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The formation of DNA loops is a ubiquitous theme in biological processes, including 
DNA replication, recombination, repair, and gene regulation.  These loops are mediated by 
proteins bound at specific sites along the contour of a single DNA molecule, in some cases 
many thousands of base pairs apart.  Loop formation incurs a thermodynamic cost that is a 
sensitive function of the length of looped DNA as well as the geometry and elastic 
properties of the DNA-bound protein.  The free energy of DNA looping is logarithmically 
related to a generalization of the Jacobson-Stockmayer factor for DNA cyclization, termed 
the J factor.  Here we review the thermodynamic origins of this quantity, discuss how it is 
measured experimentally, and connect the macroscopic interpretation of the J factor with a 
statistical-mechanical description of DNA looping and cyclization. 
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INTRODUCTION 
Simultaneous binding of multiple protein factors to two or more DNA sequences is a common 
aspect of gene expression, genetic recombination, DNA replication, and DNA repair.  The target 
sites involved in these interactions are frequently located at considerable distances along the 
same DNA molecule, which requires that the intervening DNA form a looped structure. Looped 
nucleoprotein assemblies, for example some gene-regulatory complexes in mammalian systems 
[1-3], can involve many proteins and also segments of DNA that are thousands of base pairs 
long.  Such systems are challenging enough to characterize in vitro; having an accurate in-vivo 
picture of these processes requires also knowing how DNA flexibility and folding are affected by 
DNA-bound architectural proteins in prokaryotes [4,5] or chromatin organization [6] and the 
binding of non-histone proteins [7,8] in eukaryotes.  Advances in our quantitative understanding 
of DNA-loop formation therefore depend on detailed consideration of the mechanics of loop 
formation that takes into account DNA elasticity, local and global aspects of DNA organization, 
and the plasticity of protein-DNA and protein-protein interactions.   

 Here we address the thermodynamic cost, in terms of free energy, of forming specific DNA-
loop conformations.  The overall free energy of assembling a particular protein-mediated loop 
amounts to a sum of free energies for protein-protein interactions, protein-DNA binding, and 
DNA distortion through wrapping, bending, and looping.  The protein-protein and protein-DNA 
terms are typically regarded as independent and separable from that of DNA distortion, though 
these assumptions can clearly be questioned in the context of a chromatin environment.  We 
focus in this article on the free energy cost of DNA looping in terms of the statistical distribution 
of polymer conformations.  Mechanical constraints applied to DNA segments at the loop ends 
strongly perturb the polymer statistics and finding a general solution is a challenging problem in 
statistical mechanics. However, treating the looping problem as a generalization of the more 
extensively analyzed case of DNA cyclization has helped to illuminate general principles [9].  In 
particular, the DNA-size and helical-phase dependence of loop formation can be understood in 
terms of the size and conformation of the protein complex that mediates looping.  

 The dependence of the free energy of loop formation on DNA size contains non-trivial 
enthalpic and entropic contributions [9,10].  The behavior of looped domains involving DNA 
contour lengths smaller than the persistence length, P, ( 150 bp or 50 nm at moderate ionic 
strength) is dominated by the bending and twisting rigidity of the double helix and thus the free 
energy cost of loop formation is largely enthalpic.  In contrast, loops that are much larger than P, 
incur minimal enthalpic cost, but are entropically unfavorable.  Effects of DNA tertiary structure 
and topology on looping such as supercoiling or knotting of DNA domains are not always 
considered, but remain nonetheless important. 

THE THERMODYNAMICS OF POLYMER CYCLIZATION 
The problem of polymer cyclization was first considered by Jacobson and Stockmayer [11], who 
formulated the free-energy cost of cyclization in terms of a ratio of respective equilibrium 
constants for formation of a circular polymer chain from a linear monomer, Kc, and conversion 
of two linear monomers to a linear dimer, Kd.  This ratio is commonly known as the Jacobson-
Stockmayer factor, J, also called the J factor, 

 0 0exp ( ) / Rc d c bJ K K G G T        (1) 

where 0
cG  and 0

bG  are the respective Gibbs free-energy changes in the standard state for the 

cyclization and dimerization reactions.  Equivalently, J is the equilibrium constant for forming a 
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circular and a linear monomer from a linear dimer [12]. By including the free-energy change for 
the dimerization reaction in equation (1) the contribution of bond formation between terminal 
residues is subtracted from the overall cyclization free energy.  Thus, J specifically quantifies the 
effect on the global free energy of the polymer of constraining the chain to a circular 
conformation. 

