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I. INTRODUCTION

D URING the rehabilitation of neurological patients, task-
oriented, repetitive, immersive exercises along with en-

riched sensorial feedback are crucial elements in the stimulation
of activity-dependent central nervous system plasticity, thereby
facilitating motor relearning [1]–[4].

Manuscript received February 19, 2014; revised May 29, 2014; accepted June 
15, 2014. This work was supported in part by the Italian Ministry of Education, 
Universities and Research under Grant 2010R277FT (“Fall Risk Estimation and 
Prevention in the elderly using a Quantitative multifactorial Approach”). Date 
of publication July 22, 2014; date of current version May 06, 2015.
N. Chia Bejarano, A. Pedrocchi, G. Ferrigno, and S. Ferrante are with the 

Neuroengineering and Medical Robotics Laboratory, Department of Elec-
tronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, 
Italy (e-mail: noelia.chia@polimi.it).
E. Ambrosini is with the Neuroengineering and Medical Robotics Labora-

tory, Department of Electronics, Information and Bioengineering, Politecnico 
di Milano, 20133, Milan, Italy, and also with the Physical Medicine and Reha-
bilitation Unit, Scientific Institute of Lissone, Salvatore Maugeri Foundation, 
Institute of Care and Research, IRCCS, Lissone, Monza Brianza, Italy.
M. Monticone is with the Physical Medicine and Rehabilitation Unit, Scien-

tific Institute of Lissone, Salvatore Maugeri Foundation, Institute of Care and 
Research, IRCCS, Lissone, Monza Brianza, Italy.
Color versions of one or more of the figures in this paper are available 

online.

The recovery of gait is the main objective of lower limb re-
habilitation [5]. To maximize the efficacy of gait interventions,
real-time information correlated to the movement can be ex-
ploited. The knowledge of such information would allow the de-
sign of real-time feedbacks highly correlated to the patient-spe-
cific task deficits or the use of systems to augment propriocep-
tive inputs, such as electrical or mechanical stimulation, syn-
chronized with the gait cycle [2], [4], [6].
Wearable sensors have proven to be the optimal sensor so-

lution in providing meaningful real-time information correlated
to locomotion [7]. Their reduced size and cost allow for both
clinical settings and home environment applications. The most
widely used sensors are accelerometers, which are capable of
monitoring over-ground gait with low power consumption [7].
However, their signal is affected by heel-strike vibrations and is
characterized by an inter-session reliability dependent on their
orientation with respect to the body segment and on the distance
between the sensor and the center of rotation of the joint. The
combination of accelerometers with gyroscopes (inertial sen-
sors) can mitigate some of these problems, reducing the mon-
itoring errors. However, both sensors suffer from drift prob-
lems when integrated, which can be held down by ad hoc signal
processing [7].
An alternative solution to inertial sensors are force sensi-

tive resistors, such as footswitches. Their output is very easy to
process but they do not provide any information regarding the
swing phase of the gait. They also have been reported to cause
some discomfort, be prone tomechanical failure, and sometimes
be unreliable when worn by patients with drop foot or shuffling
feet [8], [9].
Finally, body-mounted Inertial and Magnetic Measurement

Systems (IMMSs), combining data from tri-axial gyroscopes,
accelerometers and magnetometers, seem to be a more stable
solution for prolonged applications [7]. A Kalman filter, em-
bedded in some commercial IMMSs, is used to correct the drift
and to provide data fusion to increase sensor accuracy. How-
ever, the inclusion of the magnetometer implies that the envi-
ronment in which they are used needs to be controlled, since
they are affected by magnetic interferences.
Nevertheless, IMMSs have been receiving increased interest

in the neurorehabilitation field. They have been used in the as-
sessment of the training effects as a portable alternative to tradi-
tional gait analysis systems [10]–[12]. Among others, the Out-
walk protocol [12] used IMMSs to accurately obtain the thorax,
pelvis, and lower-limbs 3-D kinematics during the gait of chil-
dren with cerebral palsy and amputees. The neurorehabilita-
tion field has also been recently enriched by the development
of novel methods to detect gait events using inertial sensors or



IMMSs, which can be offline or real-time methods. The offline
algorithms have been typically used for assessment, exploiting
signal conditioning techniques, such as wavelet [8] or Fourier
analysis coupled with derivatives [13], [14], and integration [9],
to improve the detection of gait events. More recently, inertial
sensors and IMMSs have been used to extract the gait events in
real time, which can be exploited during gait training [15]–[18].
Online algorithms generally low-pass filter the signals to pre-
pare them for integration [15] or detection of peaks related to
gait events [15], [17], [18]. These algorithms are usually tai-
lored on a specific set of data acquired from a restricted pop-
ulation sample (i.e., young and healthy subjects [17], [19] or
patients with a specific pathology [16]). The use of precollected
data in the design of algorithms enhances their performance, but
strongly limits their generalizability to new sets of data. More-
over, the online algorithms proposed so far are affected by small
but systematic detection delays due to the use of low-pass fil-
ters that improve the online peak detection. New methods have
been proposed using more complex techniques such as contin-
uous wavelet transforms [20], which increased accuracy at the
expense of a higher detection delay.
The aim of this study was to design an adaptive algorithm ca-

