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ARTICLE OPEN

Microbiome diversity and metabolic capacity determines the
trophic ecology of the holobiont in Caribbean sponges
Michael P. Lesser 1✉, M. Sabrina Pankey 1, Marc Slattery2, Keir J. Macartney1,4 and Deborah J. Gochfeld 3

© The Author(s) 2022

Sponges are increasingly recognized as an ecologically important taxon on coral reefs, representing significant biomass and
biodiversity where sponges have replaced scleractinian corals. Most sponge species can be divided into two symbiotic states based
on symbiont community structure and abundance (i.e., the microbiome), and are characterized as high microbial abundance (HMA)
or low microbial abundance (LMA) sponges. Across the Caribbean, sponge species of the HMA or LMA symbiotic states differ in
metabolic capacity, as well as their trophic ecology. A metagenetic analysis of symbiont 16 S rRNA and metagenomes showed that
HMA sponge microbiomes are more functionally diverse than LMA microbiomes, offer greater metabolic functional capacity and
redundancy, and encode for the biosynthesis of secondary metabolites. Stable isotope analyses showed that HMA and LMA
sponges primarily consume dissolved organic matter (DOM) derived from external autotrophic sources, or live particulate organic
matter (POM) in the form of bacterioplankton, respectively, resulting in a low degree of resource competition between these
symbiont states. As many coral reefs have undergone phase shifts from coral- to macroalgal-dominated reefs, the role of DOM, and
the potential for future declines in POM due to decreased picoplankton productivity, may result in an increased abundance of
chemically defended HMA sponges on tropical coral reefs.

ISME Communications; https://doi.org/10.1038/s43705-022-00196-3

INTRODUCTION
Recent declines of coral cover, due to a variety of natural and
anthropogenic stressors [1, 2], has resulted in a significant loss of
biodiversity, ecosystem function, and important ecosystem
services for coral reefs around the world [2, 3]. Shallow (<30m)
coral reefs have undergone phase shifts due to climate change-
related coral bleaching and disease, as well as overfishing and
coastal degradation, resulting in communities that are increasingly
dominated by alternative competitors such as algae, anemones,
corallimorphs, octocorals, and sponges [4].
Sponges are seen as an emerging, and dominant, taxon on

many coral reefs [5, 6], both in terms of biomass and biodiversity,
and these changes have the potential to alter the functional
diversity of coral reefs [7]. These observations resulted in the
hypothesis that sponges would become increasingly more
dominant as coral abundance and biodiversity decline [5]. It has
also been argued, however, that climate change-related mod-
ifications in the physical oceanography of tropical coral reefs
could lead to decreases in net primary productivity, specifically of
picoplankton [8]. This could lead to food limitation for an
increasing population of filter-feeding sponges, potentially limit-
ing their predicted increase on coral reefs [8]. To appreciate the
potential for sponges to become competitively dominant on
coral reefs, we should understand and quantify the capabilities of
sponges to exploit newly available habitat. One trait that enables
sponges to exploit new habitats is their symbiotic state, an

emergent property of sponge host-microbial co-evolutionary
histories that determines the functional ecology of sponges [9]
and affects the ecological outcomes for sponges on coral
reefs [10].
The Caribbean basin has a very diverse sponge fauna that

contains many species of heterotrophic and photoautotrophic
sponges [11], whose functional ecology is essential for the health
of coral reef communities [12]. The significant role that sponges
play in benthic-pelagic coupling on coral reefs [13–15], and the
chemical ecology of sponges that results in the biosynthesis of
secondary metabolites for defense against predators, competitors,
and pathogens [16, 17], both contribute to the success of sponges
on coral reefs.
Many coral reef sponges host complex assemblages of

symbiotic microbes with diverse metabolic capabilities (i.e.,
microbiome), dominated by Bacteria and Archaea that are distinct
from the microorganisms in the surrounding seawater [18, 19].
Some sponges are described as high microbial abundance (HMA)
sponges, supporting large and diverse microbial communities
[19–22] that have critical roles in macronutrient (e.g., nitrogen,
phosphorus, sulphur) cycling on coral reefs [23–25], as well as the
production of defensive secondary metabolites [16, 17]. In
contrast, the microbial communities in low microbial abundance
(LMA) sponges are less diverse [22, 26], but still provide important
functions for the sponge holobiont [18, 25]. Differences in
microbial abundance have implications for sponge trophic
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ecology. Specifically, HMA sponges have increased mesohyl
density, low choanocyte densities, and reduced mass-specific
pumping rates, whereas LMA sponges have decreased mesohyly
density, higher choanocyte densities and greater mass-specific
pumping rates [27]. These differences are also associated with
preferential uptake of dissolved organic matter (DOM) in HMA
sponges and particulate organic matter (POM) in LMA sponges
[27]. Recent work has demonstrated that coral reef sponges can
play a significant role in the transformation of DOM into a detrital
pathway via the “sponge loop” [28, 29], which describes sponges
as important sinks for DOM on coral reefs. The sponge loop
hypothesis postulates that sponges consume large amounts of
DOM, which includes both dissolved organic carbon (DOC) and
dissolved organic nitrogen (DON) that is used as a food resource
and then released as detritus in the form of choanocytes that feed
higher trophic levels and could have significant impacts on carbon
fluxes and budgets on coral reefs [29].
Given that significant amounts of fixed carbon from corals and

benthic algae can be released into seawater as DOM, and 50% of
all DOM is derived from the exudate or lysis of primary
producers, there is a considerable pool of DOM to be exploited.
With a molar C:N ratio >10 in most cases [30, 31], sponges are
never carbon limited, and while DOM provides both energy and
carbon skeletons for protein synthesis, the latter process
still requires the intake of nitrogen, making the consumption
and assimilation of DON and particulate organic nitrogen (PON)
essential for sponge growth [10]. Compared to DOM, however,
POM is significantly more bioavailable [32], and
sponges efficiently consume PON primarily from the bacterio-
plankton portion of POM with clearance rates of 83–90%
[10, 13, 33]. These bacterioplankton have low molar C:N ratios
of ~4–6 and are a well-known source of nitrogen for active
suspension feeders [34–36]. While bioavailable POM can supply
nitrogen directly to the host, it is likely that the microbiome
obtains most of its nitrogen requirements in the form of
dissolved inorganic nitrogen (DIN) from the nitrogen waste
products of the host consumption and metabolism of POM and
DOM [36].
Sponges, and their microbiomes, have well-known roles in

nitrogen and carbon cycling on coral reefs [23, 29, 36], and it is
increasingly clear that the ecological success of sponges is a
function of both the host and its microbiome, as well as their
interactions. The emergent properties of sponges and their
microbiomes also have significant implications for the functional
ecology and biodiversity of coral reef ecosystems. The primary
question addressed here is whether symbiotic state determines
the trophic ecology of sponge holobionts. By evaluating the
differences in microbiome communities of several Caribbean
sponges representing both HMA and LMA symbiotic states, and
their functional capacities and trophic ecology using metage-
nomics and stable isotopic analyses, important insights into the
ecological roles of HMA versus LMA sponges on coral reefs can be
inferred.

