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Abstract - An algorithm for approximating solutions to fractional-order differential equations in fractional polynomial basis is 

presented. A finite generalized fractional-order basis set is obtained from the modified Bernstein Polynomials, where α is the 

fractional-order of the modified Bernstein type polynomials (B-polys). The algorithm determines the desired solution in terms of 

continuous finite number of generalized fractional polynomials in a closed interval and makes use of Galerkin method to 

calculate the unknown expansion coefficients for constructing the approximate solution to the fractional differential equations. 

The Caputo’s definition for a fractional derivative is used to evaluate derivatives of the polynomials. Each term in a differential 

equation is converted into matrix form and the final matrix problem is inverted to construct a solution of the fractional differential 

equations. However, the accuracy and the efficiency of the algorithm rely on the size of the set of B-polys. Furthermore, a 

recursive definition for generating fractional B-polys and the analytic formulism for calculating fractional derivatives are 

presented. The current algorithm is applied to solve the fractional harmonic oscillator problem and a number of linear and 

non-linear fractional differential equations. An excellent agreement is obtained between desired and exact solutions. 

Furthermore, the current algorithm has great potential to be implemented in other disciplines, when there are no exact solutions 

available to the fractional differential equations. 

Keywords - Fractional Harmonic Oscillator, Generalized Bernstein Polynomials, Galerkin Method, Linear and Non-Linear 

Fractional Differential Equations, Fractional Basis 

 

 

1. Introduction 

Modified Bernstein polynomials [1] are becoming extremely 

useful techniques for solving complicating problems in 

engineering, computer science and physics disciplines. The 

polynomials are analytically well defined, continuous over an 

interval, form a finite basis, and represent complicated 

arbitrary functions to the desired accuracy. Also, because of 

their analytic nature, they can be differentiated and integrated 

effortlessly.   

In the past years, the fractional-order differential 

equations have been solved by several authors [1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11, 12] using numerical as well as analytic 

techniques. Recently, the authors [1] have solved differential 

equations using the Galerkin method on the basis of modified 

Bernstein Polynomials of degree-n over a finite interval. More 

recently, the authors [13, 14] solved differential equations by 

means of B-polys and operational matrix methods. Isik et al. 

[15, 16] have studied linear integral-differential equations as 

well as the higher order initial and boundary value problems 

using rational approximation based on B-polys.   

Our aim is to present an algorithm to solving 

fractional-order differential equations by means of 

generalized Galerkin method and the B-Poly basis of 

fractional-order. The procedure takes advantage of the 

continuity and unitary partition property of the generalized 

fractional-order B-polys on an interval [0, R].   In many 

applications of B-polys, the matrix formulism obtained by 

converting a differential equation into matrix form provides 

greater flexibility to impose initial as well as boundary 

conditions. The set of B-polys of rational degree (α) on an 

interval forms a complete basis for continuous (n+1) 

polynomials. In this paper, example of the fractional harmonic 

oscillator as well as several examples of fractional differential 

equation is considered. The solutions to these equations are 

presented as combination of generalized fractional-order 

B-polys. In the following sections, we provide briefly 

Caputo’s derivative, define B-poly basis in terms of 

fractional-order and provide graphs representing absolute 

errors. Finally we present linear and non-linear examples in 

which fractional differential equations are solved using the 

present algorithm. 

2. Caputo’s fractional differential operator 

In this section, we introduce Caputo’s fractional operator D

[17, 18]. The fractional derivative of f(x) in Caputo sense is 
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We would like to expand an unknown function in terms of 

generalized fractional polynomials, for example [1]
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Where
ia ’s are unknown coefficients and α is 

fractional-order parameter. We make use of the Caputo’s 

derivative property as a linear operator, 
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In the following section we, briefly, define generalized 

B-Polys and some of its properties. 

3. Fractional-order B-Poly basis 

The generalized B-polys of n-degree are defined in refs. [1, 

19], but here we are presenting a generalized form of the 

B-polys over an interval [0, R] with α as fractional-order 

parameter, 
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Using the Binomial expansion in Eq. (5), one may write, 

   , ,,
n

k
x

i n i k R

k i

B x


 


 ,                           (6) 

here ,i k are defined as 
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One can also generate those B-polys using recursive 

formula [1] .i.e. 

