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Abstract 

 

 The purpose of the study is to evaluate the performance of a novel 

strategy, referred to as “virtual 4D PET”, aiming at the optimization of 

hybrid 4D CT-PET scan for radiotherapy treatment planning. The virtual 4D 

PET strategy applies 4D CT motion modeling to avoid time-resolved PET 

image acquisition. This leads to a reduction of radioactive tracer 

administered to the patient and to a total acquisition time comparable to 

free-breathing PET studies. 

 The proposed method exploits a motion model derived from 4D CT, 60 

which is applied to the free-breathing PET to recover respiratory motion and 

motion blur. The free-breathing PET is warped according to the motion 

model, in order to generate the virtual 4D PET. The virtual 4D PET strategy 

was tested on images obtained from a 4D computational anthropomorphic 

phantom. The performance was compared to conventional motion 

compensated 4D PET. Tests were also carried out on clinical 4D CT-PET 

scans coming from seven lung and liver cancer patients. 

 The virtual 4D PET strategy was able to recover lesion motion, with 

comparable performance with respect to the motion compensated 4D PET. 

The compensation of the activity blurring due to motion was successfully 70 

achieved in terms of spill out removal. Specific limitations were highlighted 

in terms of partial volume compensation. Results on clinical 4D CT-PET 
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scans confirmed the efficacy in 4D PET count statistics optimization, as 

equal to the free-breathing PET, and recovery of lesion motion. 

 Compared to conventional motion compensation strategies that 

explicitly require 4D PET imaging, the virtual 4D PET strategy reduces 

clinical workload and computational costs, resulting in significant 

advantages for radiotherapy treatment planning. 
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Introduction 

 Four-dimensional Positron Emission Tomography (4D PET) 

effectively accounts for the motion blur due to breathing (1,2). Nonetheless, 

the number of breathing phases in 4D PET is limited by the low count 

statistics, which has a negative impact on the signal to noise ratio (SNR) (3). 

The problem of 4D PET low count statistics has been tackled with the 

application of motion models, aiming at the reconstruction of motion 

compensated 4D PET images (1). 

 Different approaches to respiratory motion modeling have been 

proposed (4). In the following, we consider only those that describe a 100 

deformable motion model, accounting for the elastic nature of tissue 

deformation during breathing (5). 

 In some cases, these approaches rely on the estimation of motion 

models directly from the 4D PET dataset. Such models are therefore 

affected by the high noise and low spatial resolution typical of PET 

imaging. One possible approach is to estimate the 4D PET motion model 

during the PET image reconstruction process. Blume et al. (2010) proposed 

the inclusion of breathing deformation within the optimization function used 

for image reconstruction. They obtained a whole count statistics 

reconstruction of a motion compensated PET image, integrating all the 4D 110 

PET phases (6). Alternatively, the motion model is estimated from the 4D 

PET following the image reconstruction process. Some authors 
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implemented motion model estimation at the image resolution relying on 

deformable registration algorithms (7,8,9). Wallach et al. (2012) estimated 

the unknown “super resolution” reference image according to a maximum a 

posteriori (MAP) algorithm by modeling (i) the effect of motion, (ii) the 

spatial resolution blur and (iii) the effect of noise (9). 

 Conversely, a motion model based on 4D Computed Tomography 

(4D CT) can be applied, assuming ideal phase per phase co-registration 

between PET and CT images. The assumption is realistic when a hybrid 4D 120 

CT-PET scanner is available, providing consistent anatomo-functional 

volumes in the same imaging session (10). The 4D CT motion model 

estimation typically relies on image deformable registration methods 

(11,12,13,14). Models have been validated in 4D CT, showing that the 

accuracy is intrinsically dependent on the performance of the applied 

deformable registration method (14). However, one must be aware that any 

breathing pattern change between the two scans potentially compromises the 

reliability of the motion model, and therefore the accuracy of 4D PET count 

statistics optimization (4). 

The state-of-the-art motion compensated 4D PET strategy based on 130 

4D CT modeling is the 4D Maximum Likelihood Expectation Maximization 

reconstruction algorithm (MLEM), where the warping of PET images is 

embedded in the reconstruction process (11,12,15). This strategy uses all the 

acquired 4D PET phases to generate a motion compensated reference image 
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(intra-reconstruction warping). The reconstruction process requires the 4D 

CT deformation fields, which express both the direct and the inverse 

deformation between each 4D PET phase and the selected reference phase. 

 In this paper, we propose an alternative strategy (“virtual 4D PET”) 

for time-resolved PET imaging, based on a 4D CT motion model, aiming at 

the optimization of 4D PET count statistics as equal to the free-breathing 140 

PET, in hybrid 4D CT-PET scanning  (16,17). The 4D CT motion model is 

obtained by deformable image registration of 4D CT phases with a free 

breathing scan, thus representing the combined effects of respiratory motion 

and motion blur. The motion model is applied for the generation of an 

optimized 4D PET, starting from a whole count statistics 3D PET (i.e. the 

free-breathing PET), without requiring the acquisition of a 4D PET dataset. 

