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Abstract

Over the past decade, there has been a change in the epidemiology of oral cavity squamous cell 

cancer (OC-SCC). Many new cases of OC-SCC lack the recognized risk factors of smoking, 

alcohol and human papilloma virus. The aim of this study was to determine if the oral microbiome 

may be associated with OC-SCC in nonsmoking HPV negative patients. We compared the oral 

microbiome of HPV-negative nonsmoker OC-SCC( n=18), premalignant lesions(PML) (n=8) and 

normal control patients (n=12). Their oral microbiome was sampled by oral wash and defined by 

16S rRNA gene sequencing. We report that the periodontal pathogens Fusobacterium, Prevotella, 
Alloprevotella were enriched while commensal Streptococcus depleted in OC-SCC. Based on the 

four genera plus a marker genus Veillonella for PML, we classified the oral microbiome into two 

types. Gene/pathway analysis revealed a progressive increase of genes encoding HSP90 and 

ligands for TLRs 1, 2 and 4 along the controls→PML→OC-SCC progression sequence. Our 
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findings suggest an association between periodontal pathogens and OC-SCC in non smoking HPV 

negative patients.
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Microbiome; oral cavity squamous cell carcinoma; periodontal pathogens; leukoplakia; risk factor; 
nonsmoking; Fusobacterium; Streptococcus

Introduction

Smoking and alcohol are the two main risk factors for oral cancer. Other factors are also 

implicated in the aetiology of squamous cell head and neck cancer such as poor oral 

hygiene1–6, diet, viruses, occupational agents, pollutants, genetic influences, but few case-

controlled epidemiological studies have been carried out. Since 1990, there has been a 

steady increase in oral cancer in patients in the USA who do not smoke7. Despite a decline 

in the prevalence of cigarette smoking in the USA since 1975 (from ~40% to 20%) the 

incidence of oral cancer has remained virtually unchanged 8. The prevalence of heavy 

alcohol consumption in the USA has only slightly increased from 7% to 8.2% between 2005 

and 20129. Oral SCC can be divided into oropharyngeal SCC and oral cavity SCC (OC-

SCC). The prevalence of oropharyngeal SCC related to high-risk human papillomaviruses 

(HPV) has increased from 40.5% in 2000 to 72.2% in 201010. The recognition of HPV 

etiology in oropharyngeal SCC has improved the clinical outcomes and led to specific 

prevention for HPV infection by vaccination. In contrast, the prevalence of HPV in OC-SCC 

is unclear and greatly varied across multiple studies with an average of 23.3% 11. Thus, a 

significant proportion of newly diagnosed OC-SCC in the USA have no known risk factor. It 

is possible that this may be directly related to poor oral hygiene. There are now several 

studies showing an association between poor oral hygiene and oral cancer. These studies 

show an association with infrequent tooth brushing, gum bleeding and periodontitis1–6. Poor 

oral hygiene will result in a change in the oral microbiome of such patients. Very recently, 

several studies reported alteration of microbiome in oral cancer 12–14. However, the 

significance of many of the studies associating the oral microbiome with OC-SCC remains 

unclear due to the lack of statistical correction for false discoveries associated with multiple 

comparisons, heterogeneous patient population with mixed oropharyngeal and OC-SCC, and 

no control for important confounding risk factors for OC-SCC. In our study, we have 

compared the oral microbiome in negative controls, in nonsmoking patients with oral 

premalignant lesions and nonsmoking patients with OC-SCC who lack HPV infection.

Methods

Supplementary methods are shown in supplementary material.

Human subjects.