pable of providing accurate gait-event detection in real time, to
allow the development of novel motor relearning treatments for
neurological patients. The developed algorithm was validated
against an already established commercial system, using data
collected on 22 healthy subjects, both young and elderly adults.
The algorithm's performance was then statistically compared to
other online algorithms proposed in the literature. Finally, its
robustness against sudden speed changes and neurological gait
patterns was assessed.

II. MATERIALS AND METHODS

A. Algorithm Design
The algorithm used two sensors, placed laterally, one on each

shank. The number of sensors and their placement was opti-
mized in a previous study [21] in which eight IMMS sensors
were analyzed, placed on both lower limbs (insteps, shanks, and
thighs), S1 vertebra, and chest. This study selected the two sen-
sors placed on the shanks based on a tradeoff between system
portability (minimization of the number of sensors), inter-sub-
ject variability, and high correlation between signals and gait
events.
The shank angular velocity in the sagittal plane and the shank

flexion/extension angle (referred to the vertical axis) were used
to detect three gait events per leg: Initial Contact (IC), End Con-
tact (EC), andMid-Swing (MS). ICwas defined as theminimum
of the flexion/extension angle, whereas EC andMSwere defined
as the minimum and the maximum of the angular velocity, re-
spectively (Fig. 1). The complete set of gait events defined six
gait phases that are shown in Fig. 1:
1) the right/left double support, between the right/left IC and

the left/right EC (phases 1/4);
2) the left/right initial swing, between the left/right EC and

the left/right MS (phases 2/5);
3) the left/right terminal swing, between the left/right MS and

the left/right IC (phases 3/6).
The definition of the gait events was made by comparing the

acquired signals to the IC and EC gait events provided by the

Fig. 1. (a) Shank sagittal-plane angular velocity and (b) flexion/extension angle
for the left (dashed blue) and right (solid black) legs. Initial Contact (IC), End
Contact (EC) and Mid-Swing (MS) defined the six gait phases. Point Angle
(AN), used in the detection of EC, is also shown.

GaitRite system and taking into account what was already sug-
gested in the literature [8]. The definition of the EC and MS
events was consistent with the literature; in the case of IC, the
minimum in the flexion/extension angle was preferred to the
minimum of the angular velocity suggested by Aminian et al.
[8] since it provided lower detection delays and a higher accu-
racy. In addition to the IC, EC, and MS events, one extra point
of interest was used, referred to as ANgle (AN, see Fig. 1). The
AN was defined as the value of the flexion/extension angle cor-
responding to the EC detection. A threshold based on previous
AN values was used to trigger the search for the next EC event.
The algorithm consisted of three stages that ran automatically

with no input required from the operator: calibration, real-time
detection, and step-by-step update.
1) Calibration: When the subject started walking, the first

five steps were analyzed on the fly to determine the initial values
of the algorithm parameters (i.e., the thresholds defined for the
detection of MS, IC, EC, and AN, whose calculation is detailed
in the Appendix). These values were then used during the real-
time detection, which started immediately after.
2) Real-Time Detection: The core of the algorithm was the

real-time gait detection stage which was based on a state ma-
chine where the states were the six gait phases shown in Fig. 1.
The four signals of interest were initially low-pass filtered with a
first-order low-pass FIR filter with a cutoff frequency of 14 Hz.
This filter was designed to find a compromise between high fre-
quency noise reduction and low filter delay. Subsequently, the
algorithm identified, independently for the left and right leg, the
gait events (IC, EC, MS) when the signal peaks overcame the
corresponding thresholds while occurring in the expected state.
3) Update: The update stage ran simultaneously to the real-

time detection, and it complemented it by updating the thresh-
olds using the newest correct gait events. In this stage, the sig-
nals were processed with a 10th order low-pass equiripple FIR
filter with linear phase and cutoff frequency of 4 Hz, thus pro-
viding a quasi real-time gait event detection that was delayed but
more reliable with respect to the real-time detection. The filter
was designed after an offline analysis of the Fourier transform



of the signals of interest acquired from all the subjects partic-
ipating in this study. The quasi real-time detection of the last
five steps was used to update the thresholds at every step and to
modify the current state when an error occurred. This solution
was introduced in order to minimize the detection delay and si-
multaneously avoid the error propagation.
For the four points of interest (MS, EC, IC, AN) different

procedures based on statistical methods were applied to com-
pute the thresholds. Further details regarding the calculation
of the thresholds and the algorithm design are reported in the
Appendix.