MATERIALS AND METHODS
Study sites and sponge collections
To evaluate the phylogenetic, genetic, and functional diversity of sponges
across the broader Caribbean basin, replicate sponges were collected at
the same depth (15 m) from 3–4 reef sites within each of the following
locations: Belize, Curaçao, Grand Cayman and St. Croix USVI (Table S1). The
sponges represent both HMA and LMA states, as well as with and without
photosymbionts or chemical defenses. Samples of individual sponges were
collected into individual resealable plastic bags at each of these locations
(n= 5 replicates for each species/location/reef site combination: ~300 sam-
ples), subsampled into cryovials and preserved in a DNA preservation
buffer [37] and samples for RNA extraction preserved in RNALater®, and
frozen (−20 °C to −80 °C initial freezing temperature) for transport to the
University of New Hampshire for analysis. The targeted sponge species
were sourced from different sponge functional groups representing
different relative bacterial abundances, the presence or absence of
photoautotrophic symbionts, and differential production of chemical
defenses (Table 1). Specifically, we examined Aplysina cauliformis,
Amphimedon compressa, Niphates erecta, Xestospongia muta and Agelas
conifera/tubulata. The latter species represents two phenotypic morpho-
types that are genetically indistinguishable [9] and were analyzed together
in this study. These genera are widely distributed throughout the
Caribbean and therefore the results from these taxa will be broadly
generalizable to their respective functional groups. Specific reef sites were
chosen to be as ecologically similar as possible across all locations and
abiotic characteristics (e.g., temperature) at the time of sponge collection
have been reported previously [38].

DNA extraction
DNA for both the 16 S rRNA and metagenome libraries was extracted from
sponge tissue samples (~200mg) using the DNEasy PowerSoil® DNA
isolation kit (Qiagen; Hilden, Germany), following the manufacturer’s
instructions with modifications for cell lysis as described by Sunugawa
et al. [39]. This protocol was used for all DNA extractions as follows:
incubation in 5 µl 10mgml−1 Proteinase K, 0.19 µl 10 U µl−1 Lysozyme and
2 µl RNAse A at 55 °C for 12 h, followed by two rounds of 2 min bead-
beating using a Qiagen QuickLyser set at 50 Megahertz. Purified gDNA was
assessed for quality and concentration using a NanoDrop 2000c
spectrophotometer.

16 S rRNA metagenetic libraries
Microbial DNA was amplified using the polymerase chain reaction (PCR)
with primer sets targeting the universal bacterial/archaeal 16 S rRNA gene.
Samples were amplified with new degenerate primers designed to amplify
the 16 S rRNA gene (hypervariable region V3-V4), consisting of the forward
primer 515 F (5′-GTG YCA GCM GCC GCG GTA A-3′; [40]) and the reverse
primer 806 R (5′-GGA CTA CHV GGG TWT CTA AT-3′; [41]). Fluidigm linker
sequences CS1 (5′-ACA CTG ACG ACA TGG TTC TAC A-3′) and CS2 (5′-TAC
GGT AGC AGA GAC TTG GTC T-3′) were added to the 5’ end of both
forward and reverse primers to facilitate Illumina MiniSeq. The 16 S rRNA
gene PCR consisted of a 25 μl reaction with 12.5 μl AmpliTaq Gold 360
Master Mix (Applied Biosystems), 1.0 μl GC-enhancer, 0.5 μl 515 F (10 μM)
and 0.5 μl 806 R (10 μM), 2.0 μl of DNA template (40–60 ng), and 8.5 μl
nuclease free water (Integrated DNA Technologies, Coralville, Iowa).
Triplicate reactions were performed for each sponge sample and pooled
using the following protocol: initial denaturation for 10min at 95 °C, 30
cycles at 95 °C for 30 s, 50 °C for 60 s, and 72 °C for 60 s, followed by a
10min extension at 72 °C. The PCR products were then electrophoresed on

Table 1. Selected sponge genera for field collections in the Caribbean based on their bacterial phenotype [21]1, presence of photosymbionts [9]2,
and evidence for being chemically defended [16]3.

Sponge species 1Bacterial phenotype 2Photosymbionts 3Chemically defended

Aplysina cauliformis HMA yes yes

Agelas conifera/tubulata HMA no* yes

Xestospongia muta HMA yes variable

Amphimedon compressa LMA yes yes

Niphates erecta LMA yes no

*Agelas spp. have been found to contain very low numbers of cyanobacterial symbionts based on amplified sequence variants of 16 S rRNA [9] unlikely to be of
functional significance.
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a 1% agarose gel. The 16 S rRNA PCR amplicons containing Fluidigm linkers
were sequenced on an Illumina MiniSeq System employing V2 chemistry
(2 × 150 bp reads, mean 45388 read-pairs per sample) at the University of
Illinois at Chicago (UIC) Research Resources Center’s Sequencing Core.
Amplicon sequence variants (ASVs) were identified and tabulated across
samples using DADA2 v1.14 [42]. Briefly, raw reads were trimmed from the
initial 20 bp to remove residual primer, and then truncated beyond the first
instance of quality scores below 3 (truncQ= 2). The maximum expected
error during denoising (maxEE) was 2 and 5 for forward and reverse reads,
respectively. The error model was built from the first 100 M bases and
inspected using ‘plotErrors’. Denoised reads were then merged and
chimeric contigs discarded using mergePairs and removeBimeraDenovo,
respectively. Taxonomic ranks were assigned to the inferred ASVs using
the SILVA ribosomal reference database release 132, and the DADA2
function ‘assignTaxonomy’.

