
Elastoplastic analysis of plane stress/strain structures via restricted basis
linear programming
addressed in [12].

⇑ Corresponding author. Telefax: +98 21 82883324.
E-mail addresses: hamid@modares.ac.ir (H. Moharrami), mahini@pgu.ac.ir 

(M.R. Mahini), giuseppe.cocchetti@polimi.it (G. Cocchetti).
H. Moharrami a,⇑, M.R. Mahini b, G. Cocchetti c

a Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
b Department of Civil Engineering, Persian Gulf University, Boushehr, Iran
c Department of Civil and Environmental Engineering, Technical University (Politecnico) of Milan, piazza L. da Vinci, 32-20133 Milan, Italy

Received 11 December 2013 

Accepted 27 August 2014
1. Introduction

Analysis of structures composed of elastoplastic materials is still 
a growing area in the field of structural mechanics. The need for 
realistic responses of structures to the increasing loads (such as 
heavy live loads, crash loads, lateral quake/wind loads, and 
explosions) or need for safety assessment of structures (commonly 
required in limit load analysis and design procedures), have drawn 
attention of several researchers toward this subject [1–3].

Using piecewise-linear (PWL) yield surfaces in combination 
with optimization techniques has opened a new horizon of study 
known as PWL elastoplasticity [4]. Mathematical programming 
(MP) has been employed by several researchers in nonlinear analy-
sis of structures and has found to be a very robust and versatile 
approach to solution of problems of this kind. MP based approaches 
do not contain the difficulties of the iterative approaches such as 
the implementation of cumbersome return algorithms, the enforc-
ing of convergence criteria, and so on. Satisfying the yield and 
equilibrium equations at global scale, unconditional stability (that 
appears in step-by-step solution schemes) and use of easily coded 
optimization algorithms (frequently available in commercial soft-
ware) are encouraging features of such approaches that motivate
researches in this area. In the following, the history of such 
approaches is cited briefly.

Mathematical linear programming has been considered for 
rigid-plastic limit analysis (LA) of framed structures and its 
historical and theoretical background has been deeply discussed 
and demon-strated in many nonlinear analysis text books, e.g. see 
[5]. Maier [6,7] proposed the use of quadratic programming (QP) in 
elastoplas-tic analyses and derived a matrix formulation for framed 
structures governed by PWL constitutive models [8]. The use of 
linear comple-mentarity problem (LCP) solvers was also found to 
be efficient and a restricted basis linear programming (RBLP) was 
proposed as an alternative to QP [9]. Therefore LCP concept was 
extended to various engineering problems such as dynamic 
analysis [10], shakedown analysis [11], and softening frames 
[12,13]. Also some researchers dealt with piecewise-linearization 
of yield surfaces, so as to be uti-lized in optimization approaches as 
linear constraints [14–16]. Recently a modified version of RBLP has 
been proposed in the spirit of framed structures, which 
automatically captures and handles any local unloading and 
removes any need for sub-problem solution in the cases of reaching 
yield surface corners [17,18]. This approach has been successfully 
used in elastoplastic analysis of softening frames and the proposed 
maximization criterion has shown an excellent capability in 
capturing the exact response of structures. This approach, which 
basically works in an incremental manner, preserves the distinct 
features of the step-by-step method, namely exactness and 
unconditional stability, while removes its disadvan-tages 
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In spite of pervasive studies on MP approaches applied to skel-
etal structure analyses, which have made this topic a well-devel-
oped area, it has been rarely utilized in direct analysis of plane
stress/strain problems. Kaliszky and Lógó [19] presented a mixed
variational principle for plane-strain problems characterized by bi-
linear hardening materials. In this approach the load multiplier is
maximized using nonlinear MP solvers in the view of nonlinear
nature of constraints. Another development in MP approaches
toward 2D-stress/strain problems has appeared in [20], where tra-
ditional Mohr–Coulomb yield surface is piecewise-linearized and
used for safety assessment by load factor maximization. Utilizing
this approach, which is efficiently improved by the aid of sifting and
re-meshing techniques, the holonomic response of structures and
corresponding limit load are detected with a reasonable accuracy.

The most recent contribution to direct elastoplastic analysis o
plane stress and plane strain structures by the aid of optimization
tools is the complementarity approach proposed by Tanga-ramvong
et al. [21]. This approach implements a mixed finite element
formulation, developed by Capsoni and Corradi for quad-rilatera
bilinear elements [22,23], in constructing an MP problem. As for
constraints, the von Mises or Tresca yield criteria are considered in
their original nonlinear forms. The resulted MP is solved using an
industry-standard complementarity solver GAMS/PATH with an
interface for MATLAB environment. This approach belongs to
holonomic solution category and sufficiently small load steps are
needed to reduce the amount of errors appearing due to possible
local unloadings. In this approach a relatively large frac-tion of the
CPU time (27–82% in some studied structures) is spent for load
estimations beyond the limit load, i.e. infeasible load steps.

In this paper, the RBLP is extended to 2D-Stress/Strain problems
following a similar approach discussed in [17,18]. To  this end
theoretical aspects of problem including: field approximation
piecewise-linearization of von Mises yield model in 2D-stress/strain
and development of linear mixed hardening constitutive laws are
presented in Section 2. Formulation of the problem and its
implementation in the MP problem are explained in Section 3. In
Section 4, the solution procedure of the mathematical programming
problem is discussed and finally, in Section 5, some numerica
examples are presented to demonstrate the capabilities of the
proposed algorithm and numerically validate its results.