B. Validation of the Algorithm

Twenty-two healthy subjects were recruited (8 males, 14 fe-
males; mean age of 47.8 22.4 years old, range from 21 to
85 years old; mean height of 1.69 0.08 m; mean weight of
60.9 9.9 kg). Three IMMSs sampled at 50 Hz (MTx sen-
sors from Xsens Technologies B.V., Netherlands) were placed
on the S1 vertebra and on the midpoint of the external part of
both shanks, using Velcro and double-sided adhesive tape. The
sensors on the shanks were aligned with the longitudinal axis of
the limbs. The sensor placed on S1 was used to make a com-
parison with a previously published algorithm [15]. At the be-
ginning of each session, the subjects were asked to keep an
upright standing position for a few seconds in order to create
a common global reference system for all inertial and mag-
netic sensors [22]. This procedure also compensated for possible
misalignments between the sensor and the longitudinal axis of
the shank. The acquisition was synchronized with the GaitRite
system (CIR Systems Inc., United States), using the synchro-
nization output built into the GaitRite. The GaitRite system was
used as ground truth, because it is widely used in the clinics and
several studies have reported its validity providing spatio-tem-
poral gait parameters, comparing them against motion captures
system based on video cameras [23], [24]. The data acquired
through the GaitRite were sampled at 120 Hz. Subjects were
asked to walk over the GaitRite mat (4.88 m length) at three
different self-selected speeds: slow, normal, and fast. Each con-
dition was repeated 12 times, each time including three strides
before and after the mat, allowing subjects to maintain a con-
stant speed over the mat.
The algorithm validation was performed in terms of accuracy

and timing agreement, comparing all of the first and last contacts
of the feet with the GaitRite system against the IC and EC events
detected by the proposed real-time algorithm. Only the steps
completely executed on the GaitRite walkway were included in
the validation.
The accuracy was assessed using the metrics Precision (P),

Recall (R), and F1-score, defined as function of True Positives
(TP), False Positives (FP), and False Negatives (FN).

(1)

For the timing agreement, the Bland-Altman method [25]
was used to compare the instants at which the gait events
(IC, EC) were detected by the two systems. The timing
differences between the detection instants were computed,
and the agreement was characterized in terms of mean
values, 95% confidence intervals, and limits of agreement
(mean 1.96 standard deviation). Positive timing differences
corresponded to delays in the detection of the real-time algo-
rithm with respect to the GaitRite system.
Two already published algorithms [15], [17] were imple-

mented and validated against the GaitRite system in terms of
accuracy (precision, recall, F1-score) and timing agreement
(Bland-Altman method), and the results were compared to
those of the real-time algorithm proposed here. Lee's algorithm
[17] used the shank sagittal-plane angular velocity, where
IC and EC were located as minima of the signal low-pass
filtered at 3 Hz. The detection of both events depended on the
extraction of MS, thus introducing a critical delay in the case of
EC. González's algorithm [15] used the anterior–posterior and
vertical accelerations extracted from the S1 vertebra, where
IC and EC were maxima and minima, respectively, of those
signals. The detection of both events was triggered after finding
zero-crosses on the anterior–posterior acceleration low-pass
filtered at 2 Hz, which introduced delays that were higher in
the case of IC.
For the timing agreement, a statistical analysis was performed

to compare the performance of the three algorithms in terms
of detection delays of IC and EC. A Kolmogorov-Smirnov test
demonstrated that the data were not normally distributed. There-
fore, six nonparametric Kruskal-Wallis tests ( ) were
performed, and each event (IC, EC) and speed condition (slow,
normal, fast) were analyzed separately. Dunn-Sidak post hoc
tests ( ) were used to determine which pairs of effects
were significantly different.

C. Robustness of the Algorithm

Two additional experimental validations were performed to
test the algorithm's robustness against sudden speed changes
and neurological gait patterns. The first one verified if the al-
gorithm could rapidly adapt the threshold values to changes in
the peaks amplitudes and latency. The test on neurological pa-
tients was designed to establish if the real-time algorithm was
robust to a high inter-step variability that can be very likely in
stroke patients.
1) Influence of Sudden Changes in Pace: This first experi-

mental validation included ten healthy subjects belonging to the
validation group (10 females; mean age of 25.1 4.6 years old,
range from 21 to 34 years old; mean height of 1.69 0.05 m;
mean weight of 57.2 9.4 kg) who were asked to walk over
the GaitRite mat, wearing two IMMSs sensors attached to their
shanks. The subjects were instructed to start walking at a slow
speed for a few steps and to progressively increase it; and vice
versa: to start walking at a fast speed and to progressively
decrease it. Both tasks were repeated five times. Each repetition
included a few steps before and after the mat, to make the task
easier. The execution order of the two tasks was randomized
among subjects. As previously described, the calibration of
the algorithm parameters was based on the five initial steps,
meaning that steps at slow speed were used in the slow-to-fast



