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Cordycepin induces apoptosis of human
ovarian cancer cells by inhibiting CCL5-
mediated Akt/NF-κB signaling pathway
Zhen Yang Cui1, Soo Jung Park2, Eunbi Jo3, In-Hu Hwang4, Kyung-Bok Lee3, Sung-Woo Kim3, Dae Joon Kim5,
Jong Chun Joo1, Seok Hoon Hong6, Min-Goo Lee4 and Ik-Soon Jang 3

Abstract
The chemokine, CCL5, is a key mediator for the recruitment of immune cells into tumors and tissues. Akt/NF-κB
signaling is significantly activated by CCL5. However, the role of NF-κB inactivation in apoptosis induced by negative
regulation of CCL5 remains unclear. Here, we analyzed the effect of cordycepin on NF-κB activity in SKOV-3 cells and
found that cordycepin-mediated inhibition of NF-κB signaling induced apoptosis in SKOV-3 cells via the serial
activation of caspases. In addition, immune-blotting analysis showed that CCL5 is highly expressed in SKOV-3 cells. In
addition to activating caspases, we show that, cordycepin prevents TNF-α-induced increase in CCL5, Akt, NF-κB, and c-
FLIPL activation and that CCL5 siRNA could inhibit Akt/NF-κB signaling. Moreover, cordycepin negatively regulated the
TNF-α-mediated IκB/NF-κB pathway and c-FLIPL activation to promote JNK phosphorylation, resulting in caspase-3
activation and apoptosis. Also, we show that c-FLIPL is rapidly lost in NF-κB activation-deficient. siRNA mediated c-FLIP
inhibition increased JNK. SP600125, a selective JNK inhibitor, downregulated p-JNK expression in cordycepin-treated
SKOV-3 cells, leading to suppression of cordycepin-induced apoptosis. Thus, these results indicate that cordycepin
inhibits CCL5-mediated Akt/NF-κB signaling, which upregulates caspase-3 activation in SKOV-3 cells, supporting the
potential of cordycepin as a therapeutic agent for ovarian cancer.

Introduction
Cordycepin, 3′-Deoxyadenosine, is a known poly-

adenylation inhibitor with various pharmacological
activities, such as anti-proliferative, anti-cancer, and anti-
inflammatory effects1–8. Cordycepin is an active small
molecule implicated in regulating various physiological
functions by immune-activation and also presents various
properties, including anti-viral, anti-infection, anti-
inflammatory, anti-aging, anti-cancer properties, and

enhances sexual performance9–13. Already, cordycepin
has been shown to induce cancer cell death in a large
spectrum of tumor cell lines, including breast14, colon15,
and oral squamous cell carcinoma8. However, the effects
of cordycepin in ovarian carcinoma cells are not clear
until now. In some tissues, inflammatory conditions
increase the risk of certain cancer. Cytokines and che-
mokines are involved in an intensive dialog enhancing
angiogenesis, tumor metastasis, and the subversion of
adaptive immunity, as well as changing responses to
hormone therapy or to chemotherapy16. CCL5 belongs to
the CC-chemokine family and plays a critical role in the
migration and metastasis of human malignant tumor
cells17. The activity of CCL5 is mediated by binding to
CCR1, CCR3, and mainly CCR518, 19. In the cancer
microenvironment, cancer cell stimulates de novo
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secretion of CCL5 from cancer stem like cells (CSLCs), and
CCL5 acts as a paracrine or autocrine signaling to promote
tumor cell migration, invasion, and metastasis20, 21.
Akt /protein kinase B (PKB) is a crucial node in diverse

signaling pathways essential in both normal cellular
physiology, as well as various disease states. Akt signaling
controls cell proliferation and anti-apoptosis, cell growth,
glucose metabolism, cell migration, and metastasis. Akt is
an integrative regulator of tumor survival and apoptosis,
and it is also activated downstream of PI3K and is down-
regulated by the cancer suppressor PTEN22. Akt functions
through its ability to activate many key pro-oncogenic
target genes that induce cell growth or antagonize apop-
totic pathways.
Nuclear factor-κB (NF-κB) comprises a family of tran-

