5%, and 
1% levels, respectively. Robust standard errors clustered at the well level are reported in parentheses. The 
dependent variable is depth of water applied (in inches).  
a The four salinity levels are measured in chloride concentration. The base category for chloride 
concentration (< 500 mg/L) indicates “freshwater” for groundwater.  
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Table S5. Total Margin Effect and Decomposition into Extensive and Overall Indirect 
Intensive Margin Effects when Excluding Crop Choice 

Salinity Levels Margin Effects Extensive Intensive Total 

Low to Moderate 
500-1,000 (mg/L)  

Measured in Inches -100.2350*** -41.5590* -141.794*** 

 (31.1800) (21.3680) (45.2480) 
Measured in Acre-Feet -8.3529*** -3.4633* -11.8162*** 

 (2.5983) (1.7807) (3.7707) 
Measured in Relative Impact -0.0739*** -0.0306* -0.1045*** 

 (0.0230) (0.0157) (0.0333) 

     

Moderate to Strong 
1,000-5,000 (mg/L) 
 

Measured in Inches  -230.541*** -64.543** -295.0840*** 
 (73.1160) (26.1000) (78.4480) 

Measured in Acre-Feet -19.2118*** -5.3786** -24.5903*** 
 (6.0930) (2.1750) (6.5373) 

Measured in Relative Impact -0.1699*** -0.0476** -0.2174*** 
 (0.0539) (0.0192) (0.0578) 

     

Very Strong 
>5,000 (mg/L) 
 

Measured in Inches  -132.126*** -23.1110 -155.2370*** 

 (36.612) (20.9690) (50.2480) 
Measured in Acre-Feet -11.0105*** -1.9259 -12.9364*** 

 (3.0510) (1.7474) (4.1873) 
Measured in Relative Impact -0.0974*** -0.0170 -0.1144*** 

 (0.0270) (0.0155) (0.0370) 
Notes: Single, double, and triple asterisks (*, **, ***) indicate statistical significance at the 10%, 5%, and 
1% levels, respectively. Robust standard errors clustered at the well level are reported in parentheses. 
Robust standard errors are estimated using a cluster booststrap with 400 replications. 

S2. Robustness Check – Modeling Total Water Use 

Table S6 shows the result of a regression model where the dependent variable is the total water 
application depth measured in acre-feet. The effect on total water use in acre-feet compared to 
freshwater is as follows: -12.001 for low to moderate salinity, -23.612 for moderate to strong 
salinity, and -12.171 for very strong salinity (>5,000 mg/L), respectively. These results are similar 
to the total marginal effect in acre-feet in table 4 in the main paper.  Therefore, we confirm that 
the impact of salinity is similar when using a reduced-form model for total water use. 
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Table S6. Regression Model Estimates of Total Water Use 

Variables Coefficients 
Low to moderate salinity: 500-1,000 (mg/L)a -12.0006*** 
 (4.2246) 
Moderate to strong salinity: 1,000-5,000 (mg/L)a -23.6123*** 
 (4.4304) 
Very strong salinity: >5,000 (mg/L)a -12.1706** 
 (5.0977) 
Soil Organic Carbon in 0‐150 cm depth (kg/m2) -0.0052*** 
 (0.0009) 
pH less than 6 19.7199* 
 (11.0421) 
pH greater than 7.5 -13.1640* 
 (7.9697) 
Root zone available water storage (mm) 0.4569*** 
 (0.0695) 
Bulk density (g/cm3) -131.4137** 
 (55.5146) 
Predevelopment saturated thickness (ft) 0.2502*** 
 (0.0463) 
Log of slope (%) 5.2477*** 
 (1.6043) 
January-April growing season precipitations (mm) 0.0494 
 (0.0352) 
May-August growing season precipitations (mm) -0.0520*** 
 (0.0083) 
May-August growing season evapotranspiration (mm) 1.1513*** 
 (0.1770) 
Constant -516.0866*** 
 (147.8875) 
  
Year fixed effects Yes 
R2 0.1700 
Observations 27,565 

Notes: Single, double, and triple asterisks (*, **, ***) indicate statistical significance at the 10%, 5%, and 
1% levels, respectively. Robust standard errors clustered at the well level are reported in parentheses. The 
dependent variable is total water use measured in acre-feet. 
b The four salinity levels are measured in chloride concentration. The base category for chloride 
concentration (< 500 mg/L) indicates “freshwater” for groundwater. 
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