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Summary

Ovarian tissue cryopreservation represents
one among the most preferred strategies for
fertility preservation currently. However,
concerns regarding the transmission of ma-
lignant cells during the transplantion of
stored ovarian tissues, is a major restraint in
recommending the procedure to patients di-
agnosed with all kinds of malignant disor-
ders. On the contrary, use of isolated follicles
for restoration of fertility in such patients
could completely evade the possibility of can-
cer re-introduction after treatment. Follicles
housed in the ovarian environment in vivo
prevail under the mechanical and the chemi-
cal/nutritional support of the ovary. Although
not complete, recent knowledge about the dy-
namics of follicular progression has led to im-
provements in the culture system adopted.
This review aims at summarising the culture
of isolated follicles in vitro, particularly em-
phasising the efforts made to mechanically
and nutritionally support the follicle. Ad-
vances in follicular culture systems could

prove useful to highly improve the efficiency
of current fertility restoration strategies and
evade the concerns associated with the same. 

KEY WORDS: fertility preservation, follicle cul-
ture, three dimensional support, isolated folli-
cles.

Introduction

Cancer prevalence among women is till date, a
major medical concern. Studies suggest that, 1
out of 51 women would have had an invasive
cancer diagnosed by 39 years of age (1). Recent
reports supported by the national cancer insti-
tute, have shown a 0.8% increase in cancer af-
fected children during the past decade (2). How-
ever, recent advances in chemotherapy, radio-
therapy, and bone marrow transplantation can
cure as high as 90% of women and children af-
fected by cancer and other disorders requiring
such treatment. On the other side, ionizing radi-
ation and aggressive chemotherapy can result in
some degree of premature ovarian failure in al-
most 100% of patients requiring such therapy
(3). Whole body irradiation coupled with inten-
sive chemotherapy associated with bone marrow
transplantation, poses one of the greatest threats
to treated patients. The ovarian reserve is com-
pletely abolished after treatment regimes includ-
ing alkylating agents such as busulphan (4).
Moreover, several studies have shown that a ra-
diation dose as low as 5- 20 Gy, is sufficient to
cause gonadal function impairment (5-7). 

Concerns in routine ovarian tissue 
cryopreservation 

Cryopreservation of the ovarian tissue is one of
the mainstays in fertility preservation strategies
adopted today among cancer affected women.
The fact that ~25 live births have been reported
till date using this procedure (8), could easily ar-
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gue against considering this procedure under ex-
perimental phase any longer.  Moreover, ovarian
tissue cryopreservation is the only option avail-
able today for preservation of fertility in pre-pu-
bertal girls and patients,  requiring immediate
initiation of potentially gonadotoxic anti-cancer
treatment (9). Unfortunately, the most notable
concern for ovarian tissue cryopreservation and
transplant after the course of treatment, is the
probability of re-introducing malignant cells
back into the cured individual with very high
chances of propagating the cancer again (10). 
Ovarian metastases have been reported for most
malignancies including breast cancer, lung can-
cer, renal tumors, neoblastomas, Ewing’s sarco-
ma, Hodgkins’s lymphoma, Non-Hodgkin’s
lymphoma, biliary duct cancer and other gas-
trointestinal cancers (11-16). Studies evaluating
the incidence of ovarian metastasis in different
cancers show that ovarian involvement is high-
est in gastric cancer (55.8%), colon cancer
(26.6%), breast cancer (24.2%), pulmonary car-
cinoma (23.4%), lymphoma (13.3%) uterine
cancer (13.1%) and leukaemia (8.4%) (17). 
Routine histological examination of the ovarian
tissue fragments have proven to be inefficient in
predicting the prevalence of malignant cells in
the transplanted tissue (18). In this context,
transplantation of stored ovarian tissue is partic-
ularly warranted in leukaemia, being a systemic
disease with very high chances of metastasizing
to the ovaries. In a study involving 18 leukaemia
patients, routine histology and immunohisto-
chemical analysis showed no presence of malig-
nant cells in the biopsied ovarian tissue. Howev-
er, highly sensitive reverse transcriptase PCR
(RT- PCR) revealed the presence of molecular
leukemic markers in the tissues of 9 out of 16 of
these patients, previously thought to be safe
from ovarian metastasis (18). Although, there is
no conclusive report demonstrating the re-intro-
duction of malignant cells through ovarian tis-
sue transplanted after storage, studies in animal
models have shown growth of intraperitoneal
masses after transplantation of ovarian tissue
from leukemic patients (18). Hence, transplanta-
tion of stored ovarian tissue in general can only
be offered with extreme caution for re-storation
of fertility in cancer treated women. Consider-
ing these issues recent research in fertility
preservation is focused on alternative approach-
es to circumvent this problem. Cryopreserva-
tion, culture and methods to re-implant isolated