scription factors that regulate the transcription of cyto-
kines, antimicrobial effectors, and genes that control
cellular differentiation, growth, and proliferation in cancer
stem cells23. Inducible NF-κB activation relies upon
phosphorylation-triggered proteasomal degradation of the
inhibitor of NF-κB proteins (IκBs) that retain inactive NF-
κB dimers in the cytosol in unstimulated cells24. Recent
work suggests a role for NF-κB in the propagation of
ovarian cancer cells, but the significance and mechanism
of NF-κB in ovarian cancer remains poorly understood.
The NF-κB pathway is overactivated in aggressive ovarian
cancer25.
In this study, we used inflammatory mediator, TNF-α,

which has been shown to participate in both the initiation
and progression of cancer, and demonstrated that CCL5 is
highly expressed in an ovarian cancer cell line under these
conditions. We then investigated the functional
mechanisms underlying the stimulation of the NF-κB
signaling pathway by CCL5 in ovarian cancer cells.
Herein, we show that cordycepin prevents constitutively
Akt-mediated NF-κB transcription factor activation by
downregulating CCL5 and that the consequent activation
of JNK signaling pathway causes cancer cell death.

Results
Cordycepin inhibits the cell viability of ovarian cancer cells
To investigate the effects of cordycepin on the pro-

liferation of cancer cells. SKOV-3, MDAH-2774, and
OVCAR-3 human ovarian cancer cells were treated
directly with cordycepin at 0, 20, 40, 60, and 100 μg/mL
for 24 or 48 h. As shown in Fig. 1a, cordycepin dose-
dependently inhibited the cell viability of SKOV-3,
MDAH-2774, OVCAR-3 during 24 h and 48 h incubation.
At 40 μg/mL, 48 h treatment of cordycepin decreased
approximately half of the SKOV-3, MDAH-2774,
OVCAR-3 cell population (Fig. 1a). These results were
consistent with cell viability of SKOV-3, MDAH-2774,
OVCAR-3 cells treated with cordycepin. To observe the
cell death of cordycepin-treated cancer cells, the

Fig. 1 Cordycepin induces apoptosis in ovarian cancer cells. a
Inhibition of the growth of SKOV-3, MDAH-2774, OVCAR-3 ovarian
cancer cells by cordycepin. Ovarian cancer cells were exposed to 0, 20,
40, 60, and 100 μg/mL cordycepin for 24 and 48 h. b Microscopic
images of SKOV-3, MDAH-2774, OVCAR-3 cells treated with cordycepin
for 48 h. Magnification ×400. c Apoptosis analysis of ovarian cancer
cells exposed to cordycepin. The statistics were shown the
percentages of the cells represented by mainly early and late
apoptosis which was apparent when the percentage of live cells
markedly decreased. Data are presented as means ± standard
deviations from triplicate experiments. Statistical significance was
considered as **p < 0.01 and ***p < 0.001 vs. vehicle treatment
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morphologies of ovarian cancer cells were compared to
those of untreated control cells by using light microscopy
(Nikon TS-100, Nikon, Tokyo, Japan). The morphology of
SKOV-3, MDAH-2774, and OVCAR-3 cells changed
drastically after 60 μg/mL cordycepin treatment for 48 h.
Multiple cells began to detach from the surface of the
culture plate and appeared buoyant. Moreover, the cells
appeared to be shrunken, resulting in reduced cell
volume. These morphological changes preceded apopto-
sis. On the other hand, 40 μg/mL cordycepin induced less
drastic changes at 48 h (Fig. 1b).

Cordycepin induces apoptotic changes in ovarian cancer
cells
The apoptotic effect of cordycepin on SKOV-3, MDAH-

2774, OVCAR-3 cells were analyzed with Annexin V. For
the evaluation of apoptosis, we used a Muse Annexin V
and Dead Cell kit to measure the changes in cell apoptosis
after 48 h. Ovarian cancer cell lines were treated for 48 h
with 0, 20, 40, 60, and 100 μg/mL cordycepin. Total
fractions of apoptosis (early and late apoptosis) were
increased by cordycepin treatment in dose-dependent
manner. The viable fractions of SKOV-3, MDAH-2774
and OVCAR-3 cells were reduced from 95, 94 and 97% in