Bold-face, regular, and italic symbols are adopted herein for
matrices, vectors and scalars, respectively. Superscript T means
transpose, and dots stand for rates (i.e. derivative with respect to
ordering, not necessarily physical, time).

2. Theoretical formulation
2.1. Field approximations

 
 
 
 
 
 
 
 
 
 
 
 

It is well-known that in LA by popular FEM the computed safety
factor might severely be affected by locking, see e.g. [24]. Herein a
multi-field mixed discretization is adopted: the pairs of conjugate
variables are modeled and the conservation of the scalar product for
conjugate fields is imposed in a weak form. In such approaches, the
discrete problem is formulated in terms of generalized variables and
using appropriate shape functions, which lets to rule out the shear
locking phenomena by relaxing the kinematic constraints that
induce locking. The theoretical aspects of mixed for-mulation is
deeply studied in literature, see e.g. [25–27], and are not brought
here for the sake of brevity. In this study, quadrilateral elements are
considered and the displacement field, ue(n, g), within the element e
is approximated by quadratic isoparametric shape
functions, N, in the space of natural coordinates (n, g), and with ref-
erence to the nodal displacements Ue:

ueðn;gÞ ¼ NUe ð1Þ

Four Gauss points, g = 1–4, over each element are used for
numerical integration and the stress and strain fields are assumed
to vary linearly over the element. Herein the actual stress compo-
nents corresponding to the Gauss points are assumed as the
element generalized stress, �re, and bilinear shape functions, We

r,
which are referring to the Gauss points instead of element nodes,
are used to interpolate stresses, reðn;gÞ ¼ ½rxðn;gÞ; ryðn;gÞ;
sxyðn;gÞ�Te , over the element:

reðn;gÞ ¼ We
r �re ð2Þ

Note that the (3 � 12) stress shape function matrix, once computed
at the gth Gauss point, collects three zero blocks and an identity
matrix I3�3, located at the block corresponding to the considered
Gauss point, e.g. for g = 1:

We
r

��
g¼1 ¼ I3�3 03�3 03�3 03�3½ � ð3Þ

Also the strain field eeðn;gÞ ¼ ½ exðn;gÞ; eyðn;gÞ; cxyðn;gÞ �
T
e ,

within the element, is approximated by the shape functions We
e

and governed by the element generalized strain vector �ee as
follows:

eeðn;gÞ ¼ We
e�ee ð4Þ

In order to preserve the scalar product of conjugate quantities
in terms of actual model variables and the generalized ones, the
strain field shape function over the element domain X is selected
as follows:

We
e ¼ We

r

Z
X

WeT

r We
rdX

� ��1

ð5Þ

Also this shape function (3 � 12) matrix, once computed at the
gth Gauss point, collects three zero blocks and a scaled identity
matrix. The scale factor is (tJg)�1 wherein t is the element thickness
and Jg is the Jacobian matrix determinant, calculated at the Gauss
point g. For instance, at the first Gauss point (g = 1) the strain shape
function matrix becomes:

We
e

��
g¼1 ¼

1
tJg¼1

I3�3 03�3 03�3 03�3

h i
ð6Þ

By weighting the strain definition relation, the consistency
matrix Ce for linear kinematics is determined as:

Ce ¼
Z

X
WeT

e rNdX ð7Þ

wherein, r is the well-known symmetric gradient operator, gener-
ating the local strain field from the displacement field. The consis-
tency matrix Ce, the nodal displacements Ue and the nodal forces
fe can be related to the generalized stresses and strains by the fol-
lowing relations:

�ee ¼ CeUe

f e ¼ CT
e
�re

ð8Þ

Accordingly, the element stiffness matrix reads:

Ke ¼ CT
e DeCe ð9Þ

wherein the generalized material stiffness matrix De is evaluated in
terms of material constitutive stiffness matrix De and strain shape
functions through the following integral:

De ¼
Z

X
WeT

e DeW
e
edX ð10Þ



Fig. 1. von Mises yield locus in plane stress (solid line) and plane strain (dotted
line) in the plane sxy = 0.
The material constitutive stiffness matrix, which is defined in
terms of the Young modulus E and Poisson’s ratio m, assumes differ-
ent forms for plane stress and plane strain cases:

De ¼
E

1� m2

1 m 0
m 1 0
0 0 ð1� mÞ=2

264
375 ðplane stressÞ

De ¼
E

ð1þ mÞð1� 2mÞ

1� m m 0
m 1� m 0
0 0 ð1� 2mÞ=2

264
375 ðplane strainÞ

ð11Þ

Finally, the element generalized plastic multipliers �ke are
referred to the Gauss points and are assumed to govern the mod-
eled local plastic multipliers ke by the above bilinear shape
functions:

keðn;gÞ ¼ We
k
�ke; We

k ¼ We
r ð12Þ
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2.2. On piecewise linearization of elastic–plastic J2 model

One of the most popular and well-known yield criteria is the one
proposed by von Mises, also known as J2 plasticity model, and ha
been found in adequate accuracy for classical metal plas-ticity
problems including: crash analysis, metal forming and gen-era
collapse studies in relatively low temperatures [28,29]. In  thi
study, this yield criterion is used with associative plasticity. The key
point in nonlinear analysis via RBLP is to develop a PWL yield
criterion in a matrix form. This has been considered as the main
subject of this Subsection. Von Mises yield domain, for an iso-tropic
material, is defined in terms of second deviatoric stress invariant J
as follows:

F ¼
ffiffiffiffiffiffiffi
3J2

p
� r0 6 0 ð13Þ

where r0 is the material yield limit; for a generic stress state, i.e.
3D-stress state, J2 can be computed in terms of stress components
to obtain the following expanded form:

F¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

x þr2
y þr2

z �rxry�ryrz�rzrxþ3s2
xyþ3s2

yzþ3s2
zx

q
�r060

ð14Þ

In the above definition ri and sij are referring to normal and
shearing stress components, respectively. For the piece-wise line-
arization of the yield function, it results more convenient to nor-
malize stress components with respect to material yield stress,
i.e. ri = ri/r0 and sij = sij/r0, to obtain:

F¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

x þr2
y þr2

z �rxry�ryrz�rzrxþ3s2
xyþ3s2

yzþ3s2
zx

q
�160

ð15Þ

Geometrical interpretation of such yield locus is a cylindrical 
shell with axis coinciding with rx = ry = rz line in the space of prin-
cipal stresses. The J2 yield model, Eq. (15), in  rx–ry plane 
stress mode, i.e. rz = syz = szx = 0, reduces to:

f ¼ r2
x þ r2

y � rxry þ 3s2
xy � 1 6 0 ð16Þ

The geometrical description of such a yield locus is an ellipsoid 
in rx–ry–sxy space and an oblique oval in sxy = 0 plane as shown in 
Fig. 1. Herein the aim is to linearize the yield surface with adjust-
able accuracy, i.e. controllable number of yield planes, which will 
provide a suitable tool beside the sifting technique.

To this end, two sets of perpendicular planes are assumed in 
rx–ry–sxy stress space, and used to locate the desired discretizing 
points on the yield surface:
‘‘Transversal subdividing planes’’; which is the set of planes per-
pendicular to the diagonal rx = ry.

Such planes are generally expressed in the form rx + ry = ni, in
which ni is referred to as transversal discretizing parameter and

is limited to �2 6 ni 6 +2 in order to prevent null intersection with 
the oval depicted in Fig. 1.

‘‘Radial subdividing planes’’; which is the set of planes passing
through the diagonal rx = ry and forming an angle hj with the sxy = 0
plane. This group of planes can bepffiffiffigiven the following math-
ematical description ðrx � ryÞ tan hj � 2sxy ¼ 0, in which hj is defined
as radial discretizing parameter and is limited to
0 6 hj 6 2p.

By intersecting these two planes with the yield surface f = 0, Eq.
(16), the coordinates of the discretizing points, ½r̂x; r̂y; ̂sxy�, are 
found to be as follows:

r̂x ¼
ni

2
þ cos hj

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� n2

i

3ð1þ sin2 hjÞ

s

r̂y ¼
ni

2
� cos hj

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� n2

i

3ð1þ sin2 hjÞ

s

ŝxy ¼
ffiffiffi
2
p

sin hj

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� n2

i

3ð1þ sin2 hjÞ

s ð17Þ

The normal vector to the yield locus at the generic discretizing
point reads:

@f
@r

����
r̂
¼ 1

r0

2r̂x � r̂y

2r̂y � r̂x

6ŝxy

8><>:
9>=>; ¼ 1

r0

ni
2 þ

3 cos hj

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�n2

i

3ð1þsin2 hjÞ

r
ni
2 �

3 cos hj

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�n2

i

3ð1þsin2 hjÞ

r
3
ffiffiffi
2
p

sin hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�n2

i

3ð1þsin2 hjÞ

r

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
ð18Þ

Finally, having the discretizing point coordinates, Eq. (17), and 
the normal vector Eq. (18), equation of the corresponding yield 
plane is simply determined:

f ij ¼
1
4
ðni þ 3 cos hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� n2

i

3ð1þ sin2 hjÞ

s
Þrx

þ 1
4

ni � 3 cos hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� n2

i

3ð1þ sin2 hjÞ

s !
ry

þ 3
ffiffiffi
2
p

2
sin hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� n2

i

3ð1þ sin2 hjÞ

s !
sxy � 1 ¼ 0 ð19Þ
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Fig. 2. Piece-wise linear approximation (M = 20 and n = [0, ±0.5, ±1, ±1.2, ±1.7, ±1.9,
±2]) of the von Mises ellipsoid in 2D-Stress mode. The plot is also valid for 2D-Strain 
mode provided that rz = 0 is assumed.
From the above set of yield planes, defined at any Gauss point g,
the piece-wise linearization of the yield surface can be given the
following matrix notation:

Yg ¼ UT
grg � f1g 6 0 ð20Þ

where Ug and rg are the yield matrix and the stress vector corre-
sponding to the Gauss point g, respectively, considered as follows:

Ug ¼

1
4 ni þ 3 cos hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�n2

i

3ð1þsin2 hjÞ

r� �
1
4 ni � 3 cos hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�n2

i

3ð1þsin2 hjÞ

r� �
3
ffiffi
2
p

2 sin hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�n2

i

3ð1þsin2 hjÞ

r� �

2666666664

3777777775
3�m

ð21Þ

rg ¼
rx

ry

sxy

8><>:
9>=>;

g

In the above formula m is the number of yield planes used to
approximate the original yield surface. It is obvious that the
proposed linearization represents an external delimitation of the
original yield surface and upper bounds on the collapse load are
expected; however, for reasonably fine discretizations, these
approximations will bring the results close to the exact ones. Other-
wise, the piecewise linear domain can be homothetically scaled to
get an internal (i.e. safe) delimitation to the original yield surface.