, , 1 1, 1( , ) [1 ( ) ] ( , ) ( ) ( , ).x x
i n i n i nR RB x B x B x         

These B-polys represents the basis set and each of the 

fractional B-polys is positive while the sum of all the positive 

B-polys of the order α is unity in the entire interval [0, R]. As 

an example, a graph of the 10 B-polys of the order α = 3/2 in 

the region [0, 10] is shown in Fig. 1.  

 

Fig. 1. The set of 10 (n=9) B-Polys of fractional-order α=3/2 

are shown in the region [0, 10]. The quantities are 

dimensionless on both axes. 

4. An algorithm for approximating solutions 

A generalized B-poly basis set and Galerkin method [1] is 

employed to approximate the solutions to the fractional-order 

differential equations. We use expansion formulas given in 

Eqs.(3-6) and the Caputo’s derivative Eq. (2) to approximate 

the solutions of fractional-order differential equations. A 

fractional differential equation is converted into matrix form 

using the techniques described below. The explicit formulas 

for the matrix formulism are provided in closed expressions 

concerning inner products of the B-polys and their derivatives 

in the equations (8-11) employing Eqs. (6-7).  
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The Caputo’s derivative of the B-Polys is also given, 
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To show the validity and the capabilities of the algorithm 

for approximating the solutions of the fractional-order 

differential equations, we consider several examples below: 

 

Example 1. Consider as a first example of forced Fractional 

Harmonic Oscillator (FHO) with initial conditions, y (0) = 1 

and y
’
 (0) = 0, 

2( ) ( ) ( ), 0D y t y t f t t    .                               (12) 

Where, ω is the angular frequency of the oscillator. The 

second initial condition is only required for 1  , the 

fractional order of the differential equation. The exact 

solution to the Eq. (12) can be obtained [20]. 
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Mittag-Leffler function [21]. The initial conditions determine 

the constants 
kc and 1m m   .  Two special cases of 

interest are (i) for 0 1   and (ii) for1 2  , the exact 

solutions to the Eq. (12) for some cases can be obtained from 

Eq. (13), which are compared with the numerical solutions 

using the present algorithm as described above. However, the 

exact solution to Harmonic Oscillator Eq. (12), f (t) = 0, is

2( ) 2

,1( 1)

0

( ) ( )
kt

k

k

y t E t
 

 




 



   under the initial 

conditions,i.e. for 1  , is
2

( ) ty t e  and for 2  , is

( ) cos( )y t t .  The FHO Eq. (12), f (t) = cos (t), has an 

exact solution for 1  ,
2

2
2 2

4

os sin
)  

c

1
(

t
t e t t

y t e


  




   




  and for 2  with 

two initial conditions, y (0) = 1 and y
`
(0) = 0, is

2

cos - cos
( ) cos

1

t t
y t t





 


.   It is obvious that for 1 

and 1  , the fractional order of the B-poly, the second 

initial condition y` (0) =0 is automatically satisfied.  We seek 

numerical solutions to Eq. (12) in the region [0, 2] with initial 

conditions given above. An approximation to the solution of 

Eq. (12) may be written, 
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Where the unknown coefficients of the expansion are 

calculated using Galerkin generalized fractional-order B-poly 

method by substituting Eq.(14) into Eq. (12) and from the 

variational property with respect to the coefficients. We get 
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Where D
is the Caputo’s derivative Eq. (2) and the Eq. 

(15) determines (n+1) x (n+1) system of equations, BA = b, in 

variables a0, a1… an. The Matrix B has elements
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Above integrals are calculated using formulas given in 

Eqs. (8-11) and the numerical solution of Eq. (12) for the 

cases 1/ 2, 1, 3 / 2 and 2  are obtained by solving the Eqs. 