TABLE I
PERFORMANCE OF THREE ALGORITHMS (REAL TIME, LEE AND GONZALEZ)

IN TERMS OF TRUE POSITIVES (TP), FALSE POSITIVES (FP),
FALSE NEGATIVES (FN), AND F1-SCORE

tests, whereas steps at high speed were used in the fast-to-slow
tests. The accuracy (precision, recall, F1-score) and timing
agreement (Bland-Altman method) for both IC and EC were
computed.
2) Influence of Pathological Gait Pattern: Ten stroke pa-

tients (7 males, 3 females; mean age of 69.4 12.4 years;
height 1.68 0.09 m; weight 70.2 6.4 kg) were recruited
from the Physical Medicine and Rehabilitation Unit of the
Scientific Institute of Lissone, S. Maugeri Foundation. All
subjects were ensured to be able to follow instructions, to
walk independently (with or without walking aids) and to have
unilateral lower-limb weakness. Each subject walked at his
self-selected speed 12 times over the GaitRite mat, wearing
two sensors attached to their shanks. The accuracy and timing
agreement for both IC and EC were assessed. The analysis
was performed on the whole group of patients who were then
divided into three subgroups according to Tilson's classification
of impairment [26]: gait speed m s for patients with
severe impairment; 0.4 m s gait speed m s for
patients with medium impairment; gait speed m s for
patients with mild impairment.

D. Ethical Approval
All of the experimental protocols were approved by the Insti-

tutional Review Board of the Salvatore Maugeri Foundation in
Lissone, and the subjects who agreed to participate to the study
signed a written informed consent.

III. RESULTS
A. Validation
A representative walking pattern of healthy subjects is illus-

trated in Fig. 1. Inter-subject and inter-step variability resulted
to be low, since the acquired data presented uniform ranges of
flexion/extension angle and angular velocity.
A total of 4679 steps were acquired and were then divided

into three self-selected speed conditions. Each step included a
pair of gait events (IC, EC). The real-time algorithm detected the
total amount of IC and EC events, without any false positives.
Results are detailed in Table I, reporting the mean speed, the
number of steps, and the accuracy (TP, FP, FN, and F1-score).

Fig. 2. Bland-Altman plots of Initial Contact (IC) and End Contact (EC), for
the slow (panel a, IC; panel d, EC), normal (panel b, IC; panel e, EC), and
fast (panel c, IC; panel f, EC) self-selected speeds obtained from the healthy
subjects data ( ). Positive times correspond to delays in the detection
of the real-time algorithm with respect to the GaitRite system. Mean error is
reported with a solid horizontal line and limits of agreement (mean SD)
with dashed horizontal lines. Gray area, symmetrical around zero, corresponds
to the sampling period of the inertial sensors data (20 ms).

Without the update stage, the performance obtained by the
algorithm would have slightly worsened: three false negatives
for IC (two for the slow speed, one for the normal speed) and
five for EC (two for the slow speed, three for the normal speed)
would have been obtained. No false positives would have been
collected, resulting in total F1-scores of 0.999 for IC ( ,

) and 0.999 for EC ( , ).
A Bland-Altman plot was obtained for each speed condi-

tion and gait event (IC, EC), comparing the real-time algorithm
against the GaitRite system (Fig. 2). On each panel, the dif-
ference between both methods is plotted against their average.
Positive differences correspond to delays in the detection of the
real-time algorithm, with respect to the GaitRite system. The
mean detection delays [95% confidence interval (CI)] for IC
were 12.55 ms [11.65, 13.45] for the slow self-selected speed,
11.91 ms [11.01, 12.81] for the normal self-selected speed and
13.66 ms [12.76, 14.56] for the fast self-selected speed. In the
case of EC, the mean detection delays obtained were 0.22 ms
[ 1.81, 1.37], 5.09 ms [3.49, 6.69], and 10.44 ms [8.89, 11.99],
for the slow, normal, and fast self-selected speeds, respectively.
The other algorithms published in the literature [15], [17]

tested F1-scores close to 1 for both IC and EC, as reported in
Table I. The median and interquartile ranges of the detection
delays obtained by the three algorithms are plotted in Fig. 3,
for each event and speed condition. The Dunn-Sidak post hoc
tests ( ) established that for each speed condition and
event, all pairs of algorithms were significantly different from
each other, with the real-time algorithm always showing the
minimum delay.