A case-control study was approved by the Institutional Review Board of Memorial Sloan 

Kettering Cancer Center (IRB 15–256). Written informed consent was obtained from each 

participant. All participants had no recent history of using tobacco products, including 27 
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who never smoked and 11 ex-smokers who have not smoked for at least 11 years (average 

21 years, range 11–38 years). Alcohol consumption was defined according to the previously 

described criteria15, with four participants across both cases and controls classified as heavy 

drinkers (Supplementary Table S1). The cases included two groups: oral cavity squamous 

cell carcinoma (OC-SCC) and premalignant lesions (PML) based on histopathological 

examination. All premalignant lesions had leukoplakia with dysplasia confirmed on 

pathological analysis. The negative controls comprised patients with thyroid nodules (benign 

or malignant). These patients were deemed to be a representative “normal” population 

because they attended our head and neck clinics and had received a complete head and neck 

examination including flexible laryngoscopy or mirror laryngoscopy of the laryngopharynx 

to show no evidence for oral cavity pathology. All these patients have been followed and no 

patient has developed any oral cancer. All patients with OC-SCC were negative for high risk 

HPV infection. This was determined by negative staining by p16 immunohistochemistry. 

p16 immunohistochemistry is now used as the surrogate marker for high risk HPV infection. 

Pathological stage of OC-SCC was determined by histopathological examination at the time 

of surgical resection (Supplementary Table S1). All oral rinse specimens were taken prior to 

surgical resection of the oral cavity cancer or premalignanat lesion. Patients were followed 

for up to 22.2 months or until death for recurrence.

Oral sample collection and processing.

To sample the oral microbiome, the participants rinsed the mouth vigorously with 10 ml 

sterile saline for 30 seconds and spit, and bacteria were recovered from the rinse liquid by 

centrifugation at 3,220g for 20min. The pellets were transferred into 2ml tube and stored at 

−80° freezer for further study.

Detection of HPV in patients with OC-SCC.

All patients with OC-SCC were negative for high risk HPV infection as evaluated using 

immunohistochemical stain for p16INK4a expression in tumor cells and PCR using HPV 

specific primers in all the saliva samples. 16.

DNA extraction and 16S rRNA gene library preparation.

Total genomic DNA was extracted from the specimens using a modified QIAGEN DNA 

extraction method (QIAGEN, Germantown, MD), as previously described17. From the 

extracted DNA, the V3 and V4 regions of bacterial16S rRNA genes were amplified using 

the primer set 347F 5′-GGAGGCAGCAGTRRGGAAT and 803R 5′-
CTACCRGGGTATCTAATCC, which we previously designed18. PCR reactions were carried 

out as previously described17. PCR products were purified using Agencourt AMPure XP 

(Beckman Coulter Life Sciences, IN) and quantified using Qubit 2.0 Fluorometer (Life 

Technologies, CA). Amplicon libraries were pooled at equimolar concentrations and 

sequenced on 454 FLX platform. Two types of negative controls were included to detect 

exogenous contamination: (i) Template negative controls (PCR reaction without DNA 

template) along with the samples while constructing 16S PCR amplicon libraries; (ii) 

Specimen-negative controls (use PBS in lieu of a human specimen) along with the samples 

while extracting DNA from the human samples.
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Taxonomic classification.

Using the QIIME pipeline19, reads were demultiplexed and filtered using default parameters 

with quality score ≤25. The sequences were grouped into operational taxonomic units 

(OTUs) and were classified to taxonomic levels from the phylum to genus levels. OTUs that 

were unclassifiable to specific taxa at these levels were excluded from further analysis 

(Table S4).

α-and β-diversities.

α-diversities (within subject diversity) were calculated by Monte Carlo permutations using 

compare_alpha_diversity.py, a built-in function in the QIIME pipeline, which included taxa 

observed, taxa predicted (Chao1), and Shannon with richness and evenness indices. 

Variation in alpha-diversity measures among three phenotypes were tested using ANOVA 

and between two phenotypes by t-test. β-diversity (between-subject diversity) was analyzed 

using weighted and unweighted UniFrac distances matrices, visualized in principal 

coordinate plots20, statistically tested Adonis test from a built-in function in the QIIME 

pipeline.

Taxonomic analysis of differences between diseases and control.