Microbiome composition analyses
Analysis of the sponge and environmental microbial communities was
facilitated by phyloseq functions in R [43]. The ASV count table was first
filtered to discard samples with fewer than 8000 counts and then filtered
to retain ASVs detected in more than one sample and accounting for at
least 10 occurrences across samples. ASVs assigned to the Order
“Chloroplast” by SILVA taxonomy were excluded from further analysis.
Sample counts were then rarefied to normalize for sequencing effort.

Alpha and beta diversity of sponge microbiomes. Shannon diversity of 16 S
rRNA communities among samples was quantified using the ‘diversity’
function from vegan [44]. Effects of host species and location on overall
Shannon diversity were assessed using two-way ANOVA on normalized ASV
counts using the trimmed mean of M-values (TMM) method in edgeR.
Subsequently, effect of symbiotic state (HMA, LMA) was tested using a linear
mixed-effects (LME) model to control for species, with symbiotic state as fixed
effect and species as random effect, using the function ‘lme’ from the R
package nmle [45]. Within sampling location effect was also tested with an
LMEmodel, with location as a random effect. Effects of location and species on
16 S rRNA composition were evaluated using single-factor PERMANOVAs with
the ‘adonis2’ function from the vegan package, with Bray-Curtis distances
among samples calculated from normalized counts. Pairwise contrasts
between species and locations were examined using ANOSIM. Composition
was assessed at two levels: ASV counts (4274 ASVs) and counts agglomerated
to microbial class (60 classes). Effect of symbiotic state was tested using a
nested PERMANOVA to control for species with the function ‘np.manova’ from
the R package BiodiversityR [46]. The differential enrichment of 16 S rRNA ASVs
between sponge species, localities and symbiotic states was assessed using
Wald tests through the R package DESeq2 [47].

Metagenome library preparation
Metagenome libraries were constructed from 57 samples, consisting of
Agelas conifera/tubulata (HMA, n= 3), Amphimedon compressa (LMA, n= 3),
Aplysina cauliformis (HMA, n= 3), Niphates erecta (LMA, n= 3), and
Xestospongia muta (HMA, n= 3) collected from all four locations, except
for A. compressa, which was only collected from Belize, Grand Cayman, and
St. Croix. Libraries were constructed using the protocol for NEBNext Ultra II FS
DNA library preparation (New England Biolabs) and sequenced on the
Illumina HiSeq2500 platform (PE150; Novogene). Reads from demultiplexed
sequence files were error-trimmed using Trimmomatic [48] and mapped to
the UniRef database using PALADIN [49]. Enzyme-mapped read-counts to
enzymes using the 175 Kyoto Encyclopedia of Genes and Genomes (KEGG)
metabolic pathways were then tabulated according to either metazoan,
bacterial, or archaeal origin using PALADIN plugins ‘taxonomy’ and
‘pathways’. Enzyme-mapped read counts were then normalized to account
for sample variance using the trimmed mean of M-values (TMM) method
available from the R package edgeR [50]. Metagenomic libraries are available
at the NCBI Short Read Archive under BioProject PRJNA555077. To quantify
genomic clusters associated with secondary metabolite production,
metagenome samples were pooled by species for assembly using MegaHit
v1.1.3 [51]. Sample reads were mapped to each species assembly using BWA
v0.7.17-r1188 [52]. Secondary metabolite clusters were then identified and
tabulated using AntiSMASH v4.1.0 [53].

Alpha and beta diversity of metagenomes
Shannon diversity indices for the contribution to functional capacity in the
metabolic pathways of sponges were calculated using the ‘diversity’

function from vegan [44]. Effects of host species and location on overall
Shannon diversity were assessed using two-way ANOVA on normalized
enzyme-mapped read counts. Subsequently, counts mapping to Archaea,
Bacteria, and Metazoa were isolated and tested for domain-specific
patterns. Effects of site and species on the contribution of different
metabolic pathways were evaluated using single-factor PERMANOVAs with
the ‘adonis2’ function from the vegan package, with Bray-Curtis distances
among samples calculated from normalized enzyme-mapped read counts.
Compositional differences were assessed first across the 4853 KEGG
enzymes using ANOSIM initially, and then separately for enzyme-mapped
read counts within each pathway using PERMANOVAs, followed by false
discovery rate (FDR) correction of p-values.

Effect of symbiotic state on sponge functional capacity
Differential enrichment in the functional capacity of several metabolic
pathways between HMA and LMA sponge samples was assessed using
Wald tests, on the cumulative counts of enzyme-mapped read counts from
each pathway, through the R package DESeq2 [47]. The metagenomic
analysis of specific groups of functional genes involved in the cycling of
carbon and nitrogen were used to assess heterotrophic versus photo-
autotrophic capacity, and genes involved in secondary metabolite
biosynthetic pathways (e.g., polyketide synthases) were assessed to
determine the capacity for chemical defense production in sponges.

Stable isotope analyses
The abundance of natural stable isotopes (C and N) in sponge tissue for
each species, from each location, were used as indicators of sponge
dependence on the uptake of autotrophically sourced exogenous DOM.
This DOM comes from autotrophic sources including corals, macrophytes
and lysed phytoplankton versus POM, primarily sourced from picoplankton
including autotrophic and heterotrophic bacteria. Subsamples of the
sponge holobionts were frozen in aluminum foil for transport, freeze-dried
and washed so that only organic material was analyzed. Sponge samples
were placed onto pre-combusted (450 °C, 6 h) GF/F filters (0.7 µm) and
combusted in a Carlo Erba NA 1500 elemental analyzer interfaced with a
Delta Plus mass spectrometer and analyzed for particulate C and N, as well
as for δ15N and δ13C stable isotopes. Pre-combusted GF/F filters were also
processed as blanks to account for any background signal. In addition to
parametric statistics, Stable Isotope Bayesian Ellipses in R (SIBER) [54, 55],
was used to determine the size and overlap of sponge trophic niches for
individual sponges and competition for food resources using bulk stable
isotope values for both δ13C and δ15N per mil (‰).