(14-17) with right hand sidef (t) =cos (t). A typical solution 

for 1 and 1     , is given 

7 2 3 4

5 6 7 8 9

( ) 1. 1.493879 10 0.0000027 0.166683 0.041713

0.000073 0.000068 0.000236 0.000036 0.00000 .2

y t t t t

t t t t t

t


     

    

 

This solution is compared with the exact solution for n=9 

B-polys in the interval [0, 2]. The absolute error was 

determined to be of the order of 10
-9

 between two solutions.  

Various graphs of the exact solutions of Eq. (12) are depicted 

in the Fig. 2 and Fig. 3 for f (t) =0, and f (t) =cos (t), 

respectively.  It is obvious that the fractional relaxation 

appears when 0 1   and fractional oscillations show up 

when 0 2  . Also, the classical solution for 1   

decays exponentially as t  , the fractional solution for 

0 1  exhibits a faster decay as 0t  and much slower 

as t  . 

 

Fig. 2. The Plots of the exact solutions of Eq. (12) with f (t) =0 

are shown for 1/ 2, 1, 3 / 2 and 2  . In the plots  =2 and the 

range [0, 2] are used. 

 

Fig. 3. The Plots of the exact solutions of non-homogeneous 

Eq. (12) with f (t) = cos (t) are shown for 1/ 2, 1, 3 / 2 and 2  . 

In these plots  =2 and the range [0, 2] are used. 

In the following, we present eight typical graphs of the 

absolute error between the exact and the numerical solutions 

employing the current algorithm. The absolute errors with 

n=9 and various values of and    are shown in figures 

4 and 5 for homogeneous and nonhomogeneous Eq. (12), 

respectively. 
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Fig. 4. The absolute error graphs for the right hand side f (t) 

=0 and 1 / 2, 1, 3 / 2, 2     and n=9. 

 

Fig. 5. The absolute error graphs for the right hand side f (t) 

=cos (t) and 1 / 2, 1, 3 / 2, 2     for n=9. 

Example 2. Consider second example of fractional 

differential equation with two initial conditions, y (0) =1, and 

y
’
(0)= -1 [12],  

2 3/2( ) ( ) ( ) 1D y t D y t y t x             
(18) 

Where 
3/2D  is the Caputo’s derivative. This equation has 

exact solution ( ) 1y x x  . Applying the algorithm as 

described in section 4, we convert the problem into matrix and 

approximate solution as: 

2 3/2

, , , , , ,

0 0

,

0

[ ( , ) ( , ) ( , ) ( , ) ( , ) ( , )]

(1 ) ( , ) 0

Rn

i i n j n i n j n i n j n

i

R

j n

a D B x B x D B x B x B x B x dx

x B x dx

     





 

  

 
 
 

 



(19) 

Where Eq. 19 may be written in terms of matrix equation 

BA = b, in variables a0, a1… an. The Matrices B and b have 

matrix elements given by 
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The integrals are evaluated using the formulas from 

equations (8-11). The results of the fractional-order 

differential equation (18) with α= 1 and n=2 in the interval [0, 

2] are shown below.  

Using the basis set,
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. We may 

calculate expansion coefficients (A) by multiplying the 

inverse of matrix B with the column matrix b. The Matrix of 

coefficients (1,0, 1)A    obtained is then multiplied by the 

basis set in Eq. [14], to obtain the desired solution

( ) 1. 1.y x x  . This example shows the procedure works 

well in the case of the exact solution as the approximate 

numerical solution matches with the exact solution. 

 

Example 3.Consider third example of non-homogenous and 

non-linear fractional differential equation: 
3 5/2 2 4

'

( ) ( ) ( ) ,

(0) 0, (0) 0, and y ''(0) 2.

D y x D y x y x x

y y

  

  
(21) 

The exact solution under the boundary conditions of this 

equation is y(x) = x
2
. This is a nonlinear equation it can be 

solved using iterative scheme described in Ref. [1]. Using the 

technique described in earlier sections, we may approximate 

the solution as 
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The unknown coefficients ak in the Eq. (22) clearly 

represent the nonlinearity of the problem in the third term. 