ovarian follicles rather than whole tissue, is one
among the most focussed topics in this context.  
Depending on age, the ovarian cortex houses
thousands of dormant primordial follicles that
can be isolated (19). These immature follicles
represent the largest population of ovarian folli-
cles and are more resistant to cryopreservation
than advanced stage follicles (20). Furthermore,
early stage follicles have shown to maintain nor-
mal morphology and ultrastructure following
freezing, making them excellent candidates for
long term preservation. The most important ad-
vantage of isolated follicle culture and trans-
plant arises from the fact that the malignancy
cannot cross the basal lamina of the follicle and
the oocyte is protected from cancer cell invasion
(21). Moreover, improvements in follicular de-
velopment in vitro can also help these patients to
obtain a larger number of oocytes for in vitro
fertilization techniques, hence overcoming the
concerns of re-transplantation all together.
Henceforth, improvements in the isolation, cul-
ture and re-introduction of ovarian follicles can
greatly improve current fertility preservation
strategies and can provide a risk free method for
the restoration of fertility in women affected by
chemo/radiotherapy induced premature ovarian
failure. 

Strategies for isolaton of ovarian 
follicles

Several methods have been tried over the years
for the successful isolation of ovarian follicles.
Mechanical isolation of follicles have been in
practice since the last 2 decades employing sev-
eral instruments. The most commonly used tech-
niques involve the use of tissue choppers (22),
homogenizers (23), cell dissociation sieves (24)
as reviewed by Valdevane et al. (25). Larger pre
antral follicles have been isolated by microdis-
section using insulin needles (26). Mechanical
isolation using fine needles has the advantage of
preserving the basal lamina and the thecal layers
intact maintaining the integrity of the follicle
(27). A recent study successfully attained isola-
tion of bovine primary follicles using mechani-
cal disruption of ovarian cortex using a pasteur
pipette. Furthermore, these follicles were
demonstrated to survive in vitro culture for 21
days and form visible antral cavities (28). Enzy-
matic digestion has been the preferred method
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of choice for the isolation of primordial/ pri-
mary follicles since these small follicles ranging
(30-50um) are manually very hard to isolate. Al-
though, enzymatic isolation can improve follicle
yields compared to mechanical methods (29,
30), these aggressive enzymes can compromise
follicular survival (27, 31, 32). A recent study
observed spontaneous degeneration of isolated
human follicles in culture, after enzymatic isola-
tion. In spite of using a purified enzyme blend in
place of traditional crude mixtures of collage-
nase, human follicular isolation could not be ef-
ficiently established using this enzymatic method
(33). Furthermore, enzymatically isolated folli-
cles particularly tend to lose their basal lamina
causing granulosa cells to migrate away from
the oocyte (34). Since isolation of follicles for
culture is a crucial step in individual follicle cul-
ture, fine tuning the method and optimising the
stage of follicle to be isolated is necessary for
further development of this technique.