Comparisons among and between the case control groups were mainly performed at the 

genus level. To reduce false discoveries due to noise, genera with very low abundance 

(<0.01%) were excluded from the comparisons (Table S4). The algorithm random forest 

(RF) was used as a feature selection model, which classifies the three case control groups by 

constructing 2,000 of decision tress by randomly sampling genera in the samples as 

predicators21. Out-of-bag (OOB) error rate from RF was used to rank the importance of 

genera22. To identify the most predictive genera alone or in combination and avoid model 

bias, Support Vector Machine (SVM) was applied as a classification model23. Leave-one-out 

error of SVM was calculated and classification accuracy (one minus “leave-one-out error”) 

was used as the criteria to choose optimal combination of genera leading to maximal 

accuracy24. We put all combinations of top 10 important genera estimated by RF as features 

into SVM and calculated their classification accuracy. Finally, we identified the 

combinations achieving the peak accuracy. All these analyses were performed in 

MATLAB_R2017a. All genera that led to peak classification accuracy were selected for 

statistical comparisons among and between the case control groups while those caused 

reduction in the accuracy after the peak were excluded. Comparison of median relative 

abundance of a particular taxon among the three case control groups was done with 

nonparametric Kruskal Wallis test and between two groups with Mann-Whitney U test. The 

change in abundance of a taxon along the sequence of negative controls→PML→OC-SCC 

was analyzed using Jonckheere’s trend test25, 26. All statistical tests were two-sided, with a p 
value <0.05 considered of nominal statistical significance. A false discovery rate (FDR)-

adjusted p value (q value) <0.10 was used as the threshold for significance, as previously 

described27, after adjustment for multiple comparisons for Kruskal Wallis test and Mann-

Whitney U test in the follow up analysis. All statistical tests were conducted using R version 

3.2.1.
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Classification of bacterial communities into microbiome types by cluster analysis.

The bacterial communities sampled were classified into microbiome types based on 

community structures determined by genera composition and their relative abundances. 

Using genera that were significantly different among the three case control groups, a 

Euclidean metrics between all possible pairs of samples were calculated and used to cluster 

the samples by Ward’s linkage algorithm. Major clusters generated were termed microbiome 

types. The significance of the association between the microbiome types and the disease 

states was evaluated by two-tailed Fisher’s exact test.

Microbial network analysis and visualization.

Networks among genera were determined by correlation analysis28. A correlation matrix 

was generated by calculating the pairwise Spearman’s rank correlations between all genera 

whose average relative abundance was higher than 0.01% across all samples, plus the three 

disease states. To allow quantitative correlation with bacterial genera, negative controls was 

weighted as 0, PML as 1 and OC-SCC as 2. Two genera were considered statistically 

correlated if the absolute value of correlation coefficient was >0.3 and the p value was 

<0.05. The network included primary genera that directly correlated to the disease states and 

secondary genera correlated to the primary genera. Correlation analyses and matrix were 

generated in R environment by corrplot29, igraph30 and Hmisc31 packages. Visualization of 

the network was performed in the platform of Gephi32.

Prediction of functional difference of oral microbiome in diseases and controls.

The functional potentials of the oral microbiome were inferred from the taxonomic 

compositions determined by the 16S rRNA gene survey using PICRUSt (v1.1.1)33. 

Operational taxonomic units (OTUs) were picked through closed-reference against the 

Greengenes (v13.5) at the 97% identity to create an OUT. The OUT 16S abundance was first 

normalized to the genome abundance using the “normalize_by_copy_number.py” command 

in the PICRUSt and metagenomics functions were then predicted according to the Kyoto 

Encyclopedia of Genes and Genome (KEGG) Orthology (KO)34, 35 by the 

“predict_metagenomes.py” command in PICRUSt. One sample was excluded as its large 

Nearest Sequenced Taxon Index value was >0.15, representing low accuracy of the predicted 

KEGG groups. q value was adjusted by Benjamini–Hochberg FDR multiple test36.