For a random-flights polymer the orientations of successive chain segments are independent 
and the effect of the end constraints involves only the confinement of both ends of the chain to a 
common volume element V .  Then, 
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where (0)W is the probability density for the end-to-end distance h  h (see Figure 1) evaluated 

at h = 0, NAv is Avogadro's number, and *G  is the free-energy of bond formation between the 
first and last residues of the linear chain [13].  It then follows from equation (1) that 
 Av(0) N ,J W  (3) 

which connects the J factor to the statistical fraction of chain conformations having both chain 
ends within an infinintessimal distance of one another.  J can therefore also be considered as the 
effective concentration of one chain end in the vicinity of the other. 

In the case of a random-flights polymer, W(h) has a closed-form solution for arbitrary h 
(including h = 0), which leads to a simple relation for J, 
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where n is the number of chain segments of length  . This formula is equivalent to Jacobson and 
Stockmayer's original expression.  Note that the volume element V does not appear, having 
been eliminated in equation (2). 

In the early 1980s DNA-cyclization measurements on restriction fragments about 200 to 
1500 bp in size [14-16] motivated more sophisticated treatments of the ring-closure problem 
(Figure 1).  Advanced methods were necessary in order to account for the effects of bending and 
twisting rigidity in DNA molecules on this length scale.  Twisting rigidity in particular leads to a 
strong periodic dependence of J on the fractional number of helical turns. A perturbation method 
for homogeneous and isotropically flexible DNA circles was introduced by Shimada and 
Yamakawa [17] that successfully accounts for helical phasing, bending, and twisting rigidities in 
small circles.  Subsequently, Monte Carlo methods became available to compute J from 
ensembles of simulated helical wormlike chains [12,18,19].  An advantage of simulation-based 
methods over that of Shimada and Yamakawa is that applications are not limited to 
homogeneous chains or those with uniform bending and twisting rigidities [12]. 

The statistical-mechanical interpretation of the J factor can be further generalized to include 
effects of limited bending and twisting flexibility.  Flory et al. [13] introduced an extension of 
the Jacobson-Stockmayer theory for rotational-isomeric-state (RIS) models of semi-flexible 
polymers.  Their formula for J is a product of W(0) with two conditional probability densities 
evaluated at specific parameter values that define the geometry of chain ends in the cyclized 
conformation, specifically 
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where the spatial probability density W is now a function of the end-to-end vector h and 
evaluated at h 0 , ( )h  is the conditional probability density for the scalar product, 1 n  l l , 

of tangent vectors at the ends of the chain, given h , and , ( ) h  is the conditional probability 

density for the twist angle   given h  and   (Figure 1).  The last quantity is evaluated at the 

"natural" twist angle expected for a pair of adjacent segments modulo 2; for sufficiently long 
chains the last factor may need to be replaced by a sum of conditional-probability terms to 
account for the fact that chain closure can sample topological states with different linking 
numbers or topoisomers [20].  Given the generality of the RIS model, it is clear that this 
approach is well justified for helical wormlike chains such as DNA.  Moreover, because the 
problem reduces to evaluating a set of probability density functions, J can readily be computed 
from Monte Carlo simulations of cyclized chains [12,18,19,21,22]. 
 
DISTINCTIONS BETWEEN DNA LOOPING AND CYCLIZATION 
Although the boundary conditions imposed on the ends of the chain by cyclization are well 
specified by the structure and flexibility of DNA molecules, the constraints involved in DNA-
loop formation are wholly dependent on the geometry of the protein or protein complex that 
mediates the loop. A search for possible boundary conditions that fit a given set of experimental 
J values is highly inefficient, which makes Monte Carlo simulation impractical for analyzing 
experimental data.  The issue of protein flexibility is also usually neglected in considering the 
thermodynamics of loop formation, typically because little information is available concerning 
intramolecular motions in proteins and multiprotein complexes.   