RESULTS
Alpha and beta diversity of microbiomes
The Shannon H index of microbial alpha, or species, diversity
differed among species and sampling sites (ANOVA, site
F3,323= 10.0, p < 0.001; species F4,323= 646.8, p < 0.001). All
species (Table 1) differed significantly in post hoc pairwise Tukey’s
HSD comparisons, except Aplysina cauliformis and Xestospongia
muta, both HMA species with photosymbionts (i.e., cyanobacteria).
All HMA species exhibited consistently higher microbiome
diversity than LMA species, and within the latter, Niphates erecta
produced the lowest Shannon index. Overall, HMA alpha diversity
was significantly higher than LMA diversity when accounting for
individual species effects (nested ANOVA F1,3= 19.1, p= 0.02),
with no significant effect of location (nested ANOVA F13,314= 1.1,
p= 0.35) observed (Fig. S1).
The beta diversity for microbial community composition at the

amplicon sequence variants (ASV) (4210 ASVs) and class levels (60
classes) were significantly affected by both sponge species
(PERMANOVA F4,326= 189.5, p= 0.001 for ASV; F4,326= 402,
p= 0.001 for class) and sampling location (PERMANOVA
F3,327= 3.22, p= 0.001 for ASV; F3,327= 2.4, p= 0.031 for class)
(Fig. 1), where species explains 70% and 83% of the variance for
ASV and class, respectively, but location explains significantly less
(<3%) of the variance for ASV and class. When controlling for
sponge species variance, there was not a significant difference
(nested PERMANOVA F1,326= 2.1, p= 0.14) based on microbiome
composition despite the observed segregation of HMA and LMA
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symbiotic states (Fig. 1). Highly significant differences in micro-
biome diversity were detected using ANOSIM pair-wise compar-
isons between all species (ANOSIM R ≥ 0.95, p= 0.001), while
location differences produced lower dissimilarities (R < 0.04).
Overall, microbial composition in sponges from Belize, St Croix
and Curaçao all differed from each other, while those from Grand
Cayman did not differ significantly from any other locality.

Microbiome differences between symbiotic states
A total of 587 ASVs were significantly enriched in HMA sponges
(notably: Chloroflexi [photoheterotrophic], Gemmatimonadetes
[photoheterotrophic], Acidobacteria [heterotrophic/carbon utiliza-
tion], Poribacteria [mixotrophic/carbon fixation]), and 417 ASVs
were enriched in LMA sponges (including: Bacteriodetes [protein
and complex carbohydrate degradation], Planctomycetes [anaero-
bic ammonium oxidation: ANAMMOX] and Cyanobacteria [photo-
autotrophic]) (Fig. S2). Locations (n= 4) were differentially
enriched for few ASVs, with no location enriched for more than
88 ASVs in pairwise contrasts. Most enriched variants belonged to
Proteobacteria and Chloroflexi.
Host species (n= 5) enrichments followed the trends observed

for HMA/LMA enrichment patterns (Fig. 2). For comparisons within
host symbiotic state (i.e., HMA versus LMA), there were fewer
overall ASVs differing between species. Xestospongia muta and
Aplysina cauliformis were both enriched for ASVs belonging to
Chloroflexi, Actinobacteria (saprophytic), Spirochaetes (chemoheter-
otrophic/nitrogen fixation), Acidobacteria and Gemmatimonadetes,
when compared to Agelas conifera/tubulata. The LMA species,
Niphates erecta and Amphimedon compressa, were differentially
enriched by only 101 and 184 ASVs respectively, with Proteobac-
teria representing the majority of differential enriched ASVs.

Metabolic diversity from metagenomes
The metagenome library size was 29,771,675 read-pairs ±
4,798,947 (mean ± SD). When these reads were queried against
genes encoding 175 KEGG pathways, 157 were detected and a
total of 4853 enzymes identified. Host species had a significant
effect on overall metabolic diversity, as did Domain, with Bacteria
consistently showing greater metabolic diversity regardless of site
(Fig. S3). Based on Shannon’s H diversity index, host species
predicted that metabolic differences were driven by sponge
symbiotic state, with HMA sponges showing significant differ-
ences from, and greater functional metabolic capacity than, LMA
sponges (ANOVA F1,53= 13.3, p < 0.001) (Fig. 3). Tukey’s HSD post
hoc multiple comparisons revealed that this effect was largely
driven by LMA species with less-diverse microbiomes (A.
compressa and N. erecta) which differed from each other and
from all HMA species. Functional differences in metabolic capacity,

at both the metabolic process and pathway levels, were driven
primarily by species differences (PERMANOVA F4,50= 12.6,
p= 0.001), with all HMA species grouping together and LMA
species showing significant differences compared to HMA species
(Fig. 3). While location was not a significant factor overall, tests on
individual pathways revealed 125 pathways where enzyme
composition was affected by species differences, and only 14
pathways were affected by location (Table S2).

Metabolic pathway differences between HMA and LMA
sponges
The composition of KEGG metabolic enzymes detected from
metagenomic reads differed between HMA and LMA sponge
samples (ANOSIM R= 0.81 p= 0.001) (Fig. 3). HMA sponges
exhibited greater metabolic alpha diversity (Shannon H) across the
4853 enzymes (ANOVA F1,53= 267, p < 0.001) (Fig. S3). Symbiotic
states (HMA/LMA) differed in enzymatic composition for 121/157
KEGG pathways (FDR-adjusted PERMANOVAs, Table S2). Sampling
location did not affect composition for any pathways after FDR
correction. The relative contribution of microbes (Archaea and
Bacteria) to an HMA host’s functional capacity was significantly
higher than for LMA sponges across all metabolic pathways
(Wilcoxon sign-rank V= 9515, p < 0.0001). For the metabolic
pathways examined, the enzymes in those pathways came from
a broader diversity of microbial taxa in HMA sponges, mirroring
the broader microbial diversity observed within HMA sponges
(Fig. S4). For example, Archaea contributed reads to amino acid
(valine/leucine) and energy (photosynthesis) metabolism as well
as to streptomycin biosynthesis in HMA sponges, and to
ansamycin biosynthesis in LMA sponges. However, Bacteria
provided increased functional redundancy across most metabolic
categories in HMA but not LMA sponges (Fig. S4).
When 157 KEGG pathways are examined based on HMA-LMA