B. Robustness

1) Influence of Sudden Changes in Pace: The mean velocity
change was 0.51 0.24 m s for the slow-to-fast condition,
and 0.57 0.22 m s for the fast-to-slow condition. The total
number of collected steps was 285 for the increasing speed and
306 for the decreasing speed. The overall performance of the



TABLE II
CLINICAL AND DEMOGRAPHIC DETAILS OF THE STROKE PATIENTS

Fig. 3. Algorithms comparison in terms of detection delays for Initial Contact
(IC) and End Contact (EC) with respect to the GaitRite system for the slow
(panel a, IC; panel d, EC), normal (panel b, IC; panel e, EC), and fast (panel c,
IC; panel f, EC) self-selected speeds. Asterisks indicate significant differences
(Dunn-Sidak, ).

real-time algorithm reached a total value of F1-score equal to 1,
for both IC and EC.
Without the update stage, F1-scores of 0.997 ( ,

) and 0.992 ( , ) would have been ob-
tained for IC at increasing and decreasing speeds, respectively.
In the case of EC, the F1-score for increasing speed would have
resulted in 0.997 ( , ), and 0.985 ( ,

) for decreasing speed.
The Bland-Altman plots (Fig. 4) showed delays comparable

to those obtained from the data of healthy subjects walking at
a constant speed (Fig. 2). For the IC detection, the mean delays
were 10.09 ms [8.28, 11.90] for the slow-to-fast condition, and
10.97 ms [9.19, 12.75] for the fast-to-slow condition. Whereas
for EC the mean errors were 4.25 ms [1.23, 7.27] and 4.87 ms

Fig. 4. Bland-Altman plots of the robustness tests on healthy subjects (
), for the IC and EC events at increasing (panel a, IC; panel c, EC) and de-

creasing (panel b, IC; panel d, EC) speed. Positive times correspond to delays
in the detection of the real-time algorithm with respect to the GaitRite system.
Mean error is reported with a solid horizontal line and limits of agreement
(mean 1.96 SD) with dashed horizontal lines. Gray area, symmetrical around
zero, corresponds to the sampling period of the inertial sensors data (20 ms).

[ 7.91, 1.83], for the slow-to-fast and the fast-to-slow condi-
tions, respectively.
2) Influence of Pathological Pattern: Table II shows the

main characteristics of the recruited stroke patients, ordered by
descending severity of impairment, evaluated in terms of the
mean walking speed obtained in the trials. Two patients showed
a severe impairment (S1, and S2); three exhibited a medium im-
pairment (S3-S5) and the last five (S6-S10) were characterized
by a low level of impairment.
The walking patterns of three subjects representative of the

three different levels of impairment are shown in Fig. 5. Panel
(a) reports the angular velocity and the flexion/extension angle
of three complete strides of a patient with a mild impairment
(S7). The subject presented a walking pattern that was quite
similar to the one displayed by healthy subjects (Fig. 1), both in
terms of peak-to-peak amplitude of the two signals and reduced
inter-step variability. It can be observed that the smoothness of
the angular velocity diminished, especially during the stance
phase of the paretic leg, suggesting a lack of confidence during
weight support. This pattern made more difficult the proper
detection of the End Contact. Panel (b) shows three complete
strides of a subject with a medium level of impairment (S4).



Fig. 5. Walking patterns of three representative stroke patients for mild (panel
a, S7), medium (panel b, S4), and severe (panel c, S1) levels of impairment.
Both the shank angular velocity (left panels) and the flexion/extension angle
(right panels) of the nonparetic (dashed blue) and paretic (solid black) legs are
shown. For each subject three complete strides are reported.

The range of the angular velocity notably decreased for the two
legs, whereas the inter-step variability increased, mainly for
the paretic leg. The amplitude of the flexion/extension angle
was also reduced, almost limiting its range to positive values.
Therefore, the angle that the shank formed in the sagittal
plane with the vertical during IC decreased, thus implying
a reduction in the step length. Finally, panel (c) shows three
complete strides of a subject with a severe level of impairment
(S1), who used a walker during the trial. The amplitude of the
angular velocity presented an evident reduction with respect to
the medium impairment and a higher inter-leg variability (the
double support phase of the paretic leg was 61.60% longer than
the nonparetic-leg phase). In addition, the stance phases were
characterized by flat and smooth angular velocities, probably
due to the support provided by the walker. The bell shape of
the angular velocity had a secondary peak at the end of the
swing phase, caused by hesitation during the initial contact. The
double support phases of the severely impaired subgroup were
extended by 54.95% when compared to the healthy subjects
(the average increment for all stroke subgroups was 36.48%),
with a consequent reduction of the single-leg support phase.
The amplitude of the flexion/extension angle of both legs was
severely reduced, especially for the paretic leg. Since this angle
was defined in the sagittal plane using the vertical as reference,
such a reduction in the angle implied a shortening of the step
lengths, caused by insecurity during the swing phase.
The accuracy results of the developed algorithm were excel-

lent also with the stroke patients. A total of 1137 steps were
recorded, and F1-scores of 0.998 ( , )
and 0.944 ( , ) were obtained for IC and
EC, respectively. Without the update stage, metrics would have
dropped to F1-scores equal to 0.988 ( , )
and 0.896 ( , ) for IC and EC, respectively.
Table III reports the accuracy of the real-time algorithm ob-

tained for the subgroups of patients. As foreseeable, the lowest
but still highly acceptable accuracy was obtained for the most-
impaired group of patients (F1-scores of 0.993 and 0.870 for
IC and EC, respectively). Without the update stage the met-
rics would have slightly worsened for the mild and the medium
impaired groups of patients. However, for the most impaired

