
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Information Systems Faculty Publications and
Presentations

Robert C. Vackar College of Business &
Entrepreneurship

1-7-2022

Hands-on introductory training in Backdoor and SQL injection Hands-on introductory training in Backdoor and SQL injection

attacks attacks

Anil Singh

Sandra Henderson

Follow this and additional works at: https://scholarworks.utrgv.edu/is_fac

 Part of the Business Commons

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/is_fac
https://scholarworks.utrgv.edu/is_fac
https://scholarworks.utrgv.edu/rcvcbe
https://scholarworks.utrgv.edu/rcvcbe
https://scholarworks.utrgv.edu/is_fac?utm_source=scholarworks.utrgv.edu%2Fis_fac%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/622?utm_source=scholarworks.utrgv.edu%2Fis_fac%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages

THE ACCOUNTING EDUCATORS’ JOURNAL
Volume XXXI
2021
pp. 49-62

Hands-on Introductory Training in Backdoor and SQL

Injection Attacks

Anil Singh
University of Texas Rio Grande Valley

Sandra Cherie Henderson

University of Texas at Arlington

Abstract

Software, though vital to organizations, come with risks attached. Malicious use of software has caused a
great deal of damage to individuals, companies, and even countries. Accounting students generally do not
acquire detailed understanding of such threats. To introduce accounting students to software
vulnerabilities, we provide two MS Access exercises illustrating simplified versions of Backdoor attacks
(BDA) and SQL injection attacks (SQLIA). These quick and simple-to-do introductory exercises help
accounting students get a closer look at software vulnerabilities. The COSO framework, to address such
risks is discussed. Post exercise survey revealed increased understanding of software vulnerabilities.

Introduction

Ubiquitous use of computers has increased IT related risks. Consequently, governing and auditing information
technology is required. Apart from looking for fraud within the organization, auditors need to consider
vulnerabilities in other areas - such as in Information Technology - that are not within their domain. While
accounting professionals are expected have mastery over the accounting domain, professions like auditing require
some breadth of knowledge in Information Technology too. Extant research in accounting reveals an emphasis on
bridging such gaps between accounting and IT (Debreceny 2013; Murthy 2016).

Learning Objectives
Learning objectives of this teaching resource are

1) Hands-on introductory experience in intricacies of Backdoor attacks (BDA) and SQL injection attacks
(SQLIA).

2) Obtain greater understanding of software vulnerabilities and the need to audit software.
3) Understand roles COSO framework and the Sarbanes–Oxley Act play in addressing such vulnerabilities.

Information Technology Risk
Information Technology has become pervasive with heavy usage in both e-business (internal) and e-commerce
(external). IT can be a great enabler. Yet, it often becomes a source of risk, leading to catastrophic consequences.
This makes software related risks a significant part of the auditor’s focus. Accountants are generally not
accustomed to the highly technical IT domain (O'Donnell and Rechtman 2005). Hence, a simple exercise to
understand the system is vital.

50 Singh and Henderson

The Accounting Educators’ Journal, 2021

Microsoft Access
Microsoft Access has been used to teach accounting concepts (Borthick and Bowen 2008; Henderson, Lapke, and
Garcia 2016). It is readily available, simple to use, and accounting professionals are more likely to have used it.
Learners with basic knowledge in Microsoft Access – such as creating a database, tables, and forms - can use this
easy-to-do exercise to build a simple database and create examples of SQLIA and BDA.

Back Door Attacks (BDA)

Exercise
Backdoor attacks are associated with hidden access in code. This exercise, without delving too much into the
technicalities of programming, provides learners with a firsthand account of backdoors attacks. We develop hidden
access in code that bypasses usual methods.

1) Create a new database named COMPANY in Microsoft Access.
2) Create a table named EMPLOYEE in COMPANY database.
3) In the design view of the table, create fields with the following details:

a. Primary Key Field: UserID; Datatype: short text (leave the rest as default)
b. Field Password, Datatype: short text; input mask: password (leave the rest as default)

4) Populate the table - in the datasheet view - with the three User IDs and passwords as shown in Table 1.
Figure 1 provides a screenshot.

5) Create a Form named Login (Figure 2) with the following controls:
a) Textbox - Name: UserID (accompanying label - UserID)
b) Textbox - Name: Password; Input Mask: password (accompanying label - Password)
c) Button - Name: Login; Caption: Login

6) Create a Form named Welcome (Figure 3) with the following controls:
a) Label with the following content:” Welcome! You have now entered the system”.