Results

To search for new risk factors of OC-SCC in nonsmokers, we conducted a case control study 

with 18 cases of OC-SCC, 8 cases of PML and 12 negative controls. The cases and the 

controls differed significantly by age but not by sex and race (Supplementary Table S1). All 

participants never smoked or were free of tobacco use for at least 11 years. Groups varied 

but did not statistically differ in alcohol consumption. All cancer patients were negative for 

high risk HPV. Their oral microbiome was sampled by oral wash and defined by 16S rRNA 

gene sequencing. This assay of the oral microbiome identified 12 phyla, 21 classes, 35 

orders, 66 families, 116 genera and 172 species.
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Oral microbiome is globally altered in OC-SCC.

We first assessed α-diversity of the oral microbiome and found that no significant difference 

of the disease groups from the control, as measured by observed OTUs; both Chao1 estimate 

for total species richness, and Shannon diversity index for both richness and evenness 

showed p>0.05 (Supplementary Table S2). In contrast, β-diversity by principal coordinates 

analysis revealed an overall separation among the three groups (Supplementary Table S3) 

(Figure 1A) using weighted UniFrac distance metrics 37. Follow-up tests indicated that the 

differences were significant between OC-SCC and controls (Figure 1A) but not between 

PML and negative controls or between OC-SCC and PML. These findings suggest that the 

global alteration of the oral microbiome was due to changes in the abundance of certain taxa 

in OC-SCC.

Periodontal pathogens were enriched and commensal bacteria depleted along the 
sequence of controls→PML→OC-SCC regardless of status of heavy alcohol consumption.

To identify major bacterial taxa that were responsible for the global alteration of the oral 

microbiome , we filtered out very low abundant (<0.01%) genera from the dataset 

(Supplementary Table S4) and ranked the remaining 50 genera by the importance in 

discriminating the three groups using the algorithm Random Forest21. With the importance 

rank, we evaluated the maximum classification accuracy (MCA) achieved by selecting the 

optimal combination of the top ten most important genera using Support Vector Machine 

method. We achieved a maximal 73.7% classification accuracy among all three groups with 

six genera including Prevotella, Alloprevotella, Veillonella, Actinomyces, Kingella, and 

TG5. We further performed statistical analyses to compare their relative abundance among 

the three groups with Kruskal-Wallis test followed by correction for false discovery by 

Benjamini–Hochberg procedure36. Alloprevotella was the only genus significantly different 

among the three groups (Supplementary Table S5).

In pairwise analyses, we achieved 95% MCA between controls and PML with five genera, 

90% MCA between negative control and OC-SCC with seven genera, and 88.5% MCA 

between PML and OC-SCC with three genera (Supplementary Table S5). Follow-up testing 

with Mann-Whitney U test revealed five genera statistically different between the controls 

and disease groups but none between the PML and OC-SCC groups after FDR adjustment 

(Figure 1B). Specifically, Fusobacterium (3.15% vs. 1.37%) and Veillonella (14.86% vs. 

5.72%) were significantly more abundant in PML than in negative controls while 

Alloprevotella (2.31% vs. 0.13%), Fusobacterium (3.88% vs. 1.37%), and Prevotella 
(14.01% vs. 6.21%) were significantly more abundant and Streptococcus (18.09% vs. 

34.63%) less abundant in OC-SCC than in controls (Supplementary Table S5). All the 

statistical conclusions remained unchanged after adjustment for alcohol use and age in linear 

regression models except Streptococcus whose enrichment in OC-SCC depended on age but 

not alcohol consumption (Supplementary Table S6).

In trend analyses, three of the five genera, all being periodontal pathogens, were 

progressively enriched along the sequence of controls→PML→OC-SCC, including 

Prevotella (6.21%→13.61%→14.01%), Alloprevotella (0.13%→1.50%→2.31%), and 
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Fusobacterium (median 1.37%→3.15%→3.88%) while commensal Streptococcus 
(34.63%→22.30%→18.09%) progressively decreased along the sequence (Figure 1C).

In PCA, reduction of all 50 genera to only the five genera resulted in a better separation 

among controls, PML, and OC-SCC (Figure 1D) and between the controls and OC-SCC 

(Figure 1D) but not between the controls and PML.

Samples of oral microbiome can be classified into two microbiome types .