TABLE III
PERFORMANCE OF THE REAL-TIME ALGORITHM IN TERMS OF ACCURACY AND
DETECTION DELAYS, OBTAINED SEPARATELY ON THE THREE SUBGROUPS OF

STROKE SUBJECTS (MILD, MEDIUM AND SEVERE)

group, F1-scores would have dropped to 0.967 ( ,
) for IC and to 0.726 ( , ) for

EC, demonstrating the usefulness of this stage of the algorithm.
The timing delays and limits of agreement are shown in

Fig. 6. The mean detection delays were 31.26 ms [28.73, 33.79]
for IC, and 6.79 ms [3.48, 10.10] for EC. Different colors and
symbols are used to classify patients based on different levels
of impairment. The detection delays obtained for the mildly
impaired subjects (green triangles, five subjects) were similar
to those obtained for the healthy subjects (Figs. 2 and 4). Sub-
jects with medium impairment (yellow circles, three subjects)
were characterized by increased discrepancies between the two
systems, and in most cases the real-time algorithm detected
events earlier than the GaitRite system (especially in the case
of EC). Subjects with severe impairment (red squares, two
subjects) were characterized by detection delays with the most
scattered distribution, thus increasing the limits of agreement.

IV. DISCUSSION

A real-time, adaptive algorithm for gait-event detection
was developed and its performance was validated against the
GaitRite system, using a dataset of 4679 steps from 22 healthy
subjects, aged between 21 and 85 years, who walked at three
self-selected speeds (slow, normal and fast). The total set of
IC and EC events was correctly identified, reaching F1-scores
of 1 for the three speed conditions. The mean detection delays
were always below 13.66 ms, suggesting that the algorithm
was actually able to identify gait events in real time, obtaining
minimum delays with respect to the offline-processed data
provided by the GaitRite system.
This dataset was also used to compare the developed algo-

rithm with other two methods already published [15], [17], that
used the same inertial and magnetic sensors (MTx sensors from
Xsens Technologies B.V) to detect IC and EC. The resultant ac-
curacy metrics were close to 1 also for these algorithms. How-
ever, the detection delays obtained by the here-proposed algo-
rithm for all speeds and events were significantly lower than
those of the other two algorithms. In particular, Lee's algorithm
[17] was affected by a mean detection delay of 104.5 ms for IC
and 325.4 ms for EC, which makes it not suitable for real-time
applications. These delays were due to the low-pass filter ap-
plied to the shank angular velocity and to the choice of the points
correlated to the gait events. Indeed, Lee et al. defined IC as the
minimum of the angular velocity that comes after the maximum



Fig. 6. Bland-Altman plots of the robustness validation with stroke subjects ( ) for the IC (a) and EC (b) events. Positive times correspond to delays in
the real-time algorithm with respect to the GaitRite system. Mean error is reported with a solid horizontal line and limits of agreement ( mean 1.96 SD) with
dashed horizontal lines. Dotted lines delimit the area corresponding to the sampling period of the inertial sensors data (20 ms). Patients with different levels of
impairment are shown in different colors: green triangles (mild impairment), yellow circles (medium impairment), and red squares (severe impairment).

peak (MS, in Fig. 1), whereas we preferred to identify IC as the
minimum of the flexion/extension angle, since we observed that
this point was better synchronized with the IC event detected
by the GaitRite system. The detection delay of Lee's algorithm
increased even more significantly in the case of EC, since the
identification of MS triggered the search of a past EC event.
González's algorithm [15] was based on the acceleration sig-
nals acquired from a sensor placed on the S1 vertebra. Low-pass
filters with narrow pass-bands were applied, resulting in mean
detection delays of 157.2 ms for IC and 37.4 ms for EC. The
use of a single sensor increases system portability and is more
cost effective, but also reduces the available information being
processed, making it difficult to analyze asymmetric walking
patterns.
The algorithms proposed by Lee and Gonzalez were repro-

duced by the authors in order to allow a quantitative compar-
ison on the same dataset, since the algorithms were based on a
minimal number of sensors and were implemented in real time,
as the one proposed by the authors. However, other methods
have been published in the literature. Rueterbories et al. devel-
oped a real-time algorithm to detect gait events from the radial
and tangential accelerations of the foot, which was validated on
healthy subjects and stroke patients [18]. The authors achieved
levels of accuracy similar to those of the here-proposed algo-
rithm, but the timing disagreement between the real-time de-
tection and the reference system (footswitches) had a higher
variability. Kotiadis et al. proposed different algorithms to de-
tect IC and EC using an inertial sensor placed on the shank,
whose signals were processed offline to assess which method
was best to be implemented online [16]. Their final algorithm,
using offline bidirectional filtering and manually set thresholds,
achieved a high level of accuracy in one stroke subject walking
over various surfaces; nevertheless, a further validation with
more subjects and a real-time implementation of the filter is
needed. Hanlon et al. detected IC on 12 healthy subjects simu-
lating different walking patterns, obtaining mean absolute errors
of 9.5 9.0 ms [19]. However, they used two accelerometers