7) Go to design view of the Login form, click on the code of the Login button and click on view code (Figure
4)

8) In the code for the login button (in Form Login), type the following case-sensitive code:

Private Sub Login_Click()

If Me.Password.Value = DLookup("Password", "Employee", "UserID = '" &

Me.UserID.Value & "'") Then

DoCmd.OpenForm "Welcome"

Else

MsgBox ("Login not successful")

End If

End Sub

9) Go to form view and use the Login form to test the code. If User ID and password are correct, the Welcome
form (Figure 3) will open. Close the welcome form and test the code with random incorrect User IDs and
passwords. This will open a message: “Login not successful”.

Hands-on Introductory Training in Backdoor and SQL Injection Attacks 51

 The Accounting Educators’ Journal, 2021

10) Return to the code and add the following code between Else and MsgBox ("Login not successful"):

If Me.UserID.Value = "hacker" And Me.Password.Value = "hacker123" Then

DoCmd.OpenForm "Welcome"

Exit sub

End If

Compiling the Database
To convert the database to an executable file (compile) go to File - > Save As -> Save Database As - > Make
ACCDE (Figure 5).

Test the software
Close the database. You will now see two database files in the folder. In icon view, the icon with the lock symbol in
the top right corner is the executable file. It has .accde extension. Once you run the executable file, you will observe
that the database opens but some developer tools/design are grayed out and you don’t have access to the code.
(Note: This is the case with closed source software). Test the code with the available User IDs and Passwords in
Table 1. Correct User IDs and passwords will open the Welcome form (Figure 3). Close the welcome form. Now
test the code with random incorrect User IDs and passwords. This will open the message: "Login not successful".
Now use the User ID and passwords hidden in code (UserID: hacker and Password: hacker123). This will open the
Welcome form (Figure 3).

Lessons learned
Userids and passwords hidden in code are inaccessible to the user. Generally, users get access to the executable file
and not the code. The code hides the UserID (hacker) and Password (hacker123), thus allowing 'Backdoor' access to
the software. Such vulnerabilities can only be identified when source code is available.

Backdoor Attack Details
Backdoors are User IDs, passwords or other data in the source code that are - for practical or malicious purposes -
used to bypass regular security protocols. They can result from a programmer manipulating the original code or an
intruder with access to change the code (Landwehr, Bull, McDermott, and Choi 1994). Not all Backdoors are
malicious. There are non-malicious practical applications of Backdoors too. In non-malicious cases, the intention to
maintain Backdoors is functional, whereas in malicious cases, the purpose is to use available Backdoors or create a
Backdoor in the code (if one has access to it) for malicious purposes. It is a tradeoff between security and
practicality.

Benefits of Backdoors
It may be surprising to know that hard coded passwords in many cases were intentional but non-malicious
(Landwehr, Bull, McDermott, and Choi 1994). Backdoors created with good intent - often called features, golden
keys, front doors, default passwords, static passwords or admin passwords, were intended to serve a practical
purpose. With Backdoor-free software, if admin passwords were lost, there would be no way to perform
administrative operations on the software and in certain situations all data may be lost. There is a risk of the software
becoming useless. To the programmer, Backdoors provide more control. Logic-bombs, a type of Backdoor even
allows vendors to disable software after a point in time or if payments for software do not happen (Roditti 1995).
Backdoors can help in policing too. Encrypted systems, while good for law-abiding citizens may – without a
Backdoor- be a powerful weapon in the hands of terrorists (Corn 2015). Communications between them are so well
encrypted that surveillance – without the help of Backdoors – is not possible. Many times, unintentional non-
malicious developers intend to help others solve glitches. Anticipating such situations, software developers created
Backdoors. Often admin IDs and passwords are available in forums on the internet where developers find solutions,
troubleshoot, meet to discuss, and solve software related problems.

52 Singh and Henderson

The Accounting Educators’ Journal, 2021

Risks of Backdoors
Backdoors are good if their purpose is to facilitate. It is, however, obvious how such functional Backdoors can be
misused. While Backdoors are useful if admin password is lost, they have great potential for damage. Such practical
Backdoors have increasingly come under criticism for obvious reasons, as they can be manipulated or misused for
malicious intent (Ngo 1999). Increasingly, such facilitating Backdoors are misused or new Backdoors created for
malicious intent. Instances of misuse were found in VAX computers (Opaska 1986), MySQL, PHPMydmin, JBoss,
Sercomm DSL, Linksys and Netgear (Pewny, Garmany, Gawlik, Rossow, and Holz 2015). Backdoor risks can be
divided into risks from misusing functional Backdoors and risks of hidden code with malicious intent. Backdoors
can lead to ransomware attacks. Table 2 provides a representative list of such attacks, gathered from news database
Factiva.