Based on relative abundance of the five genera which differentiate the disease states, 

samples of the oral microbiome can be clustered into two distinct groups (Figure 2A), which 

we termed periodontal pathogen-low (PPL) and periodontal pathogen-high (PPH) types of 

microbiome, respectively. The two microbiome types were well separated on PCA (Figure 

2B) using weighted UniFrac distance metrics. The PPL microbiome was characterized by 

higher abundant Streptococcus (median 38.67% vs. 18.72%), while the PPH microbiome by 

higher abundance of the three periodontal pathogens (23.31% vs. 6.26%) including 

Prevotella (16.81% vs. 4.50%), Fusobacterium (4.34% vs. 1.64%), and Alloprevotella 
(2.16% vs. 0.12%) (Figure 2C). Additionally, Veillonella (10.93% vs. 3.11%) was also 

significantly higher in the PPH microbiome. The microbiome in the large majority (66.67%, 

8/12) of the control samples was classified as the PPL microbiome, while 88.46% (23/26) of 

the diseased samples (7/8 of PML samples and 16/18 OC-SCC samples) as the PPH 

microbiome (Odds ratio: 15.33, 95% Confidence Intervals: 2.80–83.89, p=0.0011, Fisher 

exact test, two tailed) (Figure 2D).

Periodontal pathogens and nonpathogens were collaborative among themselves but 
inhibitive to each other.

To explore the relationships among bacteria in the oral microbiome, we performed network 

analysis between the disease states and the 50 genera in the oral microbiome using pairwise 

Spearman’s rank correlations with r>0.3 and p<0.05 considered significant (Figure 3A). To 

allow quantitative correlation of the disease states with the relative abundances of microbes, 

we weighted the control as 0, PML as 1, and OC-SCC as 2. The network formed under these 

conditions was composed of 11 known periodontal pathogens (Fusobacterium, Prevotella, 
Alloprevotella, Camplylobacter, Parviomonas, Peptostreptococcus, Porphyromonas, 
Tannerella, Enterococcus, Selenomonas, and Dialister) and 11 nonpathogens based on the 

recent classification of periodontal pathogens38. The disease states were directly correlated 

to four primary genera, including three positive (collaborative) connections to periodontal 

pathogens Fusobacterium, Prevotella, and Alloprevotella, and one negative (inhibitive) 

connection to commensal bacterium Streptococcus. Each of the four primary genera formed 

a cluster by networking with several secondary genera. Among the four clusters, the 11 

connections between the Streptococcus cluster and the three pathogen clusters were all 

inhibitive while all 5 connections among the three pathogen clusters were collaborative. 

Overall, of a total of 33 connections, 19 were collaborative while 14 were inhibitive. 84.21% 

(16/19) of the collaborative connections were between two pathogens (n=13) or between two 

non-pathogens (n=3) while 92.86% (13/14) of the inhibitive connections were between a 

pathogen and a nonpathogen (p=0.000013, Fisher exact test, two tailed). Promoted by the 

significant association of periodontal pathogens with the disease states, we combined all 14 
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periodontal pathogens found in the samples and found a progressive increase in their relative 

abundance along the sequence of controls-PML-OC-SCC (median 

9.96%→20.90%→27.84%). Pairwise comparison showed that periodontal pathogens were 

more abundant in OC-SCC than in controls (Figure 3B).

Proinflammatory pathways were progressively enriched along the controls→PML→OC-
SCC sequence.