Using the proposed PWL version of von Mises yield surface, one
can control the accuracy of linearization by selecting suitable num-
ber of subdivisions over h and n domains. To this purpose, one
choice is to express the radial control parameter by hj = 2pj/M, in
which M represents the number of radial subdivisions and j runs
from 1 to M. Also the transversal controlling parameter can be
selected from any desirable distribution over [�2, +2] interval. This
feature will provide a very suitable tool to have a more accurate
approximation around the predicted stress state at any Gauss
point, if needed. A 3D plot of the suggested PWL yield surface,
formed by 222 yield planes, can be found in Fig. 2 for n = [0, ±0.5,
±1, ±1.2, ±1.7, ±1.9, ±2] and M = 20.

2.3. Hardening PWL constitutive model for plane stress and plane 
strain problems

The obtained PWL yield surface, Eq. (20), has been derived for a
plane stress mode; it can be easily converted to plane strain mode
according to the following consideration. The elastic constitutive
equations for a plane strain mode can be expressed as:

rg ¼ BT

rx

ry

sxy

8><>:
9>=>;

g

� E

ð1� 2mÞ2
CPg

0B@
1CA ð22Þ

where B = I3�3 � mC and the in-plane equivalent plastic strains, Pg,
and C have the following definitions:

Pg ¼
ep

x þ mep
z

ep
y þ mep

z

cxy

8><>:
9>=>;

g

; C ¼
1 1 0
1 1 0
0 0 0

264
375; ð23Þ

It can be easily verified that the in-plane plastic strain vector
ep

g ¼ ½ ep
x ep

y cp
xy �

T
g can be expressed in terms of in-plane equiva-

lent plastic strain vector Pg by the following formulas:

ep
g ¼ APg ; A ¼ 1

1� 2m

1� m m 0
m 1� m 0
0 0 1� 2m

264
375 ð24Þ
Yg ¼ ÛT
g ðrg � agÞ � bg � f1g 6 0 ð25Þ

^

^ ¼ ^ ¼

p
g

where Ug is the yield matrix relevant to the problem state, i.e. 
Ug Ug for plane stress and Ug BUg for plane strain; ag is the 
back stress vector accounting for kinematic hardening by control-
ling the position of the yield locus, which contains also the term 
ECPg/(1 � 2m)2 for plane strain problems (see below); and bg is a 
vector that accounts for isotropic hardening by controlling the size
of yield locus. For the plane stress problems, Pg coincides with e , 
namely A has to be replaced by an identity matrix.

For the whole element, here considered with a quadrilateral 
shape, quadratic displacements (Q8) with four Gauss points, it is 
custom to weight the yield condition Eq. (25) with bilinear shape 
functions We

k, and to integrate the weighted expression over the 
element domain X. This will return the original yield constraints, 
relevant to the Gauss points separately, scaled by the factor tJg. 
Then, the multiplying coefficients can be easily removed to go back 
to the original yield conditions introduced by Eq. (25) separately for 
each Gauss point. As a result, the yield condition Eq. (25), which is 
defined at Gauss point level, can be simply rewritten at the ele-
ment level as follows:

Ye ¼ bUT
e ðW

e�
r �re � aeÞ � be � f1g 6 0 ð26Þ

where

bUe ¼

bUg¼1 bUg¼2 bUg¼3 bUg¼4

266664
377775; �re ¼

�rg¼1

�rg¼2

�rg¼3

�rg¼4

8>>><>>>:
9>>>=>>>;; We�

r ¼

We
r

��
g¼1

We
r

��
g¼2

We
r

��
g¼3

We
r

��
g¼4

2666664

3777775¼ I12�12

ð27Þ

In the same manner, strain shape functions are collected in a
new block-diagonal matrix, defined as follows:

It results that the plane stress yield conditions, Eq. (20), can be 
easily converted to the plane strain ones, by modifying the yield 
matrix Ug using the B matrix and considering the term ECPg/(1 � 
2m)2 as a part of the back stress vector, reflecting the fictitious 
hardening of plane strain problems (see e.g. [30]). In order to 
develop a unified and more general formulation, the PWL yield 
condition Eq. (20) is written in the following form:



We�
e ¼

We
e

��
g¼1

We
e

��
g¼2

We
e

��
g¼3

We
e

��
g¼4

2666664

3777775 ¼
1

Jg¼1
I3�3

1
Jg¼2

I3�3

1
Jg¼3

I3�3

1
Jg¼4

I3�3

26666664

37777775 ð28Þ

Here, definitions similar to those proposed by Capsoni and Corradi
[22] are adopted to define hardening parameters, ag and bg:

ae ¼ hk½
. .

.
��C

. .
. �Pe ðplane stressÞ

ae ¼
1
2

hk½
. .

.
�C

. .
. � þ

Eð1� 2mÞ þ 3
2 hk

ð1� 2mÞ3
½ . .
.

C
. .

. �
!