Fig. 2 Gene expression analysis and signaling network of inflammation- and apoptosis-related genes. a Results of a gene ontology analysis
by using microarray approaches in response to 100 μg/mL of cordycepin. Gene lists corresponding to two-fold upregulation and downregulation in
cordycepin-treated SKOV-3 cells for 48 h were developed by using DAVID for Gene Ontology analysis (http://david.abcc.ncifcrf.gov/). b Immune
response- and apoptosis-related genes and their hierarchical clustering in response to cordycepin. A dendrogram of hierarchical clustering revealed
genes that were altered more than two-fold owing to apoptosis in response to cordycepin. c Gene lists (>2-fold, <2-fold, and apoptosis-related
genes) are shown and are intersected individually by using Venn diagrams. d Signaling network of the immune response- and apoptosis-related
genes in response to cordycepin. Nodes colored by using a Qiagen IPA were the genes in the apoptosis regulatory network in the cordycepin-
treated SKOV-3 cells (red: upregulated genes, green: downregulated genes)
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control group to 88%, 46% and 89% in cordycepin (100
μg/mL)-treated group, respectively (Fig. 1c).

Effect of cordycepin on gene expression profiles
SKOV-3 cells were chosen for further study based on

the results of cell viability test and FACs analysis. And
SKOV-3 cells which have multiple characteristics of high
grade serous, clear cell and endometrioid types were
considered appropriate for a comprehensive view of anti-

cancer effect of cordycepin across different ovarian cancer
cell types. To assess the putative genes involved in cor-
dycepin induced anti-tumor activity, we performed a gene
expression microarray using SKOV-3 cancer cells treated
with cordycepin. Among the 63,242 unique genes (using
Agilent’s Human GE 8 × 60 K Microarray) tested, 30,858
genes were expressed in cells treated with 100 μg/mL of
cordycepin. Among these 30,858 genes, 2561 and 1942
genes were upregulated and downregulated, respectively,

Fig. 3 Inhibitory effect of cordycepin in TNF-α-mediated Akt/NF-κB signaling pathway. a Western blots showing the expression of NF-κB-p65,
IκB, CCL5, c-FLIPL, caspase-3, and cleaved caspase-3 in response to 0, 60, and 100 μg/mL of cordycepin in SKOV-3 cells. b Effect of TNF-α on NF-kB was
observed in SKOV-3 cells exposed to cordycepin. Western blot analysis was used to detect the expression of p-IκB, IκB, cytosolic NF-κB-p65, nuclear
NF-κB-p65, p-Akt, and Akt in SKOV-3 cells cultured in the presence of 100 μg/mL of cordycepin. After 24 h, cells were challenged with 10 ng/mL of
TNF-α for 24 h alone or in the presence of cordycepin. Data are expressed as means ± SD, * p < 0.05, ** p < 0.01, *** p < 0.001
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Fig. 4 (See legend on next page.)
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by treatment with 100 μg/mL cordycepin compared to the
untreated control at 48 h. Genes upregulated or down-
regulated by a 2-fold were further analyzed. Biologically
relevant features were constructed by using the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) tools (http://david.abcc.ncifcrf.gov/). Gene lists
corresponding to 2-fold up- and downregulation in the
cordycepin-induced ovarian cancer cells were uploaded to
DAVID for Gene Ontology analysis (Fig. 2a). To compare
the results obtained upon cordycepin treatment with
putative genes that belonged in apoptosis, we clarified
candidate genes by the GeneCards database (http://www.
genecards.org/) (Fig. 2b). The intersection obtained by
hierarchical clustering is showed along with the gene lists
in Fig. 2c. The signaling network of genes in response to
apoptosis induced by cordycepin is presented in Fig. 2d.

Cordycepin downregulates AKT/NF-κB signaling pathway
and upregulates cleaved caspase-3
Next, to investigate whether cordycepin suppresses the

NF-κB signaling pathway, the expression of pro-
inflammatory chemokine CCL5, IκB, NF-κB, c-FLIPL,
Bax, cleaved PARP-1, and cleaved caspase-3 was deter-
mined in SKOV-3 cells exposed to cordycepin (Fig. 3a).
Western blot analysis was used to detect the expression of
NF-κB, c-FLIPL, Bax, cleaved PARP-1, and cleaved
caspase-3 in SKOV-3 cells cultured in the presence of 60
and 100 μg/mL of cordycepin. As shown in Fig. 3a,
increasing amounts of cordycepin resulted in a dose-
dependent reduction in CCL5 expression, whereas NF-κB
expression changed slightly at 60 μg/mL cordycepin, and
decreased at 100 μg/mL cordycepin. Meanwhile, cordy-
cepin treatment resulted in increased expression of
cleaved caspase-3. As cordycepin induced apoptosis in
ovarian cancer cells, it was appropriate to assess which
downstream effectors mediated this process. NF-κB is a
transcription factor that plays a important role in cyto-
kine- and LPS-induced gene activation during inflam-
matory events26. This suggests that cordycepin blocked
the inflammation-related signaling pathway such as
CCL5, Akt/NF-κB, c-FLIPL, and upregulated caspase-3
activation. The expression levels of inflammation-related