To explore functional differences among the three groups, we deduced microbial gene 

contents in the samples from 16S rRNA gene profiles using PICRUSt33. To minimize false 

discovery, we only concentrated on the genes whose abundance showed progressive changes 

along the controls→PML→OC-SCC sequence by Jonckheere trend test with r value >0.3 

and q value <0.1 after adjustment for multiple comparisons. Overall, 132 KEGG proteins 

met these criteria, representing 102 different pathways (KO_C) and 34 processes (KO_B) 

and 7 biological categories (KO_A) (Supplementary Table S7). In particular, genes encoding 

heat shock protein 90 (HSP90) and ligands for Toll Like Receptor 1 (TLR1) (lipoproteins: 

pal, bamD) and enzymes for synthesis of ligands for TLR2 (peptidoglycans: amiA/B/C, 

vanX, mltD/dniR, mrdA) and TLR4 (lipopolysaccharides, LPS: lpxA, lpxB, lpxC, lpxD, 

lpxK, kdsA, kdsD/F, kdtA/waaA) were progressively enriched along the disease sequence 

(Figure 4A). Prevotella was the major contributor to the enrichment of these 

proinflammatory genes, with additional significant contributions from Alloprevotella, 

Fusobacterium, Veillonella, and Porphyromonas.

Capnocytophaga was associated with recurrence of OC-SCC.

In the 18 patients with OC-SCC, cancer recurred in 10 patients after resection. 

Capnocytophaga, a putative periodontal pathogen, was significantly more abundant in 

patients with recurrence (median 1.54% vs. 0.27%) (Figure 4B). In contrast, no taxa were 

associated with primary tumor stage, lymph node metastasis, or remote metastasis.

Discussion

Increased data indicating the association of the microbiome with cancer has triggered 

interest in the analysis of the oral microbiome in oral cancer 39. A recent study by Lee et al 

reported a significant difference in bacterial genera between premalignant lesions and oral 

cancer with 5 genera Bacillus, Enterococcus, Parvimonas, Peptostreptococus and Slackia 40. 

Another recent study by Hsiao et al also reported an association between 3 species of 

periodontopathogenic bacteria Prevotella tannerae, Fusobacterium nucleatum, Prevotella 
intermedia and oral cancer risk 41. This study showed the association was correlated to 

increased use of cigarette smoking, betal quid use and also poor oral hygiene. However, 

these studies did not specifically examine changes in the microbiome in patients who did not 

smoke. As many host factors may confound microbiome changes, we specifically minimized 

the impact of tobacco use and HPV by enrolling only HPV-negative nonsmokers in this 

study. In addition, because the oropharyngeal subtype of oral cancer is mostly caused by 

high-risk HPV, we designed our study to focus only on the oral cavity subtype of oral cancer 

OC-SCC in which the large majority is unrelated to HPV infection. To eliminate false 

discoveries, we statistically corrected false discoveries in multiple statistical comparisons. 
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We found that the oral microbiome was globally altered in patients with OC-SCC due to 

enrichment of periodontal pathogens Fusobacterium, Prevotella, Alloprevotella and 

depletion of commensal Streptococcus in OC-SCC. In addition, Fusobacterium, and 

Veillonella were more abundant in PML than in controls. Further analysis demonstrated 

these changes were independent of alcohol consumption despite age as a confounding factor 

for the depletion of Streptococcus. Based on these marker genera, the oral microbiome can 

be classified into two types of microbiome, periodontal pathogen-low and periodontal 

pathogen-high. This classification had >80% accuracy in predicting PML and OSC-SCC. 

Beyond the three periodontal pathogens, the combined abundance for all 14 periodontal 

pathogens found in the samples progressively increased along the sequence of negative 

controls-PML-OC-SCC sequence and the pathogens were approximately three times as 

abundant in OC-SCC as in negative controls. Network analysis revealed collaborative 

relationships among the periodontal pathogens or among commensals per se but inhibitive 

relationships between pathogens and commensals. These findings consistently suggest 

periodontal pathogens are an independent risk factor in subjects lacking major risks of OC-

SCC.