Pe ðplane strainÞ

bg ¼ hike

ð29Þ

where hi and hk are the isotropic and kinematic hardening coeffi-
cients, respectively, and ke is the element plastic multiplier vector
which collects all the plastic multipliers, ordered for all Gauss
points. Also, �C and ��C are given the following definitions:

�C ¼
1 �1 0
�1 1 0
0 0 0

264
375; ��C ¼

1 0 0
0 1 0
0 0 1

2

264
375; ð30Þ

Noting that Pe ¼ We�
e We�T

r Ûeke, the yield conditions at element
level can be considered in the following standard form:

Ye ¼ ÛT
e W

e�
r �re �Heke � f1g 6 0 ð31Þ

where the element hardening matrix He has one of the following
definitions, depending on the problem state:

He ¼ hk½
. .

.
��C

. .
. �We�

e We�T

r ÛeþhiI ðplane stressÞ

He ¼
1
2

hk½
. .

.
�C

. .
. �þ

Eð1�2mÞþ 3
2hk

ð1�2mÞ3
½ . .
.

C
. .

. �
!

We�
e We�T

r UeþhiI ðplane strainÞ

ð32Þ
 
, 
 
 
. 
3. Mathematical programming formulation

In order to setup the whole structural domain and formulate
the mathematical programming problem, yield constraints have
to be expressed for the entire structure using matrix notation. This
is simply done by assembling the resulted matrices at element
level. For example the yield conditions for all ne elements can be
collected in the compact form:

Y ¼ bUTW�r �r�Hk� f1g 6 0 ð33Þ

In the above formula, bU is the global yield matrix which collects bUe

matrices in block diagonal form. H and W�r are also constructed in a
similar manner using He and We�

r , respectively. Also k is a vector in
which plastic multipliers for all elements, ke, are kept in order, and
after all �r is the generalized stress vector of the whole structure
composed of the elements’ generalized stress vectors, �re.

The generalized stress vector �r can be decomposed in two
parts; first the elastic stress vector �ri, computed by a linear elastic
analysis of the structure under the current level of external actions,
and second one the residual stress vector �rii which reflects the
effects of plasticity occurrence at any point over the whole
domain:

�r ¼ �ri þ �rii ¼ l�r0 þ �rv�e ð34Þ

In the above formula, �r0 is the generalized stress response of the
linear elastic structure to the external actions amplified by a unit
factor, and l is the external load multiplier. Also each column of
the influence matrix �rv is carried out from a linear elastic analysis
of the structure by considering a unit virtual generalized strain (cor-
responding to each generalized stress component at the Gauss
points) as the exciting agent. It is worth noting that such analyses
are done using the initial stiffness matrix constructed and inverted
just once for the linear elastic analysis, thus the computational
effort devoted to calculating the influence matrix is negligible.

Following an associated flow rule, the generalized plastic strain
vector �e can be expressed in terms of stress shape functions, yield
matrix, and the vector of plastic multipliers as follows:

�e ¼ @Y
@�r

k ¼ W�Tr Ûk ð35Þ

Substituting Eq. (35) into (34) and afterwards in the yield con-
ditions, Eq. (33), it results:

Y ¼ ð bUTW�r �rvW�Tr bU �HÞkþ l bUTW�r �r0 � f1g 6 0 ð36Þ

and, after all, a mathematical programming problem can be easily
formulated as follows:

max: f1gT _k

S:t: :

Y ¼ ð bUTW�r �rvW�Tr bU �HÞkþ l bUTW�r �r0 � f1g 6 0
_kT Y ¼ 0
_k P 0
0 6 l 6 �l
0 6 D 6 �D

8>>>>>>>>>>><>>>>>>>>>>>:
ð37Þ

Here again the sum of increments of plastic multipliers is consid-
ered as the objective function to be maximized. In the nonlinear
analyses, it is desirable to apply some limitation on the load multi-
plier and/or nodal displacement. The last two constraints in the MP
(37) are considered to limit the load multiplier l and any nodal dis-
placement D to some prescribed load level �l or deflection �D, respec-
tively. As in the usual manner of the proposed RBLP, the above
formulated MP is used in the incremental (step-by-step) analysis
and the nonlinear constraints (standing for complementarities),
_kT Y ¼ 0, are implicitly satisfied at each step. It is worth noting that
what is given in Eq. (37) is the initial MP which has to be updated
after each plasticity event as described in [18]. In such a way, all
problem parameters (including load and plastic multipliers) are
decomposed into what has been obtained for the variables up to
the current stage of loading (hatted parameters) and an increment
which is expected for the next loading step (dotted variables).

k ¼ k̂þ _k;

l ¼ l̂þ _l
ð38Þ

Accordingly, the initial plastic capacity of the structure (represented
by {1} in the initial MP) will decay as loading progresses. Also the
MP is updated continuously to obtain correct path and magnitude
of the plastic strains (in the space of plastic multipliers) and load
amplitude (that causes the next plasticity event) in a single attempt
while all extra constraints standing for load/displacement limits are
accounted for.

4. Solution procedure

To solve the mathematical programming problem, Eq. (37), a
restricted basis linear programming (RBLP) method is employed
as described in [17]. Using this approach, the nonlinear constraints
are implicitly accounted for during pivot column selection. Beside
this, a special care is taken to detect any possible local unloading
After all, the most important novelty is the proposed maximization



 
 

Fig. 3. Biaxial tension test.
criterion for determining the correct direction of the plastic strain
increments in the space of plastic multipliers. This tool, if com-
pared with the classical LCP solution used to begin any new load-
ing step, shows a significantly lower computational effort.