states, there were 87 pathways with differential enrichment in
terms of relative abundance and/or enzymatic completeness for a
metabolic pathway. In terms of enzyme abundances based on
enzyme-mapped read counts, 43 pathways were significantly
enriched in HMA and 44 enriched in LMA sponges based on Wald
tests, although most did not differ significantly in magnitude (e.g.,
log2 fold-change values <1) (Fig. 4, Table S2). HMA sponges were
especially enriched for pathways involving secondary metabolite
production (Wald test adjusted-p < 0.05: 13 HMA-enriched vs 4
LMA-enriched pathways), while carbohydrate metabolism path-
ways were more likely to be enriched in LMA pathways
(6 significantly LMA-enriched vs 2 HMA-enriched). In terms of
pathway completeness (i.e., percentage of enzymes detected per
KEGG path), HMA sponges exhibited higher average pathway
completeness than LMA sponges (45.4% vs 32.3%: Welch’s t= 9.8,
df= 42, p < 0.0001), notably among metabolic pathways involving
amino acids, xenobiotics, secondary metabolites, vitamin bio-
synthesis, carbohydrate metabolism and energy production
(carbon, sulfur, methane, nitrogen cycling) (Figs. 5, S5).
While the enzyme-mapped read counts involved in prokaryotic

carbon fixation (KEGG EC00720) were ~15% more abundant in
LMA sponges (Fig. 4, Table S2), the reads from HMA sponges
accounted for more component enzymes (33 enzymes detected in
HMA samples compared to 27 detected in LMA samples, on
average) (ANOVA F1,53= 64, p < 0.001) (Figs. 5, S5). Specifically,
HMA sponges were enriched for enzymes involved in the
reductive citrate cycle, the 3-hydroxypropionate cycle and the
hydroxyproprionate-hydroxybutyrate cycles, while LMA sponges
were enriched for enzymes in the Wood-Ljungdahl cycle (i.e., the
reductive acetyl CoA pathway; Fig. S6). Enzymes involved in
oxygenic photosynthesis were detected in both HMA and LMA
samples, both at relatively low abundances (<1% of mapped
reads) compared with abundances of reads mapped to other
prokaryotic carbon fixation pathways described above (3.5% of all
mapped reads).

Fig. 1 Beta diversity and ordination of microbial community
samples. Samples colored by species and microbiome symbiotic
states; High Microbial Abundance (HMA) and Low Microbial
Abundance (LMA), with shape denoting sample location (BZ=
Belize, CU= Curaçao, KY= Grand Cayman, SX= St. Croix).
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HMA sponges were also enriched for multiple KEGG pathways
involving the biosynthesis of secondary metabolites including
sesquiterpenes, triterpenes, betalain, aflatoxin, flavonoids, iso-
quinoline alkaloids, as well as steroids, vitamins, and degrada-
tion of xenobiotics. Among glycan (i.e., polysaccharide)
metabolic processes, HMA samples contained more enzymes
involved in lipopolysaccharide biosynthesis, while LMA samples
were enriched for glycosaminoglycan (GAG) metabolic path-
ways. Significantly more genomic clusters were also identified in
HMA sponges for 24/30 secondary metabolite categories
compared with LMA sponges using AntiSMASH (Welch’s t-tests,
Bonferroni-adjusted p-values < 0.05) (Fig. S7) Notably, HMA
sponges were highly enriched for gene clusters involved in
terpene biosynthesis, type I polyketide synthases and bacter-
iocins. LMA sponges were more enriched for KEGG secondary
metabolite pathways involving staurosporine, clavulanic acid,
and siderophore-group non-ribosomal peptides (Table S2), but

were not enriched for any of the broader metabolite categories
using AntiSMASH (Fig. S7).

Stable isotope differences between sponges by species and
symbiotic state
The natural abundance of δ13C ‰ and δ15N ‰ in the tissue (i.e.,
holobiont) of sponges across the Caribbean (Fig. S8) show a
significant effect of species for both δ13C (ANOVA: F4,161= 84.12,
p < 0.0001) and δ15N (ANOVA: F4,161= 7.08, p < 0.0001). The two
known photoautotrophic sponges, Aplysina cauliformis and
Xestospongia muta, had the lowest δ13C values, and were
significantly different from each other, and from all other sponge
species (Fig. S8, Tukey’s HSD, p < 0.05). For the δ15N values there
was significantly more overlap between species with A. cauliformis
significantly different (Tukey’s HSD, p < 0.05) from all other species
(Fig. S8). The C:N ratios for sponge species were also significant
(ANOVA: F4,161= 86.41, p < 0.0001) with all values indicating

Fig. 2 Relative abundances of microbial classes, averaged within species at each collection location (BZ= Belize, CU= Curaçao,
KY=Grand Cayman, SX= St. Croix) and microbome symbiotic states; High Microbial Abundance (HMA) or Low Microbial Abundance
(LMA). Only classes accounting for at least 1% of reads are shown. HMA high microbial abundance, LMA low microbial abundance.
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nutrient sufficiency. Multiple comparison testing did reveal that X.
muta had the highest C:N ratio at 5.34, which was significantly
different than the lowest C:N ratio seen in A. tubulata/conifera at
3.89. When these same sponge species were compared based on
their symbiotic state a significant difference (ANOVA:
F1,161= 70.26, p < 0.0001) for δ13C ‰ was observed with HMA

sponges having more negative (−18. 7 ± 0.08 [SE]) δ13C ‰ values
than LMA sponges (−17.6 ± 0.09 [SE]) with a Cohen’s d effects size
test of 1.35. For the δ15N values there were no significant (ANOVA:
F1,161= 0.83, p= 0.774) differences between HMA (7.43 ± 0.29
[SE]) and LMA species (6.24 ± 0.16 [SE]) with a Cohen’s d effects
size test of 0.06. The C:N ratios of HMA sponges (4.59 ± 0.06) were
significantly (ANOVA: F1,161= 4.58, p= 0.034) greater than LMA
sponges (4.41 ± 0.04) but with a weak Cohen’s d effects size of
0.23 and a non-significant adjusted p-value of 0.051.
The SIBER analysis, using both the δ13C and δ15N of the sponge

tissues, shows the isotopic niche width for all sponges, grouped by
individual species across all sampling sites and outlined by
standard ellipses (Fig. 6a). Significant p-values generated from a
residual permutation procedure, and Hotelling’s T2 test, using the
corrected standard ellipse area, revealed that all pairwise
comparisons between species were significant, with most species’
isotopic niche width overlaps ranging from 0–16% (Table S3). A
significant 40% overlap in isotopic niche width for A. compressa
and A. tubulata/conifera (Table S3, Fig. 6a) indicates a moderate
degree of resource sharing between autotrophically derived DOM
and POM, regardless of their symbiotic state (i.e., LMA versus HMA
respectively).
When sponge tissue isotopic values are analyzed based on their

HMA or LMA status (Fig. 6b), a significant effect of symbiotic state
for δ13C (ANOVA: F1,161= 70.26, p < 0.0001) was observed with
HMA sponges having lower (−18.69 ± 0.083 [SE]) values than LMA
sponges (−17.60 ± 0.097). No significant effects for δ15N (ANOVA:
F1,161= 13.78, p= 0.774) were detected between HMA

Fig. 4 Differential enrichment of metabolic pathways detected between high microbial abundance (HMA) and low microbial abundance
(LMA) microbiome symbiotic states. logFC < 0: HMA-enriched, logFC > 0: LMA-enriched. Only pathways with significant differences under
Wald tests (adjusted p < 0.05) are shown.