The comparative assessment of the proposed method, with respect to 

conventional motion compensated 4D PET (1), was performed considering 

that the challenge to recover the 4D PET dataset starting from free-breathing 

3D PET entails potentially important advantages. The absence of a 4D PET 150 

acquisition procedure leads in clinical practice to the possibility to reduce (i) 

the quantity of radioactive tracer administered to the patient and (ii) the 

overall acquisition time. Furthermore, the virtual PET strategy results in 

reduced computational costs and lower CT-PET co-registration 

restrictiveness, as it is limited to average data over the breathing cycle. 

These peculiarities may result particularly valuable in the planning of 
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radiotherapy treatments for moving targets, which requires 4D CT 

acquisition and time-resolved PET imaging for more accurate target volume 

identification (18). 

 160 

Materials and Methods 

 

 In the following paragraphs, the virtual 4D PET strategy is described 

and methodological differences with respect to conventional motion 

compensated 4D PET are highlighted. The 4D CT-PET NCAT (Nurbs-

based CArdiac Torso) phantom (19) was applied for comparative testing in 

a computational simulation environment. Data coming from seven lung and 

liver cancer patients, who underwent 4D CT-PET imaging for radiotherapy 

treatment planning, was used for further assessment of the proposed method 

on a clinical dataset. 170 

 

Motion compensation in 4D PET based on 4D CT motion 

modeling 

 

 Deformable image registration was applied to register the available 

4D CT dataset, accounting for the elastic nature of tissue deformation along 

the breathing cycle. Such information was codified as a set of deformation 

fields, expressing amount and direction of breathing motion in 
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correspondence of each voxel, as a function of the respiratory phase. The 

open source software package “Plastimatch” was used to implement a B-180 

spline based deformable registration method (20). The parameters of the 

registration procedure were refined on the NCAT phantom and maintained 

for patient data registration. Four multi-resolution stages of B-spline 

deformable registration were applied, based on root mean square error 

optimization. The sequence of stages featured decreasing grid spacing and 

increasing space resolution and number of iterations, as reported in Table I.  

 

TABLE I 

 

Motion model definition  190 

 

 The motion model resulting from 4D CT deformable image 

registration was used to warp the PET dataset and generate a whole count 

statistics optimized 4D PET. For patient data, the CT image grid resolution 

was maintained when warping PET images. This allowed us preserving the 

high resolution information provided by CT images, but required a sub-

sampling of the warped PET images to recover the original voxel size.  

With reference to Figure 1, the workflow for virtual 4D PET 

generation, compared to conventional motion compensated 4D PET, is 

described in the following paragraphs. 200 
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FIGURE 1. Motion compensated 4D PET (A) and virtual 4D PET (B) 

flowchart. The strategy complexity is exemplified on the right of the 

corresponding flowchart: the image registration steps needed to calculate the 

optimized 4D PET phases (gray boxes) are shown as connecting lines. 
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Virtual 4D PET 210 

 

 In the virtual 4D PET strategy, the motion model is defined by 

registering a phase-averaged 4D CT onto each phase of the 4D CT dataset. 

This is meant to include in the 4D CT motion model the combined effects of 

breathing motion and motion blur. The motion model is described by N 

registration steps, where N is the number of breathing phases. The phase-

averaged 4D CT, and the corresponding phase-summed 4D PET, will be 

referred to in the following as 3D CT and 3D PET, respectively. In this 

strategy, the count statistics is optimized “a priori” with respect to the actual 

motion model application. The virtual 4D PET volumes are generated by 220 

warping the whole count statistics 3D PET according to the deformation 

fields defined in the motion model (Figure 1). Since the acquisition of PET 

images in 4D is not explicitly required, precise co-registration is needed 

only between the 3D CT and the 3D PET volumes. 

 

Motion compensated 4D PET 

 

 The motion model is calculated by registering the 4D CT phases 

onto a reference phase, thus entailing (N-1) registration steps. The complete 

process requires N × (N-1) registration steps, as all phases need to be taken 230 

as reference. In this case the 4D CT motion model describes breathing 
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motion between different phases, where motion blur effects are minimized. 

The motion compensated 4D PET phases are warped according to the 

corresponding (N-1) deformation fields, resulting in “a posteriori” count 

statistics optimization (Figure 1). The co-registration between 4D CT and 

4D PET volumes is required on a phase by phase basis. 