As mentioned before, besides the outstanding features of math-
ematical programming approaches to nonlinear analysis, the need
for large storage space, especially in problems with a huge number
of variables, is a drawback that should be managed. Some research-
ers proposed and used some techniques like partitioning, sifting,
and re-meshing. Herein, the required storage space is reduced effi-
ciently by the aid of the revised Simplex method. In addition, a sift-
ing technique is employed which, at each loading step, involves
only 4 yield planes that are either active or most likely may
become active in the subsequent loading steps. Accordingly, after
each load increment, the yield conditions of the whole structure
are checked and in the case of any constraint violation, the last load
step is disregarded and the selected yield planes are updated. This
results in a significant saving in the computational effort and
required storage memory. In the following, consistency of the pro-
posed method with the revised Simplex method and the sifting
technique are discussed. As described in [17,18], the initial simplex
table is decomposed into two adjacent parts; the first part, on the
left, is represented by the coefficient matrix G ¼ ÛTW�r �rvW�Tr Û�H;
the second part, on the right, is indicated by G and reduces to an
identity matrix at the beginning; this last matrix is referred to as
the ‘‘canonical matrix’’.

4.1. Revised Simplex method

Anytime a pivoting operation is performed in the Simplex table,
all the G elements can potentially experience changes, and this
represents a large computational effort. Fortunately, the Revised
Simplex method [31] permits for avoiding such costly computa-
tions by performing the updating of the G matrix only with refer-
ence to a specific column (say column j):

�GUð:; jÞ ¼ G �Gð:; jÞ ð38Þ

where superscript U refers to the updated form of the matrix and
colon (:) means all matrix rows. In such a way, instead of updating
and keeping the whole matrix G, only the required column is
updated and used in the process of pivot finding. On the other hand,
only few columns of the canonical matrix G, specifically those cor-
responding to the active plastic multipliers, will experience a
change due to pivoting and will assume nonzero off-diagonal ele-
ments. Accordingly, the required storage space will be efficiently
decreased by the aid of a sparse technique.

Beside the above peculiarities, any required column �Gð:; jÞ can
be computed using only the pertinent rows of the yield matrix
and the corresponding columns of the influence and hardening
matrices. This represents an additional efficiency in the solution
technique, that lets the algorithm to work without building and
storing the whole G matrix.

4.2. Sifting technique

In order to avoid the involvement of a huge number of
unknowns in the problem formulation, the MP is constructed using
the reduced yield matrix of Gauss points. To this end, only 4 yield
planes for each Gauss point are used in the MP formulation and, as
a consequence, it happens to find some non-participating yield
conditions violated during the solution process. In such cases, the
most recent pivoting step must be disregarded and the violated
yield planes have to be included in the MP formulation. For each
pertinent Gauss point, this is simply done by replacing some
non-active yield planes with the violated yield planes in the
reduced yield matrix. After such substitution, the row in G that cor-
responds to the modified yield plane, say row j, has to be updated
using the following formula:

GUð j;VÞ ¼ �Gð j;VÞGðV;VÞ ð39Þ

where V is a vector containing the row number of all active con-
straints in the Simplex table and the superscript U still recalls the
updated form of the matrix. By the aid of such updating schema,
the simplex table will always represent the latest status of the
structure and no error can enter into the computed response as a
result of yield condition violations; in addition, the proposed
method can handle also non-holonomic solutions (see [17]).
5. Numerical examples

In order to verify the proposed maximization criterion and to 
assess the accuracy of the proposed piece-wise linearization of 
the yield surfaces, some classic engineering problems are solved. 
In all problems, the von Mises yield surface is piecewise-linearized 
using n = [0, ±0.5, ±1, ±1.2, ±1.7, ±1.9, ±2] and M = 40, which results 
in 442 yield planes. Also a piecewise-linear yield model, proposed 
in [20], with M = 40 (i.e. 120 yield planes) is employed to examine 
the proposed method for Tresca material model.

Regardless of the employed yield criterion and according to the 
proposed sifting technique, at each Gauss point only 4 yield planes 
having the most activation potential are used in the formulation 
and are updated during the solution process. The important load-
ing stages are determined using the proposed method and are 
compared to the analytical solutions or to the numerical results 
available in the literature.

All analyses have been performed on a laptop (msi GE620, Intel 
Core i7-2630QM with 8-GB RAM and Win7 operating system) 
using a code developed in MATLAB environment.

5.1. Example 1. Plane strain biaxial tension

The first analyzed problem is a very simple element under biax-
ial tensile stresses in plane strain conditions, as shown in Fig. 3. The
structural element properties are as follows: thickness t = 1,
elasticity modulus E = 100, Poisson’s ratio m = 0.25, and yield stress 
r0 = 1.

According to the double symmetry, only a quarter of the struc-
ture is modeled using an 8-noded quadrilateral plane strain ele-
ment and proper boundary conditions are attributed to fictitious 
boundaries. However the total number of yield planes for such 
an element is 442, but by the aid of proposed sifting technique 
the relevant MP is constructed with only 16 plastic multipliers. 
The problem is formulated using the von Mises constitutive law 
in perfect plasticity and in order to capture the structural collapse,
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Fig. 4. Perforated square under tensile stress.

μ σ0

Fig. 5. Finite element domain discretization and shear-free boundary conditions
(thick lines represent constrained direction).

Fig. 6. Dissipated energy map and deformed shape at the u
the horizontal deflection of the upper-right corner is limited to 0.1
Following the proposed algorithm, the limit load is determined to be
l = 4.6188 which exactly matches the analytical collapse value
reported in [32].