Fig. 3 Ordination of metagenomes for all species and locations of
collection based on Bray-Curtis distances of total counts detected
for each KEGG pathway. Samples colored by species and micro-
biome symbiotic states; High Microbial Abundance (HMA) and Low
Microbial Abundance (LMA), with shape denoting sample location
(BZ= Belize, CU= Curaçao, KY=Grand Cayman, SX= St. Croix).
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(3.58 ± 0.117) and LMA (3.62 ± 0.090) sponges. Analysis of
symbiotic state using SIBER showed a significant (Hotelling’s
T2= 70.77, F= 34.73, p= <0.001), but low, overlap of 14% in
isotopic niche width between HMA and LMA sponges. Taking the
isotopic results and the isotopic niche width analysis together
suggests mixotrophy for both HMA and LMA sponges, and low
levels of resource competition for DOM and POM between HMA
and LMA symbiotic states.

DISCUSSION
Microbiome composition and diversity
Early studies on the species richness and diversity of microbiomes
for sponges from multiple habitats focused on enumerating
differences between sponge species [19] and describing the
presence of a core microbiota [19, 20]. Sponge microbiomes are
often described as species-specific but do harbor many generalists
as part of the core microbiota for a large range of hosts [9, 56].
Additionally, it appears that sponge microbiome communities are
persistent and stable across the HMA-LMA dichotomy [57, 58].
Despite the presence of a core microbiota, key microbiome taxa
can be used to identify the symbiotic state of sponges, and their
functional attributes [9].
In this study, underlying host species differences in sponge

microbiome diversity are significant, but are driven by sponge
symbiotic state (i.e., HMA-LMA dichotomy), and not by geographic
location as demonstrated here over large spatial scales across the
Caribbean, and as previously reported for small spatial scales
within a localized coral reef system [59]. In both studies the
microbiome analysis, and comparison of HMA and LMA sponges,
was not confounded by differences in environmental conditions.

The HMA species used in this study contain Thaumarchaeota,
Cyanobacteria (except A. tubulata/conifera), Poribacteria and
Chloroflexi, microbial taxa known to be functionally important
for oxidizing ammonia, CO2-fixation by both oxygenic and non-
oxygenic pathways, and complex carbohydrate degradation
[60–62]. In sponges, both functional convergence and redundancy
within their microbiomes has been observed [63, 64]. This
facilitates the maintenance of metabolic pathways associated
with carbon and nitrogen metabolism, chemical defense produc-
tion, and complimentary pathways such as the biosynthesis of
vitamins by symbionts and their catabolism by the host
[63, 65, 66]. While Fan et al. [63] used both HMA and LMA sponge
species in their study on the functionl redundancy and
convergence in the metabolic pathways of sponge microbiomes,
they did not contextualize their findings, as did Ribes et al. [64],
within the HMA-LMA dichotomy.
The functional differences in overall metabolic capacity,

assessed by quantifying the enrichment in KEGG pathways among
the sponge metagenomes, was driven primarily by host species.
However, sponge species differences in metabolic capacity, as was
the case for differences in their microbiomes, are embedded
within their symbiotic state with HMA species having greater
overall functional metabolic capacity than LMA species [9]. It is
interesting to note that the LMA sponge, Niphates erecta has a
greater diversity of metagenomic pathways originating from the
KEGG analysis of metazoan genes compared to all other sponges
in this study. However, LMA species do show greater metabolic
capacity than HMA species in some pathways such as carbohy-
drate metabolism and aerobic respiration, while HMA samples
were enriched for metabolic processes involving nitrogen and
sulfur cycling, as well as amino acid metabolism. In addition, the

Fig. 5 Relative contribution of microbial and host genomes to total pathway abundances. Relative contributions are averaged for High
Microbial Abundance (HMA) states in red, and Low Microbial Abundance (LMA) symbiotic states in blue.
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functional capacity of HMA sponges for the biosynthesis of
secondary metabolites was highly enriched compared to LMA
sponges. This is consistent with a recent analysis by Pankey et al.
[9] that showed a significant increase in feeding deterrence
among HMA sponges relative to LMA sponges over evolutionary
timescales, indicating the functional importance of these biosyn-
thetic pathways, and strong selection pressure to maintain them.
In addition, some of these HMA species exhibit allelopathic and
antimicrobial activity that would further their ecological resistance
to competitors and/or pathogens in these systems [67, 68].

Metagenomics and metabolic functional capacity of sponges
What are the differences in metabolic capacity between HMA and
LMA sponges? As reported previously [9], the relative genomic
contributions of the sponge host to the holobiont metabolic and
biochemical capacity are greater in LMA compared to HMA
sponges. In contrast, the relative contribution of the microbiome
(Archaea and Bacteria) in HMA sponges to their holobiont
functional capacity is consistently higher than for the LMA
microbiome across most metabolic pathways. This is supported
by the functional redundancy from diverse prokaryotes diagnostic
of HMA sponges (i.e., Actinobacteria, Chloroflexi, Nitrospirae,

Spirochetes). In addition, HMA sponges have significantly greater
capacity for O-antigen, lipopolysaccharide and protein biosynth-
esis directly related to the maintenance, biosynthetic require-
ments and energetic costs associated with their higher densities
of symbiotic prokaryotes. While prokaryotic carbon fixation (i.e.,
anaerobic autotrophic pathways) and oxygenic photosynthesis
pathways (i.e., Calvin cycle) were marginally enriched in LMA
symbiont communities, oxygenic photosynthesis enzymes
accounted for a fraction of the reads compared to other carbon-
fixing pathways for all sponges suggesting low autotrophic inputs
from symbiont photosynthesis. A closer examination of the
distribution of enzyme-mapped read counts among carbon-
fixing pathway enzymes indicates that HMA and LMA sponges
fix carbon via multiple mechanisms. HMA sponges were enriched
for enzymes involved in the reductive citrate cycle, the
3-hydroxypropionate cycle and the hydroxyproprionate-
hydroxybutyrate cycles (known primarily from Chloroflexi and
aerobic Archaea), while LMA sponges were enriched for enzymes
in the Wood-Ljungdahl cycle (characteristic of Proteobacteria)
(Fig. S8). Given the diversity of photoautotrophic and chemoauto-
trophic carbon-fixing pathways in coral reef sponges, the
autotrophic capacity of sponges should be further explored and
their trophic status as potential mixotrophs quantified.