 

4D CT-PET datasets 

 

Computational anthropomorphic phantom 240 

 

 The 4D CT-PET NCAT phantom (19) was used for the comparative 

assessment of virtual 4D PET vs. motion compensated 4D PET. Such a 

phantom provides a 4D CT-PET dataset in controlled motion conditions, 

featuring ideal co-registration of CT and PET images at each breathing 

phase. The main features of the NCAT dataset used for testing are 

summarized in Table II. 

 

TABLE II 

 250 

 Relying on the software tools provided by the NCAT phantom, an 

isolated lesion (2 cm diameter) was placed into the right lung. The TBR 

(Tumor to Background Ratio) was set to 3.62 for CT images and to 18.75 
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for PET images, respectively. Specifically, the lesion activity was set to 75 

counts/voxel, whereas the pulmonary background measured 4 counts/voxel. 

 Image processing implemented in Matlab (The Mathworks Inc., 

Natick, MA, USA) was applied to the original 4D CT-PET NCAT volumes 

in order to obtain clinical-like images (Figure 2).  

 In order to simulate realistic 4D CT image quality, the NCAT 4DCT 

volumes underwent the following procedures: 260 

 adding, slice by slice, of a Gaussian noise with mean value equal to 

the mean gray level of the slice and variance equal to 1% of the gray 

level variance; 

 three-dimensional Gaussian filtering with standard deviation of 1.5 

mm and size of the convolution kernel equal to 11 × 11 × 11 voxel; 

 rescaling of image gray levels to conventional CT Hounsfield Units 

(HU). 

For the same reason, the NCAT 4DPET images were processed in 

the sinogram space as follows: 

 slice by slice sinogram (i.e. direct sinogram) generation; the number 270 

of projections was fixed to 144 over a 180° range, resulting in a 

sinogram dimension of 256×144 (21). Each sinogram was scaled to 

account for the contribution of each slice to the total volume counts 

(set at 2×107); 
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 mono-dimensional Gaussian filtering of each projection (11×1 

convolution kernel) with standard deviation of 2 mm, simulating the 

intrinsic physical resolution loss of a realistic PET scanner; 

 adding of Poisson noise on sinograms with mean value equal to the 

sinogram pixel intensity; 

 slice by slice iterative maximum likelihood reconstruction from 280 

projections according to the OSEM (Ordered Subsets Maximum 

Likelihood Expectation Maximization) algorithm, featuring 2 

iterations and 8 subsets (22); 

 rescaling of the reconstructed image in order to recover the initial 

image counts (2×107counts);  

 two-dimensional Gaussian filtering of the reconstructed image (post-

reconstruction filtering) with standard deviation of 4 mm and size of 

the convolution kernel of 11 × 11 pixel; 

 three-dimensional Gaussian filtering applied to the reconstructed 

volume, with standard deviation of 4 mm and size of the convolution 290 

kernel of 11×11×11 voxel; such a procedure enhanced the 

smoothness of reconstructed data and conferred continuity between 

adjacent slices. 

 The generation of 3D CT and 3D PET images, which is necessary 

for the implementation of the virtual 4D PET strategy, was performed by 
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averaging and summing the processed 4D CT and 4D PET volumes, 

respectively. 

 

FIGURE 2. Coronal slices displaying the lesion for the original NCAT 

volume (A) and the clinical-like corresponding image (B) for PET. The 300 

different color bars indicate the counts scaling applied to the original NCAT 

volume. 

 

Patient data 

 

 Clinical data were collected from seven patients, who underwent 4D 

CT-PET hybrid acquisition on a GEMINI TF Big Bore PET/CT (Philips 

Medical Systems, Eindhoven, The Netherlands). Respiratory motion was 

monitored through the Real-time Position Management system (RPM, 

Varian Medical Systems, Palo Alto, CA). The 4D CT-PET volumes were 310 

sorted into 4 breathing phases according to a phase-based binning protocol. 

The scanner performed attenuation and scatter corrected PET reconstruction 

by means of the 3D RAMLA (Row Action Maximum Likelihood 
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Algorithm) algorithm (23). As for the NCAT phantom data, the generation 

of artificial 3D CT and 3D PET was performed by averaging the 4D CT and 

4D PET volumes, respectively. 

 The related image and clinical features for the patient study are 

summarized in Table III. 