proteins in SKOV-3 cells treated by TNF-α and cordy-
cepin were determined by using western blotting assay.
TNF-α is a cytokine that induces inflammation in ovarian
cancer cells. Thus, we investigated the important role of
cordycepin in TNF-α-treated SKOV-3 cells.
Inflammation-related proteins such as Akt, IκBα, nuclear
NF-κB, and c-FLIPL were activated by TNF-α in SKOV-3
cells, while effectively downregulated by cordycepin in
TNF-α treated SKOV-3 cells (Fig. 3b). The cordycepin
(100 μg/mL) significantly decreased the expression of
phosphorylated AKT and nuclear NF-κB increased by
TNF-α treatment. These results indicate that cordycepin
downregulated the TNF-α-mediated Akt/NF-κB/ c-FLIPL
signaling pathway in ovarian cancer cells.

Cordycepin inhibits Akt/NF-κB signaling pathway through
CCL5 and reduces migration
We detected CCL5 expression levels of SKOV-3 cells

treated by TNF-α and cordycepin using western blotting
assay (Fig. 4a). A significant (p < 0.05) increase of CCL5
release was observed in TNF-α-treated SKOV-3 cells.
Meanwhile, the release of CCL5 was effectively down-
regulated by cordycepin treatment of TNF-α-treated
SKOV-3 cells (Fig. 4a). Akt activation was also down-
regulated by cordycepin and a significant (p < 0.05)
decrease of Akt activation was observed in SKOV-3 cells
treated with CCL5 siRNA (Fig. 4b); whereas CCL5 over-
expression increased Akt activation in cordycepin-treated
SKOV-3 cells (Fig. 4c). These results indicated that cor-
dycepin inhibits CCL5-mediated Akt signaling pathway in
ovarian cancer cells. Next, we investigated the effect of
Akt on NF-κB through cordycepin-regulated CCL5 in
ovarian cancer cells. CCL5 effectively enhanced Akt
phosphorylation in SKOV-3 cells. When Akt was silenced,
cordycepin treatment of both SKOV-3 cells and SKOV-3
cells overexpressing CCL5 decreased nuclear transloca-
tion of NF-κB, whereas Akt overexpression increased
nuclear translocation of NF-κB in cordycepin-treated
SKOV-3 cells (Fig. 4d). To evaluate the potential biolo-
gical relevance of the regulatory effect of cordycepin, we
assessed the effect of CCL5 on the migration of tumor
cells. Migration of SKOV-3 cells was measured by using a

(see figure on previous page)
Fig. 4 Attenuation of CCL5-induced Akt/NF-κB signaling by cordycepin. a Western blot analysis was used to detect the expression of CCL5 in
SKOV-3 cells cultured in the presence of 100 μg/mL cordycepin. After 24 h, cells were challenged with 10 ng/mL of TNF-α for 24 h alone or in the
presence of cordycepin. b SKOV-3 cells were treated for 24 h with cordycepin. After 24 h, cells were challenged with siRNA directed against CCL5 (si-
CCL5) for 48 h alone or in the presence of cordycepin. c SKOV-3 cells were treated with cordycepin for 6 h, and the expression of CCL5, p-Akt and Akt
was measured by western blotting assay. d SKOV-3 cells were treated with cordycepin for 6 h, then the medium was collected 24 h later and the
secretion of cytosol and nuclear NF-κB was measured. SKOV-3 cells were incubated with siRNA directed against Akt (si-Akt) or negative control siRNA
for 48 h, transfected with Akt and CCL-5-overexpression constructs for 48 h. Representative western blots were shown from 3 independent
experiments. e Microscopic images demonstrating the results of the in vitro migration of SKOV-3 and CCL5-overexpressed and knock-downed SKOV-
3 cells by using the simple scratch technique of migration assay. Data are expressed as means ± SD, *p < 0.05, **p < 0.01, ***p < 0.001
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wound-healing assay. CCL5 overexpression increased
cancer cell migration. The treatment of cordycepin (100
μg/mL) significantly suppressed the cell migration in both
CCL5-overexpressed and control vector-transfected can-
cer cells in a dose-dependent manner at 48 h (Fig. 4e).
These results indicate that cordycepin attenuates CCL5-
mediated Akt/NF-κB phosphorylation to downregulate
SKOV-3 cell migration.