Stable isotopes and sponge trophic ecology
The δ13C values of the sponges in this study range from
−17.16 ± 0.12‰ (SE) to −18.80 ± 0.13‰ and were significantly
different between HMA and LMA sponges. Aplysina cauliformis
and Xestospongia muta exhibited the lowest δ13C values indicative
of consuming more autotrophic (i.e., DOM; δ13C of DOM from
either macrophytes or corals, −11.21 to −19.50‰ and −15.46 to
−17.95‰, respectively [69]), compared to heterotrophic (i.e., POM;
−17.78 to −27.67‰ [69]), sources. The δ13C values for these HMA
sponges could come from either photosynthates released by
cyanobacterial symbionts, or the consumption of DOM or POM
from an autotrophic source. The stable isotope values gave no
indication that CO2 fixation by alternate pathways, such as the
reductive citrate acid cycle (−14.0‰), known to occur in the
abundant Chloroflexi symbionts [62] changed the isotopic values
of the sponges studied. For X. muta 13C-HCO-3 tracer studies have
shown initial uptake by the microbiome, with subsequent
translocation to, and equilibrium with, the host after a 12 h
pulse-chase experiment [70], which has also been shown for
Chondrilla caribensis using NanoSIMS, and where photoautotrophy
was shown to contribute only 7% of the total daily carbon uptake
[71]. Other studies using compound-specific isotopic analysis of
amino acids (CSIA-AA) on sponges have shown little dependence
on photoautotrophy for shallow and mesophotic sponges [72, 73],
with either no dependence on POM [72], or the consumption of
DOM and translocation of essential amino acids from the bacterial
symbionts to the host, with or without POM consumption [72, 73].
The δ15N value is often used as a measure of heterotrophy or

change in trophic position in animals, and in sponges it has been
used to describe changes in trophic position with increasing
depth [33]. The HMA and LMA sponge δ15N values were not
significantly different in this study because sponges from each
location were exposed to similar irradiances, temperatures and
concentrations of food and nutrients [38]. The microbiomes of
sponges have members involved in all pathways of a complete
nitrogen cycle, both its aerobic and anaerobic components with
its different fractionation factors [23, 66, 69]. This internal recycling
could affect the δ15N values of sponges as nitrification and
denitrification can increase δ15N values [74], while nitrogen
fixation can decrease the δ15N values of sponges [23]. The δ15N
values of sponges in this study are also consistent with the
consumption of picoplankton including isotopically lighter
nitrogen-fixing bacteria that would be available in shallow tropical
waters [75]. Given that the likely isotopic half-life in sponges for

Fig. 6 Bivariate plot of SIBER analysis, using the δ13C and δ15N
from sponge tissues. A For the sponge species analyzed across all
locations the isotopic niche width of each species is indicated by the
areas outlined by standard ellipse areas of overlap. Solid lines
represent standard ellipse areas of overlap with same-colored dots
representing individuals for each species. B Analysis of High
Microbial Abundance (HMA) and Low Microbial Abundance (LMA)
symbiotic states of Caribbean sponges. The isotopic niche width of
each state is indicated by the areas outlined by standard ellipse
areas of overlap with same-colored dots representing individuals for
each symbiotic state.
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these POM sources is ~2 mo [32], combined with the similar
characteristics for each collection location, the observed consis-
tency in δ15N values is not unexpected. In fact, if one takes a
commonly used metabolic fractionation factor of 3.5‰ for δ15N
from one trophic level to the next and subtracts that from the
tissue δ15N values observed here, you find a range of δ15N values
for sponges between −0.61‰ to 0.95‰ which suggests that the
original food source for these sponges was influenced by nitrogen
fixation [76]. This metric is not without its issues when applied to
multi-compartmental mutualistic symbioses such as corals or
sponges [76] but is informative as an initial estimate.
The trophic ecology of the sponges studied here was also

quantified using a SIBER analysis of their δ13C and δ15N stable
isotopic values [54]. More broadly, these species differences are
embedded within a significant 14% isotopic niche overlap
between HMA and LMA sponges across the Caribbean basin,
revealing a very low degree of resource sharing between these
symbiotic states [54] which consume mostly autotrophically
sourced DOM or live POM, respectively [77]. In a similar study by
Freeman et al. [78] a 31% isotopic niche overlap was observed
between HMA and LMA sponges indicating greater resource
sharing than reported here, and where there was no difference
in isotopic niche space when all sponge species, including HMA
species designated as low chlorophyll (HMA-L) or high
chlorophyll (HMA-H) species, are analyzed together. Additionally,
in the absence of any environmental data, either abiotic or
biotic, the observations in Freeman et al. [78] for species, or HMA
versus LMA differences, cannot be untangled from the possible
confounding effects of different environments (e.g., trophic
resources) at the sites within the Miskito Cays, Honduras. Here,
Agelas tubulata/conifera, identified as an HMA sponge, sits in an
isotopic niche space between HMA and LMA species where
pairwise comparisons indicate significant differences between A.
tubulata/conifera and all other sponge species, regardless of
symbiotic state, as observed in previous studies [69, 79].
Additionally, the SIBER analysis places A. tubulata/conifera in a
similar isotopic niche with LMA sponge Amphimedon compressa,
despite the differences in their microbiomes. However, based on
the metagenomic data, the functional capacity of A. tubulata/
conifera is indistinguishable from other HMA sponges. One
possible explanation is that A. tubulata/conifera has very few
cyanobacterial reads, consistent with it being an HMA-L sponge
[69] that depends more on POM, with its increased bioavail-
ability [32]. While differences in host species have been invoked
as driving the trophic biology of sponges [79], the same study
identified a significant effect of symbiont state on the isotopic
signature of a sponges with an R2= 0.20 which is within the
range between a medium and large effects size and therefore
ecologically relevant.