SQL Injection Attacks (SQLIA)

Exercise
SQL injection attacks are associated with exploiting weaknesses in code. This exercise, without delving too much
into the technicalities of programming, provides learners with a firsthand account of SQL injection attacks. We
continue where we left off in the BDA exercise.
In the database file (not the ACCDE file), go to the login button (in Form Login) code from the previous example
and replace the entire code with the following code:

Option Compare Database

Private Sub Login_Click()

Dim rs As Recordset

Dim str As String

Set db = CurrentDb

Set rs = db.OpenRecordset("Select * from employee where UserID = '" &

Me.UserID.Value & "' and Password = '" & Me.Password.Value & "'")

If rs.RecordCount = 0 Then

MsgBox "Login not successful"

Else

DoCmd.OpenForm "Welcome"

End If

End Sub

Hands-on Introductory Training in Backdoor and SQL Injection Attacks 53

 The Accounting Educators’ Journal, 2021

Test the software
Save the database again as an ACCDE file (Figure 5). Test the code with the available User IDs and Passwords in
Table 1. Correct User IDs and passwords will open the Welcome form (Figure 3). Close the welcome form and test
the code with random incorrect User IDs and passwords. This will open a message: “Login not successful”. Now
copy-paste: 'or ''=' (include single quotes) in the User ID and password textboxes. Welcome form will open. Often
the User ID is known and so only the password needs to be populated with: 'or ''='. You can also use: ' or ' 1=1
(from first single quote to last 1) for User ID and password.

Lessons learned
Bad quality code creates vulnerabilities that can be exploited by hackers. Such vulnerabilities can be exploited at the
user input level.

SQLIA Details
Structured Query Language (SQL) is the most widely used language to manage databases. It joins the users to the
database providing access to data and embeds in internet friendly languages like Java and ASP. SQL commands are
often inaccessible to users. The user’s only contribution to the command is the input. When a user inputs data such
as User ID and Password, that data - called parameter - becomes part of the SQL command. This is where SQL’s
vulnerability lies. Inputs can be manipulated or even masquerade as commands to illegally access and destroy. Such
manipulations are called SQL Injection Attacks (SQLIA). In the exercise, we used: ' or ' 1=1 meaning true in SQL.
Similarly, an SQL injection with ' or ''=' too is always true. All rows in the employee table return a true, thereby
allowing access.

Various types SQL injections take advantage of the vulnerabilities in SQL- some to gain illegal entry, some to
destroy (Halfond, Viegas, and Orso 2006). The above-mentioned exercise, for example, can be tweaked to delete
entire tables. Unlike BDAs, SQLIAs are not hidden code. They are manipulations at the user input level (front-end).
While BDAs can only be from someone who has developed or has access to change the code, SQL injection intruder
could be anybody who has access to the front-end. Such attacks target databases that are accessible through a web
front-end and take advantage of flaws in the input validation logic (Boyd and Keromytis 2004). SQL injection
attacks are among the biggest threats for applications written for the Web (Halfond, Viegas, and Orso 2006). Table 3
provides a representative list of SQLIAs gathered from news database Factiva. Good code to validate inputs will
prevent such attacks. Good code and methods to prevent such attacks are beyond the scope of this training.

Software Risks

Malicious use of hidden code manifests in many forms including backdoor attacks, viruses, worms, spyware,
adware, logic bombs and trojan horses. Hidden commands include creating duplicates, destruction of files, spying,
deploying unwanted advertisements, taking the system hostage by encrypting etc. Trojan horses, for example, use
hidden code to trigger distributed denial of service attacks. Weak codes are unintentional and careless mistakes that
create errors and vulnerabilities that open the software to attacks. Computer security that will not address such
vulnerabilities can have a widespread impact on businesses and lose money (Ngo 1999).
Both hidden and weak codes are a threat as they compromise internal controls of the organization. They allow
intruders to illegally access information and even destroy systems. As is evident from the two exercises,
some attacks don't need sophistication and can be used with basic knowledge. Typical methods to find malicious
code or detect bad quality code require access to software code and do not work with executable files (Pewny,
Garmany, Gawlik, Rossow, and Holz 2015). Therefore, efforts are being made to make software source accessible
(Evans and Reddy 2002; De 2009). Table 4 provides a representative list of vulnerabilities in software.

Managing Software with COSO

The Sarbanes-Oxley Act of 2002 (SOX) requires companies to choose and implement an established IT security
framework (Wallace, Lin, and Cefaratti 2011). One such framework is the Committee of Sponsoring Organizations
of the Treadway Commission (COSO) framework. IT security, being at the crossroads of IT and management,

54 Singh and Henderson

The Accounting Educators’ Journal, 2021

requires a combination of both management and technical policies. To this end, the COSO framework provides an
outline for IT governance. In Table 5, we have mapped components of COSO to candidate policies in managing
software.