Cordycepin-mediated Akt/NF-κB/c-FLIPL signaling
inhibition activates JNK to induce caspase-3 activation
To further investigate whether Akt/NF-κB is function-

ally linked to JNK signaling, we examined the effect of
Akt/NF-κB on JNK. Cordycepin enhanced the expression
of p-JNK. Next, we performed a loss-of-function experi-
ment using NF-κB knockdown by cordycepin and the NF-
κB inhibitor, PDTC. Both cordycepin and PDTC atte-
nuated c-FLIPL and enhanced p-JNK, and the selective
JNK inhibitor, SP600125 (20 μM) reduced the phosphor-
ylation of JNK and the expression of Bax. Immunoblots
confirmed the reduction in p-JNK protein in SKOV-3
cells, whereas cordycepin enhanced the p-JNK protein-
mediated increase in Bax and cleaved caspase-3 (Fig. 5a).
Also, siRNA mediated c-FLIP inhibition increased JNK

(Fig. 5b). These results indicate that JNK signaling pro-
motes SKOV-3 cell apoptosis by enhancing caspase-3
activation. Taken together, these results indicate that
cordycepin-mediated NF-κB inhibition upregulated p-
JNK, leading to the upregulation of cleaved caspase-3.
These results indicate that cordycepin suppresses the
activation of Akt/NF-κB signaling pathway and c-FLIPL
activation, which results in p-JNK upregulation and the
subsequent induction of caspase-3 activation.

Discussion
Cordycepin has a variety of biological functions,

including anti-tumor, antiviral, anti-oxidant, and anti-
inflammatory activities1, 13, 27, 28. In the past few years,
several reports indicated that cordycepin inhibits the
expression of some inflammatory genes by suppressing
NF-κB activation29. Meanwhile, other studies reported
that cordycepin has anti-cancer and anti-metastatic
effects, inhibiting the expression of some critical mole-
cules involved in tumor growth and metastasis by block-
ing NF-κB activation30, 31.
In the present study, we showed that the CCL5-

mediated Akt/NF-κB signaling pathway was involved in
human ovarian cancer cells after cordycepin treatment.

Fig. 5 Promotion of JNK activation by cordycepin mediated c-FLIPL inhibition. a SKOV-3 cells were treated with PDTC and SP600125 for 1 h,
then cultured with cordycepin. The expression of NF-κB-p65, c-FLIPL, JNK, p-JNK and cleaved caspase-3 was analyzed by western blotting assay. b
Cells were treated with si-c-FLIPL for 1 day. The expression of c-FLIPL, JNK and p-JNK. Data are expressed as means ± SD, **p < 0.01, ***p < 0.001
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First, we found that cordycepin-mediated CCL5 inhibition
downregulated p-Akt. Second, cordycepin-mediated Akt
inactivation by inhibiting CCL5 reduced nuclear NF-κB
preceded SKOV-3 ovarian cancer cell apoptosis. Third,
cordycepin upregulated p-JNK through the reduction of
nuclear NF-κB. Finally, treatment with the JNK inhibitor,
SP600125, significantly decreased Bax and cleaved
caspase-3. It has been reported that CCL5 acts through
PI3K/Akt, which in turn activates IKKα/β and NF-κB,
resulting in the activation of αvβ3 integrin and con-
tributing to the migration of human lung cancer cells32.
Therefore, to investigate whether cordycepin inhibits
CCL5-mediated Akt/NF-κB signaling pathway, we detec-
ted CCL5 expression level in SKOV-3 cells treated by
TNF-α and cordycepin using western blotting assay
(Fig. 4a). CCL5 was increased in TNF-α treated SKOV-3
cells, while it was downregulated by cordycepin in TNF-α
treated SKOV-3 cells (Fig. 4a). Akt activation was also
downregulated by cordycepin and CCL5 siRNA in SKOV-
3 cells (Fig. 4b); whereas CCL5 overexpression increased
Akt activation in cordycepin-treated SKOV-3 cells
(Fig. 4c). These results indicate that cordycepin could
inhibit CCL5-mediated Akt signaling pathway in ovarian
cancer cells.
A functional link exists between the Akt and NF-κB