We developed a method for computing the J factor for looped protein-DNA complexes, 
generalizing an approach used to compute J for the cyclization of sequence-dependent DNA 
circles [23]. The method combines computation of the equilibrium conformation of the DNA 
circle with subsequent evaluation of statistical-thermodynamic quantities using a harmonic 
approximation [23]. In this model the DNA conformation is described by parameters defined at 
dinucleotide steps, i.e., tilt, roll, and twist [24], which allows straightforward incorporation of 
intrinsic or protein-induced DNA curvature at the base-pair level.  The method is similar in 
principle to the approach taken by Shimada and Yamakawa [17] in that the theory takes 
advantage of small fluctuations around one stable mechanical configuration in small DNA circles 
(e.g., less than ~1000 bp). We treat the protein subunits mediating the loop as virtual base pairs 
in the cyclized molecule, forming a connected set of rigid bodies with a limited number of 
degrees of freedom between the subunits.  Once the mechanical equilibrium conformation of the 
circle is found, fluctuations around the equilibrium conformation are taken into account with the 
harmonic approximation. The new method is about four orders of magnitude more efficient than 
Monte Carlo simulation and has comparable accuracy [23], making this algorithm suitable for 
fitting experimental J-factor data using nonlinear least-squares methods [10]. 

Examining the behavior of J as a function of protein geometry revealed that there are 
significant quantitative differences between DNA cyclization and looping [9].  These differences 
are manifested in the amplitude and phase of J on loop size.  Protein-specific geometry and 
flexibility can couple to the DNA twist in a loop to give unexpected deviations in the periodicity 
of J compared with that expected according to cyclization theory.  Unlike cyclization, multiple 
looped conformations involving the same protein structure, but different loop geometries, can 



 6

coexist.  These details should be considered in analyzing DNA-loop formation both in vitro and 
in vivo. 

MEASURING DNA LOOPING 
Two particular aspects of looped DNA structures have been exploited in in-vitro and in-vivo 
experiments.  One is the cooperative binding of a protein to its two cognate sites, which can be 
demonstrated by footprinting methods [25].  DNA looping can increase the occupancies of both 
binding sites; in particular, it can significantly enhance protein association to the lower-affinity 
site because of the tethering effect of DNA looping.  This is believed to be a general mechanism 
by which many transcription factors recruit RNA polymerases in gene regulation [26,27] (we 
note, however, that recent data suggest a more complex paradigm may operate in a chromatin 
environment; see [28]).  Another hallmark is the helical dependence of loop formation for 
sufficiently small loops [29,30], which arises because of DNA’s limited torsional flexibility and 
the requirement for correct torsional alignment of the two protein-binding sites.   

Many methods have been used to directly observe DNA looping in vitro, such as scanning-
probe [31] and electron microscopy [24], and single-molecule techniques [32].   In-vivo assays 
based on helical dependence, in which the DNA length between two protein binding sites is 
varied and excess repression or activation of a reporter gene is measured [29,33], have been a 
powerful tool in bacterial systems.  Several techniques have been developed in the last decade to 
investigate loop formation in the cells of higher organisms. Chromosome-conformation-capture 
(3-C) technology and variants thereof [34] make use of non-specific protein-protein crosslinking 
combined with digestion and religation of protein-bound DNA fragments to identify long-range 
interactions across complex genomes. 

Most of the available techniques give only relative values of J because it is not normally 
possible to determine the value of Kd that appears in equation (1) under the exact conditions of 
the in-vitro or in-vivo experiment.   The most rigorous and reliable approach for measuring 
absolute values of J in vitro is to determine Kc and Kd from measurements of pairs of forward 
and reverse rate constants for loop formation and dimerization, respectively.  In enzymatically 
catalyzed reactions such as ligase-dependent cyclization [35-37] the intramolecular and 
intermolecular reactions are typically monitored in separate experiments.  This is because the 
intermolecular pathway generally requires significantly higher concentrations of DNA substrate 
and enzyme for the reaction to occur at a measurable rate.  After correcting for effects of 
substrate and enzyme concentration by extrapolation, the equilibrium and rate constants obtained 
in these experiments are regarded as apparent values. 