Conclusion

Many organizations had the displeasure of experiencing IT attacks in one form or the other. This training helps
students understand two vulnerabilities in software code: malicious hidden code and bad quality code. Backdoor
Attacks (BDAs) use malicious hidden code while SQL Injection Attacks (SQLIAs) target bad quality code. The
accounting curriculum typically does not include specifics of software vulnerabilities. This teaching resource -
without getting into the complexities of programming - provides hands-on introductory experience on the two
software vulnerabilities. Such vulnerabilities justify the need to manage and monitor software through established
risk management frameworks such as the Committee of Sponsoring Organizations of the Treadway Commission
(COSO) framework.

Hands-on Introductory Training in Backdoor and SQL Injection Attacks 55

 The Accounting Educators’ Journal, 2021

References

Borthick, A.F., and P. L. Bowen. 2008. Auditing System Development: Constructing the Meaning Of “Systematic

and Rational” In the Context of Legacy Code Migration for Vendor Incentives. Journal of Information Systems
22(1): 47-62.

Boyd, S., and A. Keromytis. 2004. SQLrand: Preventing SQL Injection Attacks. In Applied Cryptography and

Network Security 292-302, Springer Berlin/Heidelberg.

Corn, G.S. 2015. Averting the Inherent Dangers of “Going Dark”: Why Congress Must Require a Locked Front

Door to Encrypted Data. Washington and Lee Law Review 72(3): 1433.

COSO. 1992. Internal Control—Integrated Framework. The Committee of Sponsoring Organizations of the

Treadway Commission.

De, R. 2009. Economic Impact of Free and Open Source Software: A Study in India. Interop, Mumbai, October: 7-

9.

Debreceny, R.S. 2013. Research on IT Governance, Risk, and Value: Challenges and Opportunities. Journal of

Information Systems 27(1): 129-35.

Evans, D.S., and B. J. Reddy. 2002. Government Preferences for Promoting Open-Source Software: A Solution in

Search of a Problem. Michigan Telecommunications and Technology Law Review 9: 313-457.

Halfond, W.G., J. Viegas, and A. Orso. 2006. A Classification of SQL-Injection Attacks and Countermeasures.

Paper presented at Proceedings of the IEEE International Symposium on Secure Software Engineering,

Henderson, D., M. Lapke, and C. Garcia. 2016. SQL Injection: A Demonstration and Implications for Accounting

Students. AIS Educator Journal 11(1): 1-8.

Landwehr, C., A. Bull, J. Mcdermott, and W. Choi. 1994. A Taxonomy of Computer-Program Security Flaws. ACM

Computing Surveys 26(3): 211-54.

Murthy, U.S. 2016. Researching at the Intersection of Accounting and Information Technology: A Call for Action.

Journal of Information Systems 30(2): 159-67.

Ngo, H.H. 1999. Corporate System Security: Towards an Integrated Management Approach. Information

Management & Computer Security 7(5): 217-22.

O'Donnell, J.B., and Y. Rechtman. 2005. Navigating the Standards for Information Technology Controls. The CPA

Journal 75(7): 64.

Opaska, W.P. 1986. Closing the VAX default password “Backdoor”. EDPACS: The EDP Audit, Control, and

Security Newsletter 14(3): 6-9.

Pewny, J., B. Garmany, R. Gawlik, C. Rossow, and T. Holz. 2015. Cross-Architecture Bug Search in Binary

Executables. IEEE Symposium on Security and Privacy.

Roditti, E.C. 1995. Is Self-Help a Lawful Contractual Remedy? Rutgers Computer & Technology Law Journal

21(2): 431.

56 Singh and Henderson

The Accounting Educators’ Journal, 2021

Wallace, L., H. Lin, and M. A. Cefaratti. 2011. Information Security and Sarbanes-Oxley Compliance: An
Exploratory Study. Journal of Information Systems 25(1): 185-211.

Hands-on Introductory Training in Backdoor and SQL Injection Attacks 57

 The Accounting Educators’ Journal, 2021

APPENDIX A- Assessment of Efficacy

After debriefing, students were asked to formally respond to the following questions using a Likert scale of 1
(strongly disagree) to 5 (strongly agree). Results (Table A) show that the learning objectives were met and students
found the training to be of value.

Table A. Assessment of Efficacy (N=155)

Item Average Std.
Dev

Min Max

This task gave me a better understanding of backdoor
attacks.