 

TABLE III 320 

 

Quantification of performance 

 

Lesion segmentation 

 

 Validation procedure was focused on the extraction of lesion 

geometrical features (position and volume), which required the definition of 

a specific method for lesion segmentation. This is in agreement with the 

envisioned clinical application in radiotherapy treatment planning (24) of 

moving lesions due to respiration. 330 

 For the NCAT phantom the ground truth lesion segmentation was 

available and identical for CT and PET images. In order to assess the lesion 

quantification on warped images, a threshold segmentation was 

implemented within the lesion VOI (Volume of Interest). The initialization 

threshold level was set at 50% of the range defined by the maximum 
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intensity value in the lesion. The mean intensity value of the pulmonary 

background region was defined as 50% of the measured TBR. The optimal 

threshold level was tuned by means of an automatic procedure based on 

volume quantification. The threshold level was iteratively adjusted until the 

segmented volume fitted the ground truth segmentation (with a tolerance of 340 

±10 voxels over a volume measuring 1517 voxels, corresponding to 

±0.66%). The gray level step adopted to gradually modify the threshold 

value was set to 1 HU for CT (0.05% of the full scale range) and 0.05 

counts for PET (0.25% of the full range). This is consistent with the TBR, as 

the value for PET is more than 5 times compared to CT (see the 

“Computational anthropomorphic phantom” paragraph in the “Materials and 

Methods” section). 

 For patient datasets, lesion identification was performed by means of 

threshold segmentation. In CT images, the threshold value adjustment was 

supervised by a trained operator. When required, the operator contoured 350 

manually the lesion in order to achieve adequate separation from the chest 

wall or the diaphragm. A morphological closing operator was applied to the 

segmented lesions, in order to smooth contours. In PET images, the 

threshold level was fixed to 40% of the measured TBR (25). 

 A metric measuring the relative overlap between segmented 

structures was calculated, according to: 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
𝐿𝑟𝑒𝑓 ∩ 𝐿

𝐿𝑟𝑒𝑓
% 
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where Lref is the lesion segmentation in the fixed image.  

 

Inter-modality quantification 360 

 

 Inter-modality quantification was performed to verify the co-

registration between CT and PET images. The analysis compared the lesion 

position in correspondence of the same breathing phase in the 4D CT and 

4D PET images. In the patient datasets, the inter-modality quantification 

provided the relative lesion displacement throughout the 4D images 

sequence with respect to its average position. This allowed us to consider 

quantification criteria independent of co-registration errors between the CT 

and PET volumes. 

 370 

Intra-modality quantification 

 

 Intra-modality quantification was performed both for CT and PET 

volumes, as a way to assess the 4D CT motion model and the corresponding 

PET warping. The availability of the original 4D PET images for 

comparison allowed us to evaluate (i) lesion motion and (ii) blur 

compensation in the generated virtual 4D PET images. 
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Results 380 

 

Computational anthropomorphic phantom 

 

 In the NCAT phantom the exact correspondence between 4D CT and 

4D PET volumes is available by construction. Also, ground truth 

segmentations were corresponding between 4D CT and 4D PET volumes by 

phantom design. Therefore, only the intra-modality quantification is 

reported. 

 

Intra-modality quantification 390 

 

Virtual 4D PET 

 

 Quantification was performed on the 10 breathing phases defined in 

the NCAT respiratory cycle. The aim of this quantification was to assess the 

level of similarity between lesion localization (centroid) and volume 

(overlap). 

 Figure 3 (A) reports the lesion centroid trajectory over the breathing 

cycle along the superior-inferior direction for the 4D PET and the virtual 4D 

PET volumes. In order to quantify the effect of deformable registration 400 

errors, the Euclidean distances between lesion centroids obtained by 
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warping the average 3D CT on each phase of the 4D CT and the 

corresponding 4D CT phase were calculated. The mean error in centroid 

localization was 0.192 mm with a maximum of 0.339 mm in 

correspondence of the 20% phase. The same quantification on the virtual 

4D PET resulted in a mean error of 0.370 mm and a maximum error of 

0.623 mm in correspondence of the 20% phase, which was assessed to be 

considerably lower than the voxel size (1.5 mm). This was obtained in 

presence of a simulated lesion motion of approximately 9 mm peak to peak, 

which is depicted in Figure 3 (B). As a measure of the quality of the 410 

deformable registration procedure in the 4D CT motion model, the relative 

overlap between the segmented lesion volume on the 4D phases and the 

corresponding warped phases was calculated. The minimum relative overlap 

was equal to 94.0% for CT and 92.8% for PET, both in correspondence of 

the 70% phase. The mean relative overlap among the 10 phases was equal to 

95.6% for CT and 94.2% for PET. Deviations from perfect overlap were due 

to inaccuracies at the edges of the segmented volume, due to voxel intensity 

modification introduced by image warping. 
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 420 

FIGURE 3. Lesion centroids trajectory in the superior-inferior direction (A). 

Euclidean distance between the lesion centroids of 4D phases and the 

averaged 3D volume, for CT and PET (B). The exhale peak corresponds to 

0% of breathing cycle, the inhale peak corresponds to 50% of breathing 

cycle. 
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 In order to assess the level of noise in the warped 4D PET, the voxel 

intensity variance in the pulmonary uniform background at the 0% phase 

was calculated, by segmenting the region on the corresponding original 

NCAT phantom. The virtual 4D PET resulted in a statistical noise variance 

of 0.58 counts2 (vs. 0.97 counts2 for the  4D PET). 430 

 

Motion compensated 4D PET 

 

 The quantification was performed on a single reference phase. The 

phase corresponding to the exhale peak (the 0% phase) was selected. Such a 

choice accounts for the most challenging case in terms of 4D CT motion 

modeling, i.e. the peak to peak lesion excursion. 