Recently we showed that the kinetics of site-specific recombination mediated by the Cre 
recombinase of bacteriophage P1 gives quantitative measurements of the absolute value of J for 
DNA loops in the size range 870 to 3050 bp [38].  Recombinase-based measurements of loop 
formation have an important advantage over ligase-catalyzed cyclization in that the reaction does 
not require free DNA ends.  Thus, DNA-looping assays can be carried out on covalently closed 
or supercoiled DNA, a strict requirement for direct J-factor measurements in vivo. 

The complexity of the recombinase mechanism presents a significant challenge in these 
measurements.  Unlike the ligase reaction, simple Michaelis-Menten enzyme-kinetics models do 
not apply; instead, the recombination-kinetics data must be analyzed by solving systems of 
ordinary differential equations (ODEs).  The ODEs contain a set of rate constants for elementary 
recombinase binding and dissociation steps, 

1 1 2 2, , ,k k k k   in addition to those for site synapsis 

and recombination 
3 3 4 4, , ,k k k k  [38].  Unlike the recombinase binding/dissociation steps, the 
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latter four rate constants differ for the inter- and intramolecular mechanisms.  The value of J is 

obtained from the quotient  ( ) ( ) ( ) ( )
3 3 3 3

c b c bk k k k  for the synapsis/recombination steps shown in 

Figure 2.  Here ( )
3

ck  and ( )
3
ck  are the apparent forward and reverse rate constants, respectively, for 

intramolecular recombination-site synapsis whereas ( )
3

bk  and ( )
3
bk   are the corresponding values 

for the intermolecular reaction.   In practice all four apparent rate constants 
3 3 4 4, , ,k k k k   need to 

be determined for both the intra- and intermolecular reactions.  Thus, reliable fits to the data 
require significant numbers of data points for each kinetic curve.  In our method we monitor site 
synapsis and recombination in real time using the FRET signal obtained from fluorophore-
labeled substrate DNAs.  A typical analysis fits the four free parameters to between 500 and 
1000 data points; overall uncertainties in J are conservatively estimated to be in the range of 20 - 
50%, which is comparable to those for ligase-catalyzed cyclization. 
 
STATISTICAL-MECHANICAL PARTITION FUNCTIONS AND DNA LOOPING  
For a system confined to a fixed volume and at constant temperature there is a direct relationship 
between J and the canonical-ensemble partition functions, Zloop and Zlin, for a loop and the 
corresponding linear chain, respectively [23] 

 2
Bexp ( ) / k 8 loop

loop lin
lin

Z
J G G T

Z
       (6) 

Although we use the Gibbs free energies of the two forms as the arguments in the exponential, 
the correct free energy function is formally the Helmholtz free energy.  We consider this 
difference to be negligible, as is normally the case with systems in condensed phases. 

Z takes the form 
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3

2
1 1

1
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h
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k k k k
a a a a

k a

Z dx dp d dl H x p l   
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 
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 
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where h is Planck's constant and  B1 k T  .  Here        tot
1

, , , , ,
N

k k k

k

H x p l T p l U x 


   

is the sum of kinetic energy terms plus the total potential energy totU expressed as functions of 

noncanonical momenta  ,p l  and coordinates  ,x  , with   the Jacobian for the 

transformation from canonical to noncanonical variables [39].  The integration is performed over 
all segments of the chain k and the three degrees of freedom for each segment, a.  
Transformation from canonical to non-canonical coordinates is necessary to facilitate 
factorization of the kinetic-energy contribution to the integral, namely 
 

        

3

  kin tot
1 1 1

exp ,
N N

k k k
a a

k k a

Z Z dx d U x   
  

   
      
   
   (8) 

This expression for the partition function is trivial to evaluate for the linear chain, but a major 
challenge to compute for the closed loop because of the presence of multiple non-linear 
constraints.   

A closed-form expression is available for J in the case of the harmonic approximation.  The 
derivation in terms of the partition function ratio given in equation (6) is too lengthy to present 
here; instead we give the result (for details see [23]) 
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where Es is the elastic energy of the loop in its minimum-energy conformation.  Equation (9) 
contains two matrices A and F  whose elements are functions of the elastic constants of the chain 
and also the first and second derivatives of the non-linear constraint functions with respect to 
angular parameters evaluated at the mechanical-equilibrium conformation.   