4.115 0.894 1 5

This task gave me a better understanding of SQL injection
attacks.

4.012 0.912 1 5

This task gave me a better understanding of importance of
vulnerabilities in software

4.320 0.894 1 5

This project gave me a better understanding of the need to
audit software

4.122 0.940 1 5

Table 1. User IDs and Passwords

UserID Password

Seth1234 superman*123

Lauran999 Batgirl333

Hassan345 Cooldude222

58 Singh and Henderson

The Accounting Educators’ Journal, 2021

Figure 1. User ID and Password Data

Figure 2. Login Form

Hands-on Introductory Training in Backdoor and SQL Injection Attacks 59

 The Accounting Educators’ Journal, 2021

Figure 3. Welcome Form

Figure 4. Login Form view code button

60 Singh and Henderson

The Accounting Educators’ Journal, 2021

Figure 5. Save database as an executable file

Hands-on Introductory Training in Backdoor and SQL Injection Attacks 61

 The Accounting Educators’ Journal, 2021

Table 2. Representative list of Backdoors (Source: Factiva)

Date Source Article Title

6/28/2017 CNN Ransomware attack hits global companies.
5/13/2017 FARS News

Agency
74 Countries hit by NSA-powered WannaCrypt Ransomware Backdoor.

2/8/2016 SC Magazine Skype targeted by T9000 Backdoor Trojan.
11/26/2014 SC Magazine Pirated Joomla, WordPress, Drupal themes and plugins contain CryptoPHP

Backdoor.
10/202014 SC Magazine, Modular malware for OS X includes Backdoor, keylogger components.

Table 3. Representative list of SQL injection attacks (Source: Factiva)

Date Source Details
7/5/2017 Cyber Defense

Magazine
SQL Injection flaw in WordPress Plugin WP Statistics potentially exposed
300,000+ Sites

6/27/2017 SC Magazine One of the most prevalent cyber-attack methods observed are SQL
Injections.

5/19/2017 Cyber Defense
Magazine

Critical SQL Injection vulnerability found and patched in Joomla.

9/13/2016 Open Source for
You

Newest MySQL vulnerability lets attackers inject malicious settings

8/12/2015 The New York
Times

Mr. Turchynov used SQL injections were used to on Marketwired on at
least 390 occasions.

10/16/2014 SC Magazine Drupal core contains 'highly critical' SQL injection vulnerability
7/23/2014 SC Magazine Wall Street Journal website vulnerable to SQL injection, gets hacked

Table 4. Representative list of vulnerabilities

Vulnerability Details
Adware Code that renders unwanted advertising material.
Backdoor Hidden code to bypass security protocols
SQL Injection Weak code result from the mixing of code allowing access to intruders
Buffer overflow Vulnerability that allows writing data beyond buffer boundary
Virus Malicious code
Worms Self-propagating malicious code in operating systems.
Trojan horse Malicious programs that pretend to be useful.
Logic-bombs May trigger based on a time or event.

Bug Flaw in the program
Zero-day attacks Involve exploiting vulnerabilities before they are patched-up.

62 Singh and Henderson

The Accounting Educators’ Journal, 2021

Table 5. Mapping components of COSO to software code management

Component of
COSO

Brief Definition (source COSO,
1992)

Software Code Management

Control
environment

“set of standards, processes, and
structures that provide the basis
for carrying out internal control
across the organization”

- Attract, develop, and retain competent individuals.
- Maintain competent IT partnerships.
- Insist on access to software Code.

Risk assessment “dynamic and iterative process
for identifying and assessing risks
to the achievement of objectives”

- Programmers with access to the code could exploit
the code.
- Intruders (external) can exploit vulnerabilities.
- Potential violations of usage license.

Control activities “actions…… ensure
that……objectives are carried
out.”

- Restrict access to program code.
- Check software for authenticity.
- Restrict employees from downloading software.
- Scan for illegally downloaded codes.
- Scan for and update latest patches as soon as they
become available.
- Restrict access to admin passwords.
- Identify vulnerabilities in code.
- Use code management software.
- Periodically reconcile code.
- Change default root passwords as soon as possible.

Information and
communication

“information from both internal
and external sources
….providing, sharing, and
obtaining necessary
information.”

-Train employees on legal issues of software usage.
-Train employees on reporting bugs.
-Scan internet for vulnerabilities and patches.
-Monitor changes to program code.
-Identifying known malicious patterns.

Monitoring

“Ongoing evaluations… to
ascertain … five components of
internal control……present and
functioning.”

-Review above mentioned internal control components.

	Hands-on introductory training in Backdoor and SQL injection attacks
	tmp.1670952307.pdf.OiTri