pathways and the Akt signaling pathway actively regulates
NF-κB33, 34. Therefore, we investigated the effect of Akt
on NF-κB through cordycepin-regulated CCL5 in ovarian
cancer cells. Our results demonstrated that, when Akt was
silenced, cordycepin decreased nuclear translocation of
NF-κB, in SKOV-3 cells and SKOV-3 cells overexpressing
CCL5, while Akt overexpression increased nuclear
translocation of NF-κB in cordycepin-treated SKOV-3
cells (Fig. 4d), suggesting that cordycepin inhibits Akt/
NF-κB signaling pathway through CCL5. FLIP is an
important mediator of NF-kappaB-controlled anti-
apoptotic signals35.
We undertook a series of experiments to investigate

whether c-FLIP is implicated in the antiapoptotic NF-κB
response. Generally, activation of JNK is involved in the
induction of apoptosis36, whereas c-FLIP exerts other
cellular functions including increased cell proliferation
and tumorigenesis37, 38.
Therefore, we evaluated the fundamental role of c-

FLIPL in the regulation of JNK signaling in SKOV-3 cells
treated with cordycepin. c-FLIPL was dramatically
decreased, whereas JNK activation was increased in both
PDTC- and cordycepin-treated SKOV-3 cells, whereas
NF-κB activation was decreased and caspase-3 activation
was increased (Fig. 5a). To further investigate the role of
JNK in cordycepin-mediated apoptosis, we used the JNK
inhibitor, SP600125, (20 μM) (Fig. 5a). SP600125
decreased the levels of Bax and cleaved caspase-3 in
cordycepin-treated SKOV-3 cells. Also, siRNA mediated

c-FLIP inhibition increased JNK (Fig. 5b). These results
indicate that c-FLIPL may therefore play a key role in the
NF-κB-mediated control of death signals and that cor-
dycepin augments Bax and caspase-3 activation through
the activation of JNK by inhibiting NF-κB induced c-
FLIPL signaling.
We showed that the protein level of p-JNK was dra-

matically increased by negative regulation of CCL5-
mediated Akt/NF-κB expression in cordycepin-treated
SKOV-3 cells. We demonstrated that JNK is a critical
mediator of cordycepin-induced SKOV-3 cell apoptosis.
These findings provide novel insights into the molecular
mechanisms of SKOV-3 cell apoptosis. Therefore, con-
trolling CCL5 expression may provide new ways and
strategies to enhance SKOV-3 cell apoptosis. Taken
together, our results demonstrate that cordycepin med-
iates Bax’s apoptotic regulation of NF-κB by down-
regulating CCL5. Also, this systematic investigation study
shows the precise molecular mechanism of NF-κB sig-
naling pathway induced by cordycepin and reveals role
and potential therapeutic use of cordycepin to inhibit
migration in the treatment of ovarian cancer.

Materials and methods
Reagents and chemicals
Fetal bovine serum (FBS), 1% (w/v) penicillin-

streptomycin and phosphate-buffered saline (PBS) were
obtained from Thermo (Paisley, Scotland, UK). Dulbec-
co’s Modified Eagle’s Medium (DMEM) was purchased
from Sigma-Aldrich (St Louis, MO, USA). Cordycepin
(3′-Deoxyadenosine, from Cordyceps militaris), Pyrroli-
dine dithiocarbamate (PDTC), and SP600125 were pur-
chased from Sigma-Aldrich. TNF-α was purchased from
R & D system (R&D Systems, Minneapolis, MN, USA). A
Muse Annexin & Dead Cell kit was from Millipore
(Millipore, Billerica, MA, USA). Whole cell lysis buffer
was purchased from Intron (Seoul, Korea), and transfec-
tion reagent Hilymax and CCK-8 were from Dojindo
(Dojindo, Japan). Antibodies against CCL5, NF-κB, p-IκB,
IκB, p65, p-Akt, Akt, caspase-3, and β-actin were pur-
chased from Cell Signaling (Beverly, MA, USA). Anti-
bodies against PARP-1 and Bax were from Santa Cruz
Biotechnology (Dallas, TX, USA).