placed on the knee and ankle joints instead of a single sensor
per leg, detected a single event, and did not provide a validation
on neurological patients. McCamley et al. extracted the IC and
EC using a waist-mounted inertial sensor that was processed
with the continuous wavelet transform, obtaining very good re-
sults and detection delays for young and healthy subjects, which
were comparable to those obtained by the presented real-time
algorithm [20]. Further studies should assess its applicability
to nonasymmetric patterns, typical of some pathologic patients,
and the feasibility of performing the continuous wavelet trans-
form in real time.
Two additional datasets were acquired to verify the algo-

rithm robustness. The first one tested the performance of the
developed algorithm against sudden speed changes, resulting
in F1-scores equal to 1 for all events (IC, EC) and speed condi-
tions (increasing and decreasing speeds). Detection delays were
comparable to those obtained for healthy subjects walking at a
constant speed, suggesting that the rapid adaptability of the al-
gorithm makes it suitable for long-term, daily-life acquisitions,
free from the enclosed walkway of the GaitRite system.
The performance of the algorithm was also assessed on

walking patterns acquired from a group of stroke patients
( ). The recruited patients were very heterogeneous
in terms of etiology, time elapsed since stroke and level of
impairment (walking speeds ranged from 0.17 to 1.38 m/s), in
order to provide a more extensive robustness validation of the
algorithm. Some of the patients used aids during the trials, such
as canes or walkers. The real-time algorithm provided excellent
results when applied to stroke subjects, with F1-scores of 0.998
for IC and 0.944 for EC. Mean detections delays were 31.26
ms for IC and 6.79 ms for EC. Due to the higher inter-step
variability that the stroke patients presented with respect to the
healthy subjects, the update stage of the algorithm was crucial
in achieving this level of performance.
In order to assess the relationship between the algorithm per-

formance and the level of impairment, the dataset acquired from
stroke patients was divided in three subgroups, based on the



walking speed [26]. However, the low number of subjects within
each group (especially for the most severely impaired) limited
the possibility of drawing any final comments. The results ob-
tained from subjects belonging to the groups with medium and
mild levels of impairment (walking speed m s) were
similar to those obtained from healthy subjects. A slight de-
crease in the performance was reported for subjects with severe
impairment (walking speed m s), with F1-scores values
of 0.993 for IC and 0.869 for EC. The walking patterns of the
two severely impaired subjects were affected by a high level of
inter-step variability (Fig. 5), nevertheless the mean detection
delays achieved were 52.37 ms for IC and 15.78 ms for EC.
The algorithm was tested only on hemiparetic gait patterns;

future research should consider the extension of the dataset, in-
cluding subjects affected by other neurological diseases, such
as SCI, Parkinson Disease, or Multiple Sclerosis. In addition,
other tests could include daily-life acquisitions, assessing the
robustness against more abrupt changes in gait speed and non-
straight walking trajectories. Another limitation of the study is
that the algorithm was based on drift-free accelerations, angular
velocities, and orientation matrices provided by the Kalman
filter embedded in the MTx sensors (Xsens Technologies B.V).
Since this filter also uses the information provided by the mag-
netometers, an environment free from magnetic disturbances
was required to avoid measurement interferences. Furthermore,
the use of a filter embedded in a commercial-type sensor im-
plies that the algorithm is not immediately exportable to other
IMMSs. The Kalman filter also limited the sampling frequency,
which was finally set to 50 Hz in order to simultaneously use
three sensors. Even though it is sufficient for gait acquisitions,
it is very likely that a higher sampling frequency could have
additionally reduced the detection delays; nevertheless, studies
should be carried out to analyze these effects.
In conclusion, a real-time, adaptive algorithm for gait-event

detection was validated against the GaitRite system on healthy
subjects ( , aged 21 to 85 years old) and on a heteroge-
neous group of patients with hemiparesis ( ). The vali-
dation was designed in order to replicate a realistic clinical use.
Therefore, the experiments were performed on different days,
the sensors were placed by four different operators, and the sub-
jects were asked to walk barefoot if they were wearing heeled
shoes or clogs. The sensors were placed on the external part
of both shanks but no special attention was required. Naturally,
sensors misplacement might introduce systematic errors in the
signals acquired, but this would not necessarily affect the per-
formance of the algorithm. Indeed, the initial procedure to com-
pensate for misalignments between the sensor and the longitu-
dinal axis of the shank, the subject-specific calibration of the
thresholds and the update stage maximize the detection accu-
racy. The designed algorithm reliably identified six gait phases
in real time, thus providing an extensive knowledge about the
gait cycle which would not be available in real time if only using
the GaitRite system. This knowledge can be used for the design
of advanced closed-loop control systems for Functional Elec-
trical Stimulation or biofeedback controllers synchronized with
gait training, which may improve the efficacy of gait interven-
tions for neurological patients.