Periodontal pathogens are well known for their ability to cause chronic inflammation in 

periodontitis. To explore potential mechanisms, we deduced microbial gene and pathway 

contents based on 16S rRNA genes found in the samples. Overall, the microbiome showed a 

progressive enrichment of genes encoding HSP90A and ligands for TLR1 (lipoproteins) and 

enzymes for synthesis of ligands for TLR2 (peptidoglycans) and TLR4 (LPS) along the 

disease sequence. Periodontal pathogens were the major source for the enrichment of these 

genes. HSP90 is a new target for cancer therapy because it regulates a variety of cellular 

processes and many of its client proteins are oncogenic drivers that can regulate tumor 

intrinsic pathways, steroid hormone signaling, immunity and inflammation 42. Because 

HSP90 functions in a highly conserved macromolecular complex in eukaryotes 43, whether 

bacterial HSP90 is able to interfere with the interaction between human HSP90 and its 

clients needs to be experimentally evaluated. TLRs are a type of pattern recognition receptor 

and recognize molecules that are broadly shared by pathogens including bacterial 

lipoproteins, peptidoglycans, and LPS. Activation of TLRs causes production of 

inflammatory cytokines via activation of NFκB. While triggering TLRs 5 and 9 promotes 

oral cancer growth, the roles of TLR1, 2, and 4 in OC-SCC have not been sufficiently 

studied44. A recent study by Hsiao et al, reported that a strong association between 3 species 

of periodontopathogenic bacteria: Prevotella tannerae, Fusobacterium Nucleatum, Prevotella 
intermedia and oral cancer risk41. However, this association was not present in patients who 

had genetic polymorphisms in TLR2 and TL4R suggesting these polymorphisms were 

protective to patients by inducing less inflammation. Further evidence for the association 

between inflammation induced by bacteria and the development of oral cancer was increased 

levels of salivary IL1β, an inflammatory cytokine found in the patients with these 3 bacterial 

species. These recent reports along with our own findings open new avenues to explore 

whether inflammation cause OC-SCC or play a secondary role in enhancing its malignancy.

The association of Capnocytophaga with OC-SCC recurrence is a novel finding. The median 

abundance of Capnocytophaga was 5.62 fold higher in patients with recurrence of OC-SCC 

after tumor resection than in controls. Capnocytophaga is an opportunistic pathogen 

Ganly et al. Page 9

Int J Cancer. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



following pet bites45 and a putative periodontal pathogen46. However, knowledge about its 

pathogenesis is very limited.

Our study is not without its limitations. Our sample size of the oral cavity and premalignant 

cohorts is small and therefore our results should be corroborated on a larger group of 

patients. Although our control cohort had no evidence of PML or OC-SCC it is possible that 

these patients may have a different oral hygiene habit to patients with PML or OC-SCC and 

therefore differences in the microbiome identified may be due to the differences in the oral 

hygiene of our patients. Unfortunately we did not have any data on the oral hygiene of our 

patients and this would need to be addressed in future studies. We have assumed that all 

cases of PML and OC-SCC do not harbor high risk HPV infection based upon p16 

immunohistochemistry which is used as a surrogate marker for HPV related oropharyngeal 

cancer. However, it is possible that in oral cancer, p16 immunohistochemistry may not be 

quite as reliable as in oropharyngeal cancer as a marker for HPV positivity. This was 

recently suggested in a report by Lechner et al47. We also used 16S rRNA gene sequencing 

of the V3 and V4 regions of bacterial16S rRNA genes to identify the bacteria in the oral 

rinse specimens. New next generation sequencing techniques using metagenomics analysis 

of WGS sequences generated by lllumina HiSeq are now available which can give a more 

comprehensive identification of bacteria in oral rinse specimens.

Our study has important public health implications. Pre-diagnostic bacteria informative of 

risk of OCSCC, if identified, could potentially be used in clinical practice for more efficient 

screening and early detection of OCSCC. Furthermore, these patients could be treated with 

antibiotics or probiotic agents to prevent cancer. Specific bacteria types could also be 

incorporated into an existing vaccine to extend the spectrum of protection to include 

prevention of OCSCC.