 The Euclidean distances between lesion centroids of the 9 warped 

CT phases and the CT reference phase were calculated, in order to quantify 

the motion model error for each 4D CT contribution. The mean error 440 

resulted in 0.083 mm, with a maximum error of 0.137 mm in 

correspondence of the 50% phase, i.e. the inhale peak. The corresponding 

motion compensated 4D CT, resulting from average of the CT reference 

phase and the 9 warped CT phases, showed an error of 0.026 mm. The 

averaging among all contributions mitigated the registration error in the 

motion compensated 4D CT, resulting in accurate lesion segmentation. The 

same quantification was performed on 4D PET. The average motion model 



 

 

23 

 

error in PET measured 0.091 mm, with a maximum error of 0.172 mm in 

correspondence of the 50% phase. Similarly to what shown for 4D CT, the 

motion compensated 4D PET showed an error of 0.049 mm. 450 

 The minimum lesion overlap over the breathing cycle was equal to 

98.4% for CT and to 97.5% for PET (in correspondence of the 50% phase), 

whereas the mean overlap among the 9 phases measured 98.8% for CT and 

98.2% for PET. The relative overlap between the segmented lesion volume 

on the reference phase and on the motion compensated phase resulted in 

99.4% for CT and in 98.8% for PET. 

 The level of noise in the motion compensated 4D PET, calculated as 

described in the previous paragraph, resulted in 0.83 counts2 (vs. 0.97 

counts2 for the 4D PET). 

 460 

Virtual 4D PET vs. motion compensated 4D PET 

 

For comparison purposes, Figure 4 reports the activity profiles in 

correspondence of the 3D PET lesion centroid and at the 0% phase in the 

4D PET, the virtual 4D PET and motion compensated 4D PET. For 

reference, the original ideal activity profile generated in the NCAT phantom 

is reported. The maximum activity value of the virtual 4D PET is below the 

maximum activity value in the 4D PET, and is consistent with the maximum 

value in the 3D PET. However, the profile of the warped lesion shows that 
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the spill out activity (outside the lesion volume) is removed and that the 470 

partial volume effect (inside the lesion volume) is partially compensated. 

 

 

FIGURE 4. Lesion activity profiles along the superior-inferior coordinate of 

the 3D PET (green), the 4D PET (blue) and the virtual 4D PET (pink) and 

the original NCAT phantom (black) in correspondence of the 0% phase. The 

motion compensated 4D PET is displayed in light blue. The virtual 4D PET, 

the motion compensated 4D PET and 3D PET were scaled by a factor 10 to 

account for the different count statistics. The VOI was placed in 

correspondence of the 3D PET lesion centroid. 480 
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Patient data 

 

Inter-modality quantification 

 

 The size of lesion motion and the level of co-registration between 

real CT and PET images were quantified by calculating the Euclidean 

distance of segmented lesion centroids throughout the 4D image sequence, 490 

with respect to the average position. For Patient 1, Patient 4, Patient 6 and 

Patient 7 the displacement resulted negligible (lower than voxel size) and 

comparable for CT and PET. For such patients, the lesion in the upper part 

and in the posterior part of the lung (Table III) did not move appreciably 

with breathing, and the 4D CT and 4D PET phases resulted in stable co-

registration. For Patient 2, Patient 3, and Patient 5 the lesion was in the 

abdominal area (Table III) and showed a different peak to peak range of 

motion when measured on CT and PET. This suggests the lack of co-

registration between CT and PET, which may have been significantly 

influenced by the noise affecting clinical 4D PET images. Table IV 500 

summarizes the lesion range of motion.  

 

TABLE IV 
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 The co-registration inaccuracies resulted in 5.48 mm for Patient 2, 

3.95 mm for Patient 3 and 3.77 mm for Patient 5, which is comparable to 

the PET voxel dimensions (Table III). For other patients the range of motion 

was limited and co-registration inaccuracies resulted always lower than PET 

voxel size. 

 510 

Intra-modality quantification 

 

Virtual 4D PET 

 

 Table V summarizes the lesion centroid localization error. The 

overall maximum errors were comparable to the PET voxel size and the CT 

slice thickness. 

 

TABLE V 

 520 

 As an exemplifying case, Figure 5 reports the real 4D PET, the 

virtual 4D PET and the motion compensated 4D PET for Patient 2. 
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FIGURE 5. The virtual 4D PET (A), the 4D PET (B) and the motion 

compensated 4D PET (C) sequences describing the breathing cycle for the 

lesion in Patient 2. The inhale phase corresponds to 0% of breathing cycle, 

the exhale phase corresponds to 50% of breathing cycle (phase-based 

binning protocol). 