Towards a 3 dimensional culture of 
follicles in vitro

The most promising results in follicular devel-
opment in vitro was attained by Eppig and
O’Brien et al. in mouse model, producing live
offspring from primordial follicles (35, 36). In
spite of a decade of research following this ini-
tial success, similar results are yet to be ob-
tained in larger mammals and human. Conven-
tional 2 dimensional cultures fail to mimic the in
vivo follicular environment. Culture of follicles
directly on treated membranes or tissue culture
surfaces destroys the spatial arrangement of fol-
licles. Granulosa cells are seen to attach on the
culture surface and cause follicular flattening
(35). Growth of the oocyte and meiotic matura-
tion relies on the signals exchange through gap
junctions between the oocyte and surrounding
granulosa cells (37). Loss of these gap junctions
causes premature ovulation and degeneration of
the oocyte (38). These signals are crucial for
sharing paracrine factors that in turn promote
growth of both cell types (39). This is supported
by the fact that, oocyte is not able to transport
amino acids and carry out glucose and choles-
terol biosynthesis independently, in the absence
of granulosa cell secreted factors (40). 

Mimicing the in vivo follicular 
environment 

Recent efforts on improving the in vitro mainte-
nance and growth of follicles can roughly said to
be aimed at enhancing two most crucial factors
that determine fate of the follicle in vitro.

1) Physical/mechanical support to 
the growing follicle 

Research conducted in the murine model has
demonstrated the importance of biomechanical
environment in determining follicular growth
and considers this physical support to be as cru-
cial as the hormonal millieu of the follicle (41).
To this end an array of different strategies has
been adopted till date to spatially support the
follicle and provide the physical stimuli that it
needs to survive in vitro reviewed by (27). Use
of V shaped microwell plates has seen to be use-
ful to some extent in maintaining three dimen-
sional architecture of bovine (42) and human
follicles (43). Collagen owing to its natural
presence in the extra cellular matrix surrounding
the follicle has been used to support in vitro fol-
licular growth since the emergence of 3 dimen-
sional culture systems. Embedded culture of fol-
licles in collagen (44) was found to be superior
to collagen membrane inserts (45) in supporting
follicular growth and architecture in vitro.
Combelles et al. (46) demonstrated that follicles
embedded in collagen matrix maintained their
three dimensional architecture and demonstrat-
ed neuronal like extensions arising from the
granulosa cells towards the oocyte. Recent suc-
cess with the use of collagen in supporting
antral cavity formation of early bovine primary
follicles (28) indicates that collagen gels still
have scope for research, to be considered an ef-
ficient compound to mechanically support in
vitro follicle growth. However, shrinkage of the
gel and decreased microscopic visibility over
time are the most common problems faced with
the use of collagen (29). Furthermore, the need
for enzymatic treatment to dissolve the gel at the
end of culture is another matter of concern (47).
The most widely used three dimensional follicle
encapsulation system till date is alginate (48,
49). Alginate encapsulation coupled with the use
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of V shaped microwell plates have been tried to
support human and (49) primate (50, 51) folli-
cles. Encapsulation with alginate has the advan-
tage of promoting nutrient, oxygen, hormone
and growth factor exchange between the folli-
cle and the culture medium. Although, the com-
paratively rigid nature of alginate has seen to in-
hibit follicular growth in mouse follicles (52),
human (53) and primate follicles (54) seem to
prefer the rigid support provided by the alginate
matrix. Primate follicles have been successfully
cultured over long periods in alginate gels (55).
This could be directly accounted to the highly
fibrous nature of the ovarian cortex seen in hu-
man, bovine and primate ovaries compared to
mice. Incorporation of extracellular matrix com-
ponents to alginate have been tried to develop
synthetic matrices that improve the performance
of alginate supported cultures (56). Studies on

the functions of extracellular matrix have re-
vealed that it plays a crucial role in coordinating
cell behaviour, cellular differentiation and se-
cretion which are inevitable for follicular ad-
vancement (57). Our group demonstrated that
alginate incorporated with collagen IV, a major
extracellular component in ovary enhances the
growth of isolated human follicles in culture.
Moreover, ultrastructural analysis of these folli-
cles revealed that culture of follicles embedded
in alginate + collagen IV better preserved their
three dimensional follicular architecture (58). 
Matrigel is a commercially available extracellu-
lar matrix composed of collagen IV, laminin, fi-
bronetin, entactin, heparin sulphate and proteo-
glycans along with an array of growth factors
(EGF, FGF, IGF-1, PDGF and TGF-b) that has
been tried for the growth of follicles (53, 59,
60). The incorporation of bio-engineering has