Integrals are evaluated exactly using the equations (8-11). The 

initial guess of these coefficients in matrix Aare obtained 

omitting third term in the Eq. (22). One can easily evaluate the 

integrals analytically using the Eqs. (6-7) and the formula,

, , , , , ,

, , 00

( , ) ( , ) ( , )]
( ) 1

R n

k n i n j n i k j l k m

k l m

R
B x B x B x dx

k l m
     




 


  


      

(23) 

The Eq. (22) is converted into a matrix with the help of Eq. 

(23). The results of the fractional-order differential equation 

(21) with α= 1 and n=3 in the interval [0, 2] are shown with 

initial guess of unknown coefficient,

 0.,0.,1.3333,4.1330A  ,and initial conditions. The final 

values of the expansion coefficients after 5 iterations are 

presented as 0., 0., 1.3333333333, 4.000000( 0000)A   which 

when multiplied by the basis set Eq. (14) gave the final exact 

answer 2 12 3 20. 1. 4.1 10( ) xx xxy     . It is clear that the 

error in the approximate solution is significantly small that 
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may be neglected to provide exact answer.  

 

Example 4. The final example considers non-homogeneous 

differential equation with an initial condition, 
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1   . Again using the procedure descried in the above 

sections, we approximate the solution as 
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The Eq. (24) may be written in terms of matrix equation 

BA = b, in variables a0, a1… an. The Matrices B and b have 

matrix elements, respectively, given by  
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The interval over which these integrals are calculated is [0, 

1]. The summation of the unknown variables ak manifest the 

nonlinearity of the problem in Eq. (24). The initial values of 

these coefficients are obtained by applying the generalized 

Galerkin method to the initial data and initial guesses for ak 

are determined neglecting the nonlinear terms in Eq. (24). In 

the approximate solution values for n= 8 B-polys and 

1   are used.  

Once the initial values of the ai are obtained they are 

substituted into Eqs.(24-25) to obtain new estimates for the ai. 

This iteration process continues until the converged values of 

the unknown are obtained. Typical run gave the initial values 

of the unknown

0.,0.12495,0.23269,0.36879,0.48591,0.61614,0.73840,

0.86441,0.989

(

18).

A 

After 8 iterations, values for the coefficients which had 

converged were used to construct an approximate solution for 

the nonlinear differential equation. The absolute error is of the 

order of 10
-7

 between exact and approximate solution 

obtained for Eq. (23). The final approximate solution with 

converged coefficients is presented below:
2 3 4

5 6 7 8

( ) 0. 1.00000 0.00015 0.33148 0.01055

0.16460 0.04805 0.02444 0.01167

y x x x x x

x x x x

     

  

 

In Fig. 6, a plot of the absolute difference between 

approximate and exact solutions is presented. 

 

Fig. 6. The absolute error graphs for example 4 with values of 

1    and n=8. Only 8 iterations are required getting the 

converged solution to the level shown. 

The absolute difference is obtained using a basis set of 8 

B-polys continuous over the interval [0, 1]. It is hoped that 

this method can be extended to other type of fractional-order 

nonlinear differential equations as only a small number of 

B-polys are needed to get a satisfactory solution. 

5. Conclusion 

In this article, an algorithm based on fractional order 

generalized B-poly basis and Galerkin method [1] is 

constructed to solve ordinary, fractional order homogeneous 

and nonhomogeneous differential equations.   

New General explicit formulas are given in Eqs.(3-11) and 

the Caputo’s derivative Eq. (2) are derived to approximate the 

numerical solutions of fractional-order differential equations.  

The explicit formulas for the matrix formulism are 

constructed in close expressions concerning inner products of 

the B-polys and their derivatives in the equations (8-11) 

employing Eqs. (6-7). The method is applied to a variety of 

examples including fractional harmonic oscillator equation 

and the differential equations which have exact solutions to 

compare with.  

The solutions obtained using the current algorithm shows 

that this approach is highly efficient to solve the fractional 

order problems with small number of B-polys. This method 

has the ability to be used in variety of disciplines.  
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