5.2. Example 2. Perforated square

The perforated square shown in Fig. 4 is considered as the sec-
ond example: a 10 � 10 sheet with a D = 2 hole at the center, loaded
by tensile stresses on opposite edges. This problem is challenging
because of stress concentration and diverse yield mode activations
i.e. tensile yield at the early stages of loading and combinations o
normal and shearing yield modes in ultimate load level. The plate is
assumed to be in plane stress conditions, with thickness t = 1
and the material mechanical properties are supposed to be as fol-
lows: elasticity modulus E = 104, Poisson’s ratio m = 0.25. Also iso-
tropic elastoplastic material constitutive models, i.e. H = 0, are
assumed according to: (a) Tresca classical yield model with c = 0.5
and (b) von Mises model with yield stress r0 = 1. The upward dis-
placement D is limited to 0.005 as an analysis termination criterion.

Using symmetry advantages, only top-right quarter of the struc-
ture is modeled and a shear-free support condition is attributed to 
the fictitious boundaries. The extracted domain is discretized using 
48 � Q8 elements as in Fig. 5. MP for this problem includes 768 
plastic multipliers beside the load multiplier as unknowns.

The problem is formulated and solved using the proposed algo-
rithm. The important observations are as follows: for Tresca yield
model, the first yielding was detected at the load level l = 0.390 and
the ultimate load corresponding to maximum displacement turns
out to be l = 0.791. The CPU time spent to solve this problem was
107 s, including 1s spent for 9 infeasible load steps and updat-ing
the initially selected set of yield planes.

Using the von Mises material model, it is observed that plastic-ity
initiates at the load level l = 0.409 and the procedure termi-
nates at the load level l = 0.804, at which the upper limit o
displacement D ¼ 0:005 is reached. The CPU time allocated for this
analysis was 59 s, including 1 s spent for revising the initially
selected set of yield planes caused by 7 infeasible load steps.

Analytic limit load l = 0.8 can be easily computed for this prob-
lem (see e.g. [33]), which indicates about 1% and 0.6% error in the
limit loads predicted for Tresca and von Mises material models
respectively.

The maps of the total dissipated energy are displayed on the
structural deformed shapes in Fig. 6 for both constitutive models. 
As it can be seen, an intensive plastic work is localized at the hole’s
ltimate load for (a) von Mises, and (b) Tresca models.
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Fig. 7. Load–displacement results for perforated square .
right side, known as normal stress concentration zone, and after-
ward slip planes started to appear, and the consequent necking 
caused the failure.

The same problem has been solved in [21] using 120 � Q4 ele-
ments with the following results for Tresca/von Mises material 
models: plasticity initiation load levels 0.345/0.360; limit loads 
0.795/0.807; and CPU time 3680/181 s. Also the CPU time wasted 
for infeasible load levels estimation is reported as 3014/82 s. 
Fig. 7 compares the obtained load–displacement diagrams to the 
analytic solution and to the results given in [21]. According to 
the computed deformed shape, Fig. 6a and b, it appears that a 
longer specimen would be required to get a better matching with 
the analytic solution.
(a)

μ

2

8

2

Fig. 8. Prandtl’s punch: (a) geometry, and (b) adopted domain and fini

Fig. 9. (a) Dissipated energy map and deformed shape in the ultimate load
5.3. Example 3. Prandtl’s punch problem

The flexible flat strip in Fig. 8a resting on an elastoplastic half-
space, known as Prandtl’s punch problem, is considered as the third
example. This problem is frequently studied in the literature and is
challenging because of strong stress discontinuities occur-ring in the
base material located at the footing corners [34]. A  2 � 8
rectangular portion of the half space is considered and shear-free
and fixed boundary conditions are attributed to the fic-titious
boundaries. Also symmetry is exploited to reduce the size of
problem and deal with less number of variables, Fig. 8b. For such a
domain discretization, the relevant MP includes 1152 plastic mul-
tipliers beside the load multiplier as unknowns.

Isotropic elastic-perfectly plastic constitutive behavior is
assumed according to: (a) Tresca classical model with cohesion c
= 1, and (b) von Mises with yield limit r0 = 2. Young modulus E
= 104 and Poisson ratio m = 0.25 are attributed to the base mate-
rial and the whole domain is discretized using 72 quadratic quad-
rilateral elements. The maximum allowable settlement beneath
the footing is limited to 0.005. By employing the proposed method
the following results are observed.

For Tresca model, yielding initiates at the load level l = 2.434
and the limit load corresponding to the allowable settlement
0.005 turns out to be l = 5.171. The predicted collapse load is in
good agreement (0.6% error) with the analytic collapse load
l = 5.142 reported in [34]. The spent CPU time for this problem 
was 633s which includes 10s that was spent for discarding 24 
infeasible load increments and required yield planes updating. 

For the von Mises model, yielding initiates at the load level
l = 2.657 and the limit load is predicted to be l = 5.970. As it
was expected, the von Mises yield criterion resulted in a higher
limit load than the Tresca model. The CPU time allocated for this
case was 951 s including 12 s for cancelling 22 infeasible pivoting
and revising preselected set of yield planes.
(b)
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te element mesh. Thick lines correspond to constrained directions.

for Tresca model; (b) the same as (a) but for von Mises material model.
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Fig. 10. Load–displacement response of Prandtl’s punch problem.
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Fig. 11. Cook’s problem: (a) geometry and l

Fig. 12. Cook problem: (a) dissipated energy map on deformed shape for
Dissipated energy maps together with the deformed shape at 
the limit load level are shown in Fig. 9a and b. As expected, inten-
sive plastic deformations are concentrated at the footing corner, 
and the shear failure zones in the material are clearly depicted 
by the plastic works.