A

B
Figure 1 - A) Isolated primordial follicles stained with Hoechst 33324 (nuclear stain): oocyte nucleus clearly visualized.
B) Isolated secondary follicles stained with Hoechst 33324 (nuclear stain): oocyte nucleus clearly visualized.
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led to the development of novel dynamic matri-
ces in follicle culture. These compounds differ
from traditional materials by their ability to
more efficiently accommodate the drastically
expanding follicle. Fibrin containing matrices
are widely being tested recently, particularly af-
ter the recent success of developing a mature
oocyte from a macaque primary follicle for the
first time (61). Biodegradable matrices com-
posed of Interpenetrating Networks of fibrin
(IPN) (62) that intercalate with matrix proteins
could better ensure sustained delivery of growth
factors to the follicle (33). VEGF containing
IPN matrix has recently been shown to support
in vitro follicle growth, oocyte maturation and
the subsequent development of a live offspring.
Novel hydrogels comprising intercalating pep-
tides that lyse in response to follicular proteases
could dynamically allow expansion of the grow-
ing follicle. Hence, the future of designing ma-
trices for the in vitro growth of follicles lies in
incorporating concepts of bio-engineering and
tissue culture to develop dynamic culture sys-
tems that adjusts to the changing dimensions of
the follicle.

2) Chemical/nutritional demands of 
the follicle 

A recent research has revealed that in order to
extrapolate the success obtained in culturing ro-
dent follicles into larger species a multi-step dy-
namic culture system is required to cater to the
various transitional stages of mammalian follic-
ular development (43, 63, 64). To this end, fol-
licular development will have to address 3 ma-
jor events: 1) Primordial follicle activation and
initiation of growth, 2) Pre-antral to antral folli-
cle transition, 3) Development of fertilizable
oocytes from tertiary follicles (27). 
Hence the primary step to be considered is the in
vitro activation of primordial follicles. Unfortu-
nately, there are no conclusive reports on the
factors that control early follicle recruitment
and growth. However, it seems safe to assume
that the process should involve a complex inter-
play of inhibitory, stimulatory and maintenance
factors (65). Recent research suggests a role of
Phosphatidylinositol- 3-Kinase (PI3K) – Akt
signalling pathway of the oocyte in kick starting
the follicular growth (66). Fine tuning of the
hormonal and chemical milieu of the follicle is