Cell lines and cell viability assay
The human ovarian-carcinoma-cell line (SKOV-3,

MDAH-2774, OVCAR-3) were obtained from the
American Type Culture Collection (Rockville, MD, USA).
Cells were grown in DMEM medium, supplemented with
10% (v/v) FBS and 1% (w/v) penicillin-streptomycin at 37 °
C with 5% (v/v) CO2. Cells (5 × 103 of cells per well) were
placed in a 96-well plate. After a 24-h incubation, the cells
were treated with cordycepin for 48 h. Cell viability assays
were performed as previously described39. In brief, at the

Cui et al. Cell Death Discovery  (2018) 4:62 Page 8 of 11

Official journal of the Cell Death Differentiation Association



end of the treatment, 10 μL of cell-counting kit-8 solution
were added to the cell solution and incubated for 1 h at
37 °C. Cell viability was determined by using a microplate
reader (Sunrise, Tecan, Switzerland) to measure the
absorbance at 450 nm. The assays were performed in
triplicate. The appropriate dose was determined by eval-
uating the cytotoxicity of cordycepin for 48 h.

Cell apoptosis assay
To detect the effect of cordycepin on apoptosis, we

analyzed the Muse Annexin V & Dead Cell reagent
(Millipore) following the user’s guide and the manu-
facturer’s instructions. Briefly, cells were treated with
cordycepin for 48 h, harvested with trypsin-EDTA and
washed twice in PBS. The cell suspension was centrifuged
at 2000 rpm for 2 min and 1 × 106 of cells were transferred
in suspension with fresh medium containing serum to a
new tube Staining protocol included warming the Muse
Annexin V and Dead Cell Reagent to room temperature,
addition of 100 μL of cells in suspension to each tube,
addition of 100 μL of the Muse Annexin V and Dead Cell
Reagent to each tube. Measurements were conducted by
using an Muse Cell Analyzer (Millipore, Billerica, MA,
USA). The statistics were shown the percentages of the
cells represented by alive, apoptosis and dead population.

Microarray analysis
For the microarray analysis of the cordycepin-treated

SKOV-3 cancer cells, a human twin 44 K cDNA chip was
used for the transcription profiling analysis. Total RNA
was extracted from vehicle- or 100 μg/mL cordycepin-
treated SKOV-3 cancer cells, and cDNA probes were
prepared by using reverse transcription of 50 mg of RNA
in the presence of aminoallyl dUTP, followed by coupling
with Cy3 dye (vehicle) or Cy5 dye (cordycepin-treated).
Genes were considered differentially expressed when,
after a significance analysis of the microarray (SAM), the
global M value, log2 (R/G), exceeded |1.0| (twofold) with a
P-value < 0.05. A Student’s t-test was applied to assess the
statistical significance of the differential expression of
genes after cordycepin treatment. In order to analyze the
biological significance of the changes, we categorized the
array data into specific gene groups.

Ontology-related network analysis
To study the biological functions of ontology-related

regulated genes and proteins through their interaction
network, we conducted a bioinformatic network analysis
by using an ingenuity pathway analysis (IPA, http://www.
ingenuity.com). The IPA identifies a gene interaction
network based on a regularly-updated “Ingenuity Path-
ways Knowledge-base.” The updatable database was
retrieved from the biological literature. Network

generation was optimized from the inputted expression
profile when possible and aimed at the production of
highly connected networks.

Fractionation and protein extraction
SKOV-3 cells were incubated with cordycepin for

2 days. The cells were collected with 2 mL of homo-
genization buffer A (25 mM Tris (pH 7.5), 2 mM EDTA,
0.5 mM EGTA, 1 mM DTT, protease inhibitor cocktail, 1
mM PMSF, and 0.02% Triton X-100) per culture dish,
homogenized 15 times using a 15-mL Dounce homo-
genizer with pestle A, and centrifuged at 100,000 × g for
30 min. The supernatant cytosolic fraction was trans-
ferred into a new tube and 500 μL of homogenization
buffer B (homogenization buffer A containing 1% Triton
X-100) was added to the pellet. The pellet was resus-
pended by sonication, incubated for 30min at 4 °C by
rocking, and centrifuged at 100,000 × g for 30 min. The
supernatant nuclear fraction was transferred into a fresh
tube. The samples were prepared for protein analysis by
western blotting.