 

 The relative overlap was calculated between the segmented lesion 530 

volume on the real 4D PET and the corresponding virtual 4D PET phases. 

The mean relative overlap among the 4 phases was equal to 88.1%  for 

Patient 2, 90.2%  for Patient 3, 89.3%  for Patient 5.  

 

Motion compensated 4D PET 

 

 A comparison with the conventional motion compensated 4D PET 

was performed on the 4 breathing phases of the respiratory cycle. Moreover, 
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for the 0% phase, each contribution to the motion compensated 4D PET 

image was taken into consideration. 540 

 Table VI summarizes the lesion centroid localization error. As for 

the virtual 4D PET (Table V), the maximum errors overall were comparable 

to the PET and CT slice thickness. 

 

TABLE VI 

 

 The relative overlap was calculated between the segmented lesion 

volume on the 4D PET reference phase and on the motion compensated 4D 

PET phase. The mean overlap among the motion compensated 4D PET 

phases was 83.2%  for Patient 2, 91.3%  for Patient 3 and 89.5% for Patient 550 

5. 

 

Virtual 4D PET vs. Motion compensated 4D PET in patient data 

 

 As an exemplifying case for comparison between the two strategies, 

Figure 6 reports, for Patient 2 (A) and Patient 3 (B), the relative 

displacement in terms of Euclidean distance of lesion centroid with respect 

to the mean centroid position, calculated on the real 4D PET. For Patient 2, 

that displayed the highest peak to peak range of motion, lesion motion was 

recovered within 7 mm of relative displacement. 560 
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FIGURE 6. Relative displacement with respect to the mean centroid 

position, for the 4D PET, the virtual 4D PET and the motion compensated 

4D PET in Patient 2 (A) and Patient 3 (B). 
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 Results should be interpreted by considering that the lesion 

segmentation on the real 4D PET, that is the reference of the quantification, 

was characterized by low reliability due to noise. When lesion centroid 

position was compared among virtual 4D PET and motion compensated 4D 570 

PET for all the examined patient cases, differences were always lower than 

3.16 mm in all respiratory phases. 

 

Discussions 

 

 In this work we describe a strategy to generate 4D PET images from 

a free-breathing PET scan, relying on 4D CT motion modeling. The method 

is proposed for clinical applications where the use of hybrid CT-PET 

scanners is the elective imaging strategy (e.g. in radiation oncology). The 

proposed virtual 4D PET strategy aims at 4D PET optimization, with 580 

potential advantages with respect to conventional motion compensation and 

count statistics optimization strategies in 4D PET. The advantages can be 

classified as clinical, methodological and computational. From the clinical 

point of view, it should be noted that the virtual 4D PET strategy does not 

require PET acquisition in 4D. The PET image is acquired in free-breathing 

following the 4D CT session in a hybrid CT-PET scanner. This implies a 

simplified clinical setup, since breathing motion detection inside the PET 

scanner bore is not required. The image quality of the virtual 4D PET is 



 

 

31 

 

theoretically coincident to the one of a free-breathing PET image, provided 

that the image warping process does not introduce artifacts. This permits to 590 

extend conventional PET image quality in time-resolved PET, with no need 

to increase the concentration of radioactive tracer administered to the 

patient. Also, the overall acquisition time is reduced with respect to 4D 

PET, and is comparable to a free-breathing PET scan. In combined 4D CT-

PET treatment planning, PET contouring would be performed on the free-

breathing PET. Therefore, differently from conventional motion 

compensated 4D PET, this approach would not introduce inaccuracies due 

to breathing pattern changes between the CT and PET scans. From the 

methodological point of view, the proposed strategy ensures a reduced 

sensitivity to breathing pattern changes during the acquisition, if compared 600 

to conventional techniques for motion compensation in 4D PET. Although 

the robustness of the virtual 4D PET against breathing irregularities was not 

specifically investigated (26), the influence of breathing pattern changes is 

intrinsically limited in this strategy. A future evaluation of the increased 

robustness of the virtual 4D PET against breathing irregularities would 

require to consider 4D attenuation and 4D scatter corrections, since the PET 

activity distribution (i.e., the 4D emission map) is modified according to 

information coming from the CT image (i.e., the 4D attenuation map) (27). 

The issue of 4D CT motion model inaccuracies due to breathing 

irregularities is expected to be more critical for conventional motion 610 
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compensated 4D PET. This latter method requires ideal co-registration of 

CT and PET images at each phase, as PET volumes are warped according to 

the motion model defined on the corresponding CT volume. For the virtual 

4D PET strategy the co-registration assumption is less restrictive, because 

accurate co-registration is required only between the average 3D CT and 3D 

PET scans, and not for each corresponding phase. In terms of computational 

advantages, the virtual 4D PET strategy requires a reduced workload. 