The range of applicability of the harmonic approximation has not been rigorously 
determined, but it is clear that its use becomes problematic for loops that contain significant 
levels of excess supercoiling.  This is because the harmonic approximation exclusively consists 
of local (i.e., nearest-neighbor) interactions between rigid-body base pairs and protein subunits.  
The lack of long-range contributions to the chain's potential energy is therefore expected to 
become a serious limitation for DNA loops much larger than 500 bp, a size regime where 
multiple topoisomer species become populated during random closure of DNA circles [40]. 

SUMMARY 
DNA cyclization and loop formation are related processes that can be described by closely 
similar thermodynamic and statistical-mechanical formalisms.  The thermodynamic quantity 
relevant to both processes is a ratio of equilibrium constants known as the Jacobson-Stockmayer 
factor or J factor.  The J factor is an extremely useful quantity because it gives the 
conformational free energy cost of forming a DNA loop independent of the free-energy changes 
associated with protein-DNA and protein-protein interactions accompanying loop formation. 

Most experimental approaches for measuring looping probabilities report on relative, rather 
than absolute, values of the J factor; therefore, rigorous measurements of this quantity remain a 
significant challenge.  We summarize a recent approach based on the kinetics of the Cre site-
specific recombination reaction that enabled the J factor to be measured without the ligation of 
free DNA ends.  This method can be readily implemented with covalently closed DNA 
molecules, which is a critical requirement for DNA-looping measurements in vivo.  Such 
advancements in experimental methods for measuring J will likely motivate future theoretical 
and computational approaches for evaluating looping free energies in complex nucleoprotein 
systems. 
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Figure Captions 
 
Figure 1. (A.) Experimental data and theoretical dependence for the cyclization probability, J, as 
a function of DNA size.  Three sets of experimental data covering a range of DNA-fragment 
sizes between 230 and 1100 bp are shown [14-16,36].  Curves show the oscillatory helical-phase 
dependent (gray) and phase-independent (black) behavior of J in Monte Carlo simulation results 
[12,19] that were fitted to the data in [16].  (B.) Variables describing the boundary conditions at 
the ends of a cyclizing DNA molecule.  h


 is the end-to-end vector of the chain; 1l


, and Nl


, are 

the initial and terminal vectors tangent to the central axis of the chain, respectively, and have 
scalar product  . The vector a


 is normal to the helix axis and serves as a reference for rotations 

about this axis; the broken line is its projection in the plane normal to the distal end of the helix 

axis when h


 and   are equal to zero and unity, respectively.  The torsional free energy of the 

chain depends on the angle  evaluated from the scalar product of the projection of a


and b


and a 
vector normal to both Nl


and b


. The arctangent of the quotient gives  .  Figure adapted from 

[12]. 
 
Figure 2. J-factor measurements obtained via intra- and intermolecular Cre site-specific 
recombination of loxP target sequences. (A.) Intramolecular site-synapsis and resolution steps in 
the Cre mechanism.  A linear DNA bearing directly repeated Cre2loxP sequences is converted to 
an intermediate synaptic complex with respective forward and reverse rate constants, ( )

3
ck and ( )

3
ck  

followed by resolution of the intermediate to products with rate constants ( )
4

ck  and ( )
4
ck . The loxP 

sites are labeled with donor or acceptor fluorophores, which permits monitoring of the synapsis 
reaction by time-dependent FRET. (B.) Fluorescence signal, F(t), which monitors donor 
quenching via FRET during intramolecular site synapsis and recombination.  Fluorescence 
decays are for molecules having 3-kbp and 870-bp DNA loops. Non-linear least-squares fits to 
the data to a system of ordinary differential equations (ODEs, solid curves) gave values of the 
rate constants ( ) ( ) ( ) ( )

3 3 4 4, , ,  and c c c ck k k k  . (C.) Intermolecular site-synapsis and resolution steps in the 

Cre-loxP reaction scheme.  Equimolar ratios of donor-labeled, TDB, and acceptor-labeled, TBA, 
duplexes were used in reactions having total loxP concentrations equal to 12.5 or 25 nM. (D.) 
Intermolecular rate constants were obtained by non-linear least-squares fits to a set of ODEs 
similar to those in (B.), which describe the time-dependent concentrations of reactants, 
intermediates and products for the intermolecular recombination pathway. 
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