Western blot analysis
The expression of cordycepin-induced apoptosis-related

signaling proteins was examined by using western blot-
ting, as described previously40. In brief, 25 μg of the
denatured protein was separated by using 12% poly-
acrylamide gel electrophoresis and transferred onto a
nitrocellulose membrane. The nitrocellulose membrane
was then stained with Ponceau S to position the proteins.
The blotted membrane was blocked for 1 h with 5% (w/v)
skimmed milk in TTBS (Tween-20 and Tris-buffered
saline), followed by incubation with diluted primary
antibodies, CCL5 (1:200), NF-κB(1:1000), p-IκB (1:500),
IκB (1:500), p65 (1:1000), p-Akt (1:500), Akt (1:1000),
caspase-3 (1:200), Bax (1:1000), PARP (1:1000), and β-
actin (1:2000), at room temperature for 2 h or at 4 °C
overnight. The membrane was washed three times for 5
min each time with 0.1% (v/v) Tween-20 in TBS before
incubation with horseradish-peroxidase (HRP)-con-
jugated goat anti-mouse IgG or HRP-conjugated rabbit
anti-goat IgG with a 1:2000 dilution in TBS containing 5%
(w/v) skimmed milk at room temperature for 1 h. The
membranes were rinsed three times with TTBS for 5 min
each, and an enhanced chemiluminescence system
(Thermo Scientific, San Jose, CA, USA) was used to
visualize the bands on a ChemiDoc MP system (Bio-Rad,
Hercules, CA, USA). Densitometric measurements of
bands were performed by using Image J software
(National Institutes of Health, Bethesda, MD, USA). The
expression levels of proteins were quantitatively analyzed
through comparison with actin used as an internal
control.
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Biochemical analysis
CCL5 and AKT were overexpressed by using lentivirus

(LV)-carrying RFP-conjugated full-length CCL5 or Akt
(Lenti H1.4-ccl5/RFP, Lenti H1.4-Akt/RFP, Bioneer
Corp., Daejeon, Korea). Small interfering RNAs (siRNAs)
were purchased from ST Pharm (Seoul, Korea). The
nucleotide sequence for Akt siRNAs was 5′-CGU UCU
GCU GCG ACA AUG A-3′ and CCL5 siRNA
(NM_001278736.1) was 5′-AAG GAA GUC AGC AUG
CCU CUA-3′. SKOV-3 cells were seeded (2 × 105 cells/6-
well plates). After incubation, the cells were supplied with
growth medium containing 10% FBS and were harvested
48 h later for further assays. siRNAs were transfected in
SKOV-3 cells using lipofectamine RNAiMAX reagent
(Invitrogen, Carlsbad, CA, USA) following the manu-
facturer’s instructions. Cells were then treated with
60 μg/mL of cordycepin for 48 h.

Migration assay
The migration assay was conducted by using control

RFP-vector-transfected and CCL5-RFP transfected cells.
Cells were seeded into a 24-well plate. The cell monolayer
was scraped with a pipette tip to create a wound. The cells
were treated with 100 μg/mL of cordycepin for 48 h. The
plates were imaged using the TissueFAXS system (Tis-
sueGnostics, Vienna, Austria). Cell migration was ana-
lyzed (quantification of the “healed” area and migrated
cells) was performed with the HistoQuest software (Tis-
sueGnostics). Samples were analyzed with a Zeiss AxioI-
magerZ1 microscope system with a charge-coupled device
camera and the TissueFAXSTM automated acquisition
system (TissueGnostics). The percentages of antibody-
positive and stemness marker-positive tumors were
determined and depicted as scattergrams. Images were
digitalized and protein expression was quantified. Statis-
tical flow analysis was performed with the HistoQuestTM

software (TissueGnostics).

Statistical analyses
GraphPad Prism software (GraphPad, San Diego, CA,

USA) was used for the statistical analyses. Student’s t-test
was used to assess the statistical difference between the
control and the MRGX-treated groups. P values < 0.05
were considered statistically significant.
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