Quantitatively, the workload reduction factor in terms of registration and 

warping steps is directly related to the number of breathing phases of the CT 

acquisition in 4D. 620 

 Despite the above mentioned potential advantages with respect to 

conventional motion compensation in PET imaging, there are a number of 

issues of the virtual 4D PET strategy and the reported testing, that deserve 

specific consideration. 

 The dataset used for testing consisted of 4D CT and 4D PET only. 

This forced us to generate a free-breathing CT and PET volumes, which was 

approximated by averaging and summing the original 4D CT and 4D PET 

datasets, respectively. The 4D CT scan was acquired according to a phase-

based gating protocol, which in presence of a regular breathing pattern 

samples the breathing cycle uniformly over time. The same approach 630 

applied to the free-breathing may PET potentially introduce inaccuracies, 

which requires a specific investigation. 
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 With respect to motion compensated 4D PET, the virtual 4D PET 

strategy faces the challenge to recover the 4D PET image starting from a 

free-breathing 3D PET. This specifically entails the achievement of two 

main goals: 

 the recovery of lesion motion; 

 the compensation of activity blurring due to motion in the free-

breathing  PET. 

 The NCAT phantom study demonstrated that the virtual 4D PET 640 

was able to recover lesion motion. Table VII summarizes the performance 

of the virtual 4D PET strategy, in comparison to conventional motion 

compensation. Although standard motion compensated 4D PET showed 

better performance overall, the virtual 4D PET strategy demonstrated lesion 

localization errors lower than 25% of the voxel size (0.38 mm) and true 

lesion volume estimation uncertainties below 6% (0.31 cm3).  

 

TABLE VII 

 

 Conversely, the compensation of activity blurring due to motion 650 

turned out to be more challenging, as the virtual 4D PET generation starts 

from a free-breathing, motion blurred PET. Results on the NCAT phantom 

demonstrated that the spill out activity was removed, but that the partial 

volume effect was only partially compensated (see the “Computational 
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anthropomorphic phantom” paragraph in the “Results” section). It should be 

noted that the implemented deformable registration procedure defined the 

deformation field, according to a pull-back warping formalism. In this case, 

the motion model describes the voxel intensity of the source image to be 

pulled onto the current voxel of the moving image. This intrinsically 

prevents to build up activity counts onto the current voxel: in other words 660 

the warped image cannot display a voxel intensity higher than the maximum 

voxel intensity of the source image. For this reason, the maximum value of 

the virtual 4D PET coincides with the 3D PET lesion peak. 

 A further issue is represented by the lack of inverse consistency of 

the adopted B-spline based deformable registration algorithm (28). This did 

not allow us to implement the virtual 4D PET strategy as an intra-

reconstruction optimization (29,30), similarly to state-of-the-art motion 

compensation in 4D PET (10). Inverse consistent deformable registration 

algorithm (28) could be used to optimize the performance of the virtual 4D 

PET strategy according to the intra-reconstruction method (31,32). 670 

 The analysis on patient data proved the applicability of the virtual 

4D PET strategy on clinical PET scans to optimize the count statistics, thus 

recovering the count statistics of the free-breathing PET. Despite the blurred 

activity due to motion, the lesion motion on the examined dataset could be 

detected with an accuracy comparable to conventional motion compensation 

(Table V and Table VI, Figures 5 and Figure 6). However, inaccuracies in 
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lesion segmentation, especially on small lesions, strongly influenced the 

quantification. 

 

Conclusion 680 

 

 The proposed virtual 4D PET strategy showed the potential to 

optimize 4D PET count statistics, as equal to the free-breathing PET, with 

similar performance with respect to conventional motion compensation 

technique in 4D PET, relying on a motion model derived from 4D CT. The 

main advantages are related to the computational cost, the minor co-

registration restrictiveness and clinical feasibility, as no 4D PET acquisition 

is required. The virtual 4D PET strategy can be employed to produce 4D 

PET images with a reduction in the radioactive tracer and the scan time that 

is typically needed for 4D PET studies, provided that 4D CT data are 690 

available. 
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Tables 

 

TABLE I. Deformable registration parameters for each multi-resolution 820 

stage. 

 

B-spline grid 

spacing (mm) 

Resolution 

(voxels) 
Number of 

iterations 
Trans-axial Axial Trans-axial axial 

Stage 1 60 60 2 2 40 

Stage 2 40 40 2 2 20 

Stage 3 30 20 1 1 20 

Stage 4 15 10 1 1 20 
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TABLE II. Features of the 4D CT-PET NCAT dataset. 