The microbiome of HMA and LMA sponges determines their
trophic ecology
Do the diversity, abundance and metabolic capacity differences in
the microbiomes of HMA and LMA sponges determine the trophic
ecology of HMA and LMA holobionts [27, 36, 69, 80]? Both HMA
and LMA sponges consume DOM and POM, but LMA sponges
have higher pumping rates and greater consumption of POM
[27, 36, 71]. Conversely, HMA sponges typically have lower
pumping rates and greater consumption of DOM [27, 36, 76].
Notwithstanding concerns regarding the allometric effects of
sponge size (i.e., volume, mass, or length) on pumping rates [81],
which can be effectively addressed using statistical approaches
[33], direct measurements on emergent sponges in the Caribbean
show that HMA sponges acquired 71–93% of their carbon from
DOM, whereas LMA sponges acquired only 0–5% of their carbon
from DOM [77]. Additionally, Agelas tubulata/conifera, and
Xestospongia, which were also part of this study, showed similar
volumes and pumping rates in the McMurray et al. [77] study,

suggesting that allometric effects did not significantly confound
these results. Consistent with these differences between HMA and
LMA sponges, Rix et al. [82] showed that DOM uptake by the
microbiome of HMA sponges accounts for 65–87% of assimilated
DOM and ~60% of the total heterotrophic inputs. Conversely,
DOM assimilation by LMA microbiomes is <5% while the majority
(>95%) of both DOM and POM assimilation is carried out by the
host [82]. Importantly, the microbiomes of HMA sponges have
been shown to reprocess DOM into free amino acids that are then
translocated to the host [72, 73]. These free amino acids are readily
available for protein synthesis and given the 2–3 orders more
bacterial biomass in HMA sponges compared to LMA sponges this
is a significant ecological advantage.
A recent analysis of sponge co-phylogeny between sponges

and their microbiomes [9] showed that the microbial composition
of HMA and LMA microbiomes across host species represent
distinct ecological communities despite variations in the micro-
biomes of sponges that suggest intermediates in this dichotomy
exist [79] or could represent evolutionary transitional states. Host
microbiome differences were also specific for either HMA or LMA
sponges with high endemism [9]. This is exemplified by the fact
that sponges generally, and HMA holobionts specifically, exhibit a
strong signal of phylosymbiosis and co-phylogeny with their
microbiomes that have been shaped by natural selection to
specialize during a period of rapid diversification on coral reefs in
the Cenozoic [9, 83]. These specializations would include being
able to exploit new, and abundant, trophic resources (i.e., DOM),
and to produce secondary metabolites for defensive purposes [9].
The HMA sponges examined here, regardless of host taxonomy,
also exhibit significantly greater metabolic functional capacity
than their LMA counterparts that is attributable to their
microbiomes. The data presented here provide strong support
for sponge microbiomes driving their trophic ecology, and for the
HMA-LMA dichotomy [9].

CONCLUSIONS
How should we study the trophic ecology of sponges? The HMA-
LMA dichotomy, based on multiple phenotypic characteristics
described above, is principally understood in the context of a
combined character state, microbiome community structure and
biomass, which varies between HMA and LMA sponge species.
The most common variant of this dichotomy is based on the
presence of high or low concentrations of chl a from the
presence of cyanobacteria in the microbiome [84] that is largely
confined to HMA sponges [36]. While ecologically interesting, a
recent study on the evolution of HMA and LMA sponges
analyzed a very large data set of sponges and their microbiomes,
including those considered HMA-L or HMA-H variants, and found
that the presence of cyanobacteria was not diagnostic of HMA
sponges in Random Forest models, with many LMA sponge
communities characterized by high relative abundances of this
bacterial phylum [9].
Another approach is to consider HMA and LMA sponges as two

symbiotic states, or phenotypes. Simply, a phenotype is based on
a set of observable/measurable characteristics of individuals
resulting from the interaction of its genotype with the environ-
ment. Host sponge predisposition towards either HMA or LMA
status likely represents an inherited trait (genotype) given the
uniformity and consistently of communities within species and
similarity in communities between closely related hosts. This
genotype along with environmental variables determine the
morphology and physiology of the host (ontogenetic phenotype),
its microbiome (symbiotic phenotype), and ultimately holobiont
function (multiple phenotypes). Both ontogenetic phenotypes,
which are controlled by genetics of the developmental program of
the host, and the response of the microbiome to the external and
internal environment, can change because these phenotypes are
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plastic (i.e., phenotypic plasticity) as has been previously demon-
strated for sponges [85, 86].
Ecologically, sponges represent a dominant functional group on

coral reefs worldwide, and there is evidence that sponge
abundance and biomass are increasing on shallow reefs as coral
cover declines due to anthropogenic disturbances [5]. All sponges
consume varying amounts of DOM and POM, and the phenotypic
differences described here for select sponge species across a wide
geographic expanse in the Caribbean basin have important
ecological ramifications for the distribution of HMA and LMA
sponges. This includes sufficient trophic niche separation within
complex sponge communities to increase local sponge biodiver-
sity and co-existence [87]. Increased DOM production caused by
phase shifts to algal-dominated coral reefs has the potential to
facilitate selection for increasing sponge populations generally,
and chemically defended HMA sponges that can take advantage
of the increasing amounts of DOM on coral reefs [9]. In the
Anthropocene, the potential for this ecological shift will have to be
reconciled with potential decreases in both DOM and POM due to
predicted reductions of phytoplankton and picoplankton produc-
tivity in the future [8]. This is especially relevant to the sponge
loop and the flux of POM in the form of detritus onto coral reefs
[28, 29], because the consumption of both DOM and POM
contribute to detritus production by sponges on tropical coral
reefs [88].

DATA AVAILABILITY
Microbial 16 S rRNA MiniSeq reads and metagenomic libraries are available at the
NCBI Short Read Archive under BioProject PRJNA555077. Complete bioinformatic
pipeline including scripts is available through the GitHub repository https://
github.com/scriptomika/SpongeDOB.
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