Fig. 7. Peaks of interest for the definition of the EC threshold, extracted from
the shank angular velocity and flexion/extension angle of the paretic leg of a
stroke subject with mild impairment (S7).MS, AN and EC events are shown. EC
non-events are the peaks of the angular velocity signal that could be misdetected
as the EC event, which are located in the time interval

.

APPENDIX

The detection stage of the algorithm extracted the gait events
by finding peaks located in the corresponding gait state, com-
paring their amplitude with a predetermined threshold. Four
thresholds were used for EC, AN, MS, and IC. These thresh-
olds were initialized in the calibration stage using data acquired
from five steps, and then updated every step (update stage).
In the following, we refer to the outputs of the first order

filter (detection stage) as real-time signals and to the outputs
of the 10th order filter (update stage) as quasi real-time sig-
nals. The thresholds defined for the real-time and the quasi real-
time signals are then referred to as real-time and quasi real-time
thresholds.
EC was defined as the minimum of the angular velocity

that happens before MS. In the detection stage, the search of
EC started when the real-time flexion/extension angle signal
exceeded the AN real-time threshold; then, the algorithm
looked for a minimum whose amplitude was lower than the EC
real-time threshold. Such a threshold was needed to distinguish
the EC event from the other local minima (EC non-events)
located before it, at the end of the stance phase (see Fig. 7).
This threshold was computed in the update stage, using the
quasi real-time angular velocity: the EC event was reliably
identified as the negative minimum of the quasi-real time signal
before the MS event, and then the corresponding minimum on
the real-time signal was tagged as EC event; all the other local
minima within the time interval were
tagged as EC non-events. Since at the end of the stance phase
the angular velocity signal was a negative, decreasing function,
the real-time threshold was defined as the mean between the
minimum amplitude of the EC peaks classified as non-events
for the last five steps and the maximum amplitude of the EC
peaks classified as events for the last five steps.
AN was introduced to facilitate the detection of EC, particu-

larly in the case of pathological gait patterns, since there were
some local minima before EC (EC non-events) that could be



misclassified as gait events. AN was defined as the flexion/ex-
tension angular value corresponding to the time instant of EC,
and the set of AN values of the last five steps was used to create
a threshold that started the search of EC. Since in the proximity
of EC the flexion/extension angle was an increasing function,
the real-time threshold for AN was computed as the mean be-
tween the minimum amplitude of the AN corresponding to the
last five EC events and the maximum amplitude of all the other
AN values associated to the EC non-events collected from the
previous five steps.
MS was defined as the maximum of the angular velocity

signal. In the detection stage, MS was identified as the peak
of the angular velocity whose amplitude exceeded a certain
threshold. This threshold was computed during the update
stage, applying Otsu's thresholding method [27] to the quasi
real-time angular velocity signal. Otsu's method is typically
used in image processing to convert a gray-level image to black
and white. This method assumes the existence of two classes of
points (black and white) and calculates the optimal threshold
that maps gray levels to black and white, minimizing intraclass
variance. This is done by finding the optimal threshold that
maximizes the between-class variance ( ) defined as follows:

(2)

where and are the zeroth- and the first-order cumula-
tive moments of the histogram up to the th level of intensity.

is the mean level of the total set of points.
Its advantage, when applied to the proposed algorithm, is

that the Otsu's method was able to automatically separate the
MS events from other maxima of the angular velocity (MS
non-events), exploiting the variability between events and
non-events. To identify the MS quasi real-time threshold, all the
maxima of the quasi real-time angular velocity of the last five
steps were collected. For positive maxima, the positive area
under the curve around the peak was computed, whereas for
negative maxima the value was set to zero. The Otsu's method
was applied to this dataset, computing a threshold that divided
the peaks of the quasi real-time angular velocity into MS
events and non-events. Then, for each point, the corresponding
maximum on the real-time signal was analogously classified as
event or non-event. The MS real-time threshold was computed
as the mean between the maximum amplitude of the MS peaks
classified as non-event and the minimum amplitude of the MS
peaks classified as events.
Finally, IC was identified as the minimum of the flexion/

extension angle whose amplitude was lower than the related
threshold. In the update stage, the minima of the quasi real-time
flexion/extension angle of the last five steps were collected;
then, the corresponding events were located on the real-time
signal, and the real-time IC threshold was computed as mean
standard deviations in order to take into account the quasi-to-

tality (i.e., 99.7%) of the collected peaks.
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