crucial to attain developmentally competent
oocytes that complete cytoplasmic and nuclear
maturation at a desired pace. Consequently sev-
eral hormones and signalling molecules have
been proposed to obtain optimal follicle growth
in vitro. A few bio active components trialled
have been discussed below. 
Follicle Stimulating Hormone (FSH) is one
among the most repeatedly trialled hormone to
this end. FSH and estradiol are shown to have
positive effects on antrum formation in granu-
losa cells in rodents (67) and pigs (68) for a long
time. FSH along with LH activates cAMP sys-
tem and activates the enzymes responsible for
steroidogenesis in granulosa cells (69). FSH has
also been shown to have positive effects on long
term culture of bovine ovarian cortex in addition
with GDF-9 and bFGF (70). Other studies have
also reported the role of FSH in ensuring pre
antral follicle survival and growth of primate
(50) and human (53) follicles in 3 dimensional
culture.
A bi-phasic requirement of FSH was revealed in
a recent study that attained for the first time a 2
cell embryo from primate follicles cultured in
vitro (51). Here they exposed follicles to high
FSH levels before antrum formation and mar-
ginal levels after appearance of the antrum (51).
In fact exposure to elevated levels of FSH for
prolonged periods could disrupt the control of
the oocyte over granulosa cell proliferation and
differentiation (51) and lead to the pre-mature
loss of trans zonal projections between oocytes
and granulosa cells (71).
Epidermal Growth Factor (EGF) is yet another
factor promoting pre antral follicle growth (72)
as it induces granulosa cell proliferation and fol-
liculogenesis (73) and progesterone synthesis by
activating FSH receptors in granulosa cells. Pos-
itive effect of EGF has also been demonstrated
in various animal models like pig (74), cow (75)
and hamster (76). 
Presence of Basic Fibroblast Growth Factor
(bFGF) bioactivity is demonstrated in granulosa
cells (77) and early growing follicles (78, 79). A
combination of FSH, EGF and bFGF have re-
cently gained acceptance as optimal media com-
ponents that have given interesting results in the
bovine model (28).
Activin protein has been localized in granulosa
cells of human follicles. Hence, possible roles of
activin as a follicular growth have been investi-
gated (43, 71) based on the stimulatory effect of
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activin on ovine pre-antral (80) and caprine fol-
licles (81). This group demonstrated that activin
not only does stimulate the growth of follicles
but may also have functions in aiding the direc-
tional proliferation of granulosa cells by pro-
moting the polarized expression of connexin
proteins. Since loss of cellular polarization is a
major threat in vitro, causing granulosa cells to
proliferate undirectionally, activin could serve
as an important modulator of cellular progres-
sion in the follicles. Activin was also seen to im-
prove granulosa zona focal adhesions, the loss
of which is one among the major concerns of in
vitro follicular culture.  
Fetuin, a glycoprotein component in serum and
follicular fluid (82, 83) has been used to substi-
tute the use of serum avoiding the concerns of
using contaminated animal derivatives in cul-
ture. Schroeder et al. showed that fetuin in-
creased zona pellucida solubility duing oocyte
maturation in vitro and supported a serum free
culture environment (84). A protease inhibitory
effect of fetuin was put forward for this observa-
tion. Fetuin has been suggested to improve cel-
lular differentiation, growth and attachment in
vitro (85, 86). Furthermore, fetuin was seen to
maintain the integrity of alginate gels in long
term culture (51). 
Apart from the culture components oxygen ten-
sion is a key factor in determining the behaviour
of any culture environment. Follicle culture in
vitro has been regularly conducted at atmos-
pheric oxygen tension (20% v/v /140 mm Hg)
(50). Theoretically, follicles should be main-
tained at around 5% oxygen tension owing to
the low partial pressure of oxygen in the peri-
toneal cavity i.e. 40mmHg (87). Low oxygen
culture has been beneficial for the culture of rat
pre antral follicles improving oocyte, viability
maturation, parthenogentic activation and fertil-
ization rates in vitro (88). Caprine pre natural
follicles exhibited higher percentage of antrum
formation at 5% oxygen as compared to 20%
(89). Higher levels of reactive oxygen species
are frequently associated with high partial pres-
sure of oxygen and this oxidative stress induces
cytotoxicity (90). Subsequently, culturing under
low oxygen tension has seen to reduce cumulus
cell apoptosis in canine oocyte cumulus com-
plexes in culture (91). Lately, a higher number
of healthy oocytes were also derived under low
oxygen conditions, during in vitro culture of fol-
licles (51).

Conclusions

In spite of several years of research, many key
factors determining the complex process of fol-
licular maturation still remains a mystery. Fur-
ther knowledge of these fundamental mecha-
nisms are necessary to extrapolate these factors
in vitro in turn making in vitro follicle matura-
tion possible. Analysis on studies conducted till
date reveals a thin balance of several signalling
molecules and factors that fine tune the optimal
growth of the follicular unit. Hence, studies
aimed to optimize each progressive step in fol-
licular maturation, to more closely mimic what
occurs in vivo, would be needed to attain a suc-
cessful in vitro follicular growth. Improvements
made in culture conditions of follicles in vitro
could eventually avoid the need to transplant
whole ovarian tissues to patients opting for fer-
tility preservation. Furthermore, ability to trans-
plant individual follicles grown in vitro could
eliminate concerns like ischemic damage, graft
death and accelerated proliferation of follicles
following transplant that exhausts the whole tis-
sue in a single attempt. Hence, single follicle
culture and transplant could aid in attaining nu-
merous competent oocytes minimising the
wastage of follicles, ensuring long term results
for the patient.     
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