In Ref. [21], 128 � Q4 elements have been used for discretizing 
the problem domain, to obtain the following results for Tresca/von 
Mises models, respectively: plasticity initiation load level 2.390/ 
2.603; limit load 5.174/5.975; and CPU time 4686/415 s. Also 
3210/113 s have been wasted for calculation of the load levels 
beyond the limit load. Plots of load amplifier vs. vertical displace-
ment (measured along the symmetry axis) and analytic solution, 
for Tresca model, are compared in Fig. 10.

5.4. Example 4. Cook’s problem

A non-prismatic solid in plane strain conditions, clamped at one 
end and loaded by a parabolic tangential stress distribution at the 
other end, is considered as the final example, Fig. 11a. This prob-
lem, known as Cook’s problem, is a benchmark problem to examine
(b)

μ

oading layout, (b) finite element mesh.

Tresca model, and (b) the same as (a) but for von Mises yield model.
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analysis approaches in dealing with non-uniform meshes. Material 
properties are E = 70, m = 1/3, r0 = 0.243 and a mixed hardening rule 
with hk = 0.135 and hi = 0.015 is considered (see e.g. [21,23]). For 
this example there is no analytical solution available in the lit-
erature. As shown in Fig. 11b, the structure is meshed using 25 � 
Q8 elements and fixed boundary condition is attributed onto 
support nodes. For this problem a mathematical programming 
containing 400 plastic multipliers and a load multiplier has to be 
solved.

The upward displacement of the free end is limited to 3 and the 
problem is formulated using the proposed algorithm. Results for 
this problem are as follows: for Tresca material model, the pro-
posed algorithm returned 1.010 and 1.591 as the load levels corre-
sponding to plasticity initiation and imposed limit deflection, 
respectively. The CPU time in this case did not exceed 4 s.

For von Mises material model, the first yielding was indicated at 
the load level l = 1.149 and the upward deflection limit reached at 
the load level l = 1.828. For this analysis the CPU time was 9 s.

Also the CPU times spent for yield plane updating in this 
example for Tresca and von Mises models were 0.08 s and 0.31 s, 
respectively. In [21], with a mesh of 68 � Q4 elements, the follow-
ing results are given for Tresca/von Mises material models, respec-
tively: l = 0.919/1.031 as plasticity initiation load level, l = 1.596/ 
1.833 D ¼ 3 and 58/40 s as CPU time.

In Fig. 12, the dissipated energy map is displayed on the 
deformed shape at the collapse load level. The computed load 
displacement curves are compared with those taken from [21,23] 
in Fig. 13.

Here, again, it is seen that the proposed method produced 
sufficiently accurate results by using a coarser mesh and spending 
relatively lower CPU times.

6. Conclusion

The use of mathematical programming in 2D-stress/strain
nonlinear analysis of structures, which has been considered
before in holonomic plasticity, was reconsidered here exploring
for non-holonomic solutions. The well-known von Mises crite-
rion was linearized in a single mathematical expression with
adjustable number of subdivisions in transversal and radial
directions. The outcomes of this research can be summarized
as follows:

� The proposed PWL yield surface, which represents an envelope
to the original one, was found in satisfactory accuracy with suit-
ably selected number of subdivisions.
� The RBLP method, whose versatility and robustness in frame PWL
elastoplasticity has been shown in previous papers (see e.g. [17]),
was extended successfully to 2D-stress/strain problems.
� The proposed maximization criterion was proved to serve effi-

ciently in detecting the correct direction of the plastic strain
increments at all solution stages, especially in the case of reach-
ing yield surface corners.
� Excluding the round-off errors and those appearing due to

piecewise linearization of the yield surface and field discretiza-
tion, the proposed algorithm follows an exact solution scheme
and is capable of capturing any unloading during solution and
returning non-holonomic solutions.
� The proposed algorithm benefits the distinct features of a step-

by-step algorithm, i.e. stability and exactness, in a more effi-
cient way and produces reliable results.
� Combination of the proposed PWL yield surface and the pro-

posed sifting technique, in which only the yield planes in the
vicinity of the stress point are contributed in formulation, pro-
vides significant efficiency and savings in computational effort.
� No load step is needed to be pre-assigned. This feature removes

any uncertainty regarding solution accuracy and also makes the
proposed method capable of capturing the collapse loads
robustly.
� The use of quadratic elements with mixed formulation enables

the solvers of this kind to return sufficiently accurate results
with relatively coarse meshes and, of course, lower computa-
tional effort. As mentioned before, all examples have been
solved using a non-compiled code developed in MATLAB soft-
ware, which is known to be relatively slower than the other
coding languages such as FORTRAN. However the resulted
CPU times in the current version are comparable to the similar
methods, the performance of the proposed method in the sense
of CPU time could be significantly improved by employing an
optimized FORTRAN code.
� The proposed sifting technique works very efficiently and, in all

studied examples, it is observed that only a negligible fraction
of the total CPU time is spent for cancelling infeasible load steps
and revising the working yield planes. Accordingly, by following
the proposed algorithm, the majority of the CPU time is devoted
to the computing of the unique response path of the structure
and the wasted CPU time is not really a matter of concern.
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