Breathing motion parameters 

Phases per breathing cycle 10 

Peak to peak breathing motion 

amplitude(cm) 
SI diaphragm motion 2 

AP chest wall expansion 1.2 

Image parameters 

Voxel dimension (mm3) 1,5 × 1,5 × 1,5 

Image dimension (voxels) 256 × 256 × 200 

 

TABLE III. Features of the clinical dataset. 

 Voxel dimension (mm) Image dimension (voxels) 
Lesion position 

CT PET CT PET 

Patient 1 1.1719 × 1.1719 × 3 4 × 4 × 4 512 × 512 × 144 144 × 144 × 107 Upper-posterior part of left lung 

Patient 2 1.1719 × 1.1719 × 3 4 × 4 × 4 512 × 512 × 53 144 × 144 × 66 Lower-middle part of right lung 

Patient 3 0.7813 × 0.7813 × 5 4 × 4 × 4 512 × 512 × 36 144 × 144 × 45 Lower-posterior part of left lung 

Patient 4 1.1719 × 1.1719 × 5 4 × 4 × 4 512 × 512 × 36 144 × 144 × 45 Central-posterior part of left lung 

Patient 5 1.1719 × 1.1719 × 5 4 × 4 × 4 512 × 512 × 36 144 × 144 × 45 Liver 

Patient 6 1.1719 × 1.1719 × 3 4 × 4 × 4 512 × 512 × 59 144 × 144 × 45 Central-posterior part of left lung / 

Lower-posterior part of right lung 

/ Upper-middle part of the right 

lung 

Patient 7 1.1719 × 1.1719 × 5 4 × 4 × 4 512 × 512 × 36 144 × 144 × 45 Upper/middle part of left lung / 

Central-posterior part of left lung 

 

TABLE IV. Lesion range of motion. 830 

 

 4D CT range of motion 

(mm) 

4D PET range of motion (mm) 

Patient 1 1.19 0.93 

Patient 2 18.43 7.54 

Patient 3 13.48 4.88 

Patient 4 0.91 2.01 

Patient 5 1.52 7.66 

Patient 6 0.87 0.65 

0.43 0.92 

0.52 1.36 

Patient 7 0.99 1.50 

0.55 2.02 
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TABLE V. Lesion centroid localization error: virtual 4D PET. 

 CT centroid localization 

(mm) 

PET centroid localization 

(mm) 

4D CT phases 4D PET phases 

Mean error Maximum error Mean error Maximum error 

Patient 1 0.08 0.09 0.48 0.56 

Patient 2 1.41 2.00 3.45 6.53 

Patient 3 0.71 1.18 1.56 3.08 

Patient 4 0.77 0.88 1.41 1.63 

Patient 5 1.29 1.94 3.28 6.12 

Patient 6 0.25 0.44 1.37 2.71 

0.15 0.29 2.21 6.24 

0.26 0.36 3.73 9.51 

Patient 7 0.19 0.33 1.66 2.96 

0.12 0.21 0.97 1.99 

 

TABLE VI. Lesion centroid localization error: motion compensated 4D 

PET. For the motion compensated phase, the mean and the maximum errors 

are referred to 4D CT and 4D PET contributions, respectively. 840 

 CT centroid localization (mm) PET centroid localization (mm) 

4D CT phases Motion 

compensated 

0% phase 

4D PET phases Motion 

compensated 

0% phase 
Mean 

error 

Maximum 

error 

Mean 

error 

Maximum 

error 

Mean 

error 

Maximum 

error 

Mean 

error 

Maximum 

error 

Patient 

1 
0.32 1.14 0.10 0.16 0.60 0.92 0.46 0.69 

Patient 

2 
1.47 0.72 0.98 0.94 4.79 8.59 7.57 14.97 

Patient 

3 
0.83 1.51 1.78 2.57 2.06 2.73 2.60 4.18 

Patient 

4 
0.45 0.62 1.27 2.07 1.55 1.99 1.46 2.40 

Patient 

5 
1.09 1.77 0.72 1.40 3.68 5.31 5.56 7.92 

Patient 

6 
0.14 0.21 0.17 0.31 1.26 2.71 1.50 2.14 

0.28 0.48 1.24 1.67 2.22 6.31 2.75 8.95 

0.26 0.37 0.26 0.58 3.52 9.63 3.85 10.20 
Patient 

7 
0.48 0.75 0.19 0.30 1.65 2.58 1.59 3.88 

0.09 0.17 0.08 0.19 1.17 1.86 0.93 1.60 
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TABLE VII. General comparison between the motion compensated 4D PET 

and virtual 4D PET strategies for the NCAT phantom. 

 
Centroid localization 

error (mm) 

Relative overlap (% 

with respect the 

corresponding 4D 

PET phase) 

Motion compensated 4D 

PET (0% phase) 
0.049 98.8% 

Virtual 4D PET 

 
0.370 94.2% 

 