In conclusion, our findings suggest periodontal pathogens are associated with OC-SCC in 

patients who lack risk factors of HPV and smoking. Microbiome-mediated inflammation 

may be responsible for OC-SCC in these patients. Our study does suggest that further 

studies are needed to determine whether bacterial HSP90 or TLR ligands contribute to OC-

SCC.
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Novelty and Impact:

Our findings are novel because they suggest that in patients who lack the major risk 

factors of oral cancer, periodontal pathogens are an independent risk factor. Our study 

suggests microbiome-mediated inflammation may contribute to the development of oral 

cancer possibly through HSP90 or triggering TLRs. Our study has important public 

health implications for more efficient screening and early detection of OCSCC. Such 

patients could be treated with antibiotics or probiotic agents to prevent cancer.
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Figure 1. Selection of bacterial genera as markers to differentiate among and between negative 
controls, oral PML and oral cavity squamous cell carcinoma (OC-SCC).
Initial analysis was done with all genera by principal coordinate analysis for the global 

differences of microbiome with weighted UniFrac distances matrices. Comparisons were 

made among negative control, oral PML, and OC-SCC, between negative controls and OC-

SCC (A). P values were calculated by Adonis test. Selective analyses were based on relative 

abundance of five genera (Prevotella, Veillonella, Fusobacterium, Alloprevotella, and 

Streptococcus) selected by Random Forest coupled with Support Vector Machine and 

statistical tests with Kruskal Wallis test for difference among three groups and Mann-

Whitney test between two groups (B), Jonckheere trend test for trend (C) and principal 

coordinate analysis with weighted UniFrac distances matrices among the five genera (D). P 
value is marked with * if <0.1, ** if <0.05, or *** if <0.01 after FDR-adjustment.
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Figure 2. Classification of bacterial communities into microbiome types and their correlation 
with diseases.
The bacterial communities sampled were classified into two microbiome types based on the 

relative abundance of five genera informative of disease status as determined by statistical 

analyses, including Prevotella, Veillonella, Fusobacterium, Alloprevotella, and 

Streptococcus. A Euclidean metrics between all possible pairs of samples were calculated 

and used to cluster the samples by Ward’s linkage algorithm (A). Major clusters generated 

were termed periodontal pathogen-low (PPL) and periodontal pathogen-high (PPH) types of 

microbiome, respectively. Separation between the two types of microbiome was further 

analyzed by principal coordinate analysis with weighted UniFrac distances matrices with p 
values calculated by Adonis (B). Correlation of the microbiome types with diseases was 

evaluated using taxonomic analysis by Mann-Whitney test (C) and two tailed Fisher exact 

test (D). P value is marked with * if <0.1, ** if <0.05, or *** if <0.01 after FDR-adjustment.
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Figure 3. Co-occurrence/avoidance network among major genera in the oral microbiome and 
their correlations with disease states.
The four large nodes are genera that directly correlated with the disease states and the 

termini show genera that indirectly correlated with the disease states through the four genera 

(A). Connecting lines represent strong (r>0.3) and significant (p<0.05) correlations. Red 

lines indicate a positive (collaborative) correlation while blue lines indicate a negative 

(inhibitive) correlation. The thickness of a connection line is in proportion to the r value in 

Spearman’s correlation coefficient. Known periodontal pathogens are bold-faced. Difference 

among negative controls, PML, and OC-SCC in the combined relative abundance of all 

periodontal pathogens were analyzed by with Kruskal Wallis test for difference among the 

three case control groups and Mann-Whitney test between two groups (B). Trend of changes 

in the combined relative abundance of all 14 periodontal pathogens found in the samples 

along the negative controls(NC)→PML→OC-SCC sequence was analyzed by Jonckheere 

trend test.
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Figure 4. Progressive enrichment of proinflammatory genes/pathways along the sequence of 
negative controls→PML→OC-SCC and enrichment of Capnocytophaga in patients with OC-
SCC.
Microbial gene contents in the samples were deduced from 16S rRNA gene profiles using 

PICRUSt (A). A gene shown is specified by name and KEGG ID. Relative abundance of 

each gene was stratified to source genera by color codes. Difference between patients with 

and without recurrence of OC-SCC after tumor resection was shown in relation to the 

relative abundance of Capnocytophaga (B). P value is marked with * if <0.1 or ** if <0.05 

after FDR-adjustment.
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