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Abstract—Broad adoption of resource-constrained devices for
medical use has additional limitations in terms of execution
of delay-sensitive medical applications. As one of the solutions,
new ways of computational offloading could be developed and
integrated. The recently emerged Mobile Edge Computing (MEC)
and Mobile Cloud Computing (MCC) paradigms attempt to
address this problem by offloading tasks to a the resource-rich
server. In the context of the availability of eHealth services for
all patients, independently of the location, the implementation
of MEC and MCC could help ensure a high availability of
medical services. Remote medical examination, robotic surgery,
and cardiac telemetry require efficient computing solutions.
This work discusses three alternative computing models: local
computing, MEC, and MCC. We have designed a Matlab-based
tool to calculate and compare the response time and energy
efficiency. We show that local computing demands 48 times more
power than MEC/MCC with increasing packet workload. On the
other hand, the throughput of MEC/MCC highly depends on the
parameters of the communication channel. Finding an optimal
trade-off between the response time and energy consumption is
an important research question that could not be solved without
investigating the system’s bottlenecks.

Index Terms—Mobile Cloud Computing (MCC), Mobile Edge
Computing (MEC), local computing, 5G mobile communication

I. INTRODUCTION

Robot-assisted surgeries climbed from 1.8% to 15.1% of all
general surgeries in several years [1]. Assisted robots allow
to carry out minimally invasive surgeons, as they exclude
hand tremors. The interest in telemedicine has grown after
the pandemic as it could provide an equal level of qualified
on-demand medical service even staying at home [2]. Under
the building of an intelligent eHealth system stays a complex
computing system that allows the processing of an enormous
amount of medical and private data. At the same time, the
communication requirements have become stricter as it needs
a very reliable channel [3].

Recently emerged computing paradigms offer vast comput-
ing capacity, which opens new capabilities to the medical
applications [4]. Mobile Cloud Computing (MCC) gives enor-
mous computational resources for remote use. Mobile Edge
Computing (MEC) shows better performance than MCC in
terms of latency, because of the proximate location server to
the user’s devices [5]. Therefore, the offloading strategy for
medical cases is a promising research direction. An intelligent
combination of several computing paradigms can develop a
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system to improve the device energy consumption and satisfy
the requirements of latency-sensitive applications.

The implementation of Edge and Cloud computing is a
prospective solution for eHealth applications because the pre-
dicted growth of Internet of Medical Things (IoMT) needs an
enormous computing power, mass storage of medical data, and
trust sharing of medical information, which a cloud platform
could provide [6]. For example, an intelligent orchestration
of computing resources for health monitoring applications
improves their energy budget and Quality of Service (QoS) [7].

Several directions in optimizing the computing system
could be found in the literature – optimizing the task ex-
ecution itself, improving the system response time, or joint
resources use with task offloading strategy. Some researchers
propose a optimization-and-offloading decision with multiple
mobile users named Heuristic Offloading Decision Algorithm
(HODA) based on prioritizing users with maximum utility [8].
A dynamic environment, caused by the inherent variability of
wireless networks, queuing delays in the servers, and user’s
device parameters, brings extra challenges to the offloading.
Deep Reinforcement Learning is a potential solution for the
intelligent allocation of computing resources in the dynamic
environment [9], [10]. Adoption of digital twin-based architec-
ture allows for real-time monitoring and provides the informa-
tion for decision-making processes [11]. New strategies in the
computing resource allocation of massive IoMT devices could
reach the optimization latency and efficient data processing
goal, as well as improve the system security [12].

Optimization of the communication part is another research
direction in the MEC/MCC computing optimization model.
Spectrum sharing benefits throughput maximization, which
increases the computational rate of energy-constrained Internet
of Things (IoT), or rather IoMT devices [13]. The recently
emerged Fifth Generation New Radio Network (5G NR) is a
promising technology for future smart healthcare with ultra
high-speed transmission and efficient spectrum utilization by
new channel multiplexing Non-Orthogonal Multiple-Access
(NOMA) [14]. Another solution is the implementation of
advanced energy-efficient dynamic decision-based scheduling
and orchestration algorithms that improves energy consump-
tion and systems response [15], [16].

The contribution of this work are summarized as:
• formalization of the optimization problem as the mini-

mization function of response time and energy consumption;
• design of Matlab-based tool that helps to get the fast

calculation on the response time and energy consumption of



the packet (the code is available in the open access: https:
//github.com/alekseevadaria/iot edge cloud matlab);

• providing computing suggestions for medical scenarios.
This paper is structured as follows. Section II describes

the methodology how to obtain the response time and energy
consumption. Section III refers to the optimization problem
formulation. Section IV presents the designed tool, simulation
parameters and the results. Section V is the conclusion.

II. SYSTEM MODEL

Assume that there are three possible computing locations
in the system. The first one occupies all resources on the
device (i.e., local execution, IoT-only), the second one offloads
tasks at the edge of the network (i.e., MEC-only), and the
third one sends data to the cloud to proceed (i.e., MCC-
only). Each model (IoT-only, MEC-only, MCC-only) has pros
and cons. Local execution (IoT-only) benefits in terms of
security as it does not send data outside the device, but it
has limited computing and energy resources [17]. MEC and
MCC have more capabilities to proceed with a large amount of
data. Anyway, they face other challenges, e.g., intelligent user
allocation [18] or communication reliability [19], that could
reduce or increase system latency.

The systems response time and energy consumption are
essential metrics to evaluate the system performance. The
components of the response time and power states are illus-
trated in Fig. 1, where you can see that during the remote
computation device is using the idle power state, i.e., power
saving mode of light sleep to save energy. Obviously, when it
is time to send data, the device uses the transmission power
state. In the MCC-only model, the device sends data to the
first Base Station (BS) in the transmitting power state, then
it switches to the idle state, as it does not care about where
data is transferring after the BS gets data till it reaches Cloud.
Finally, execution time corresponds to the computing power
state. The following subsections provide a discussion about
response time and energy consumption.

Fig. 1: Illustration of the time components in local and remote
strategies and the correlation to the device’s power states.

A. Response Time
The overall response time consists of time that was spent

on computing and time that was spent transferring data (i.e.,
communication time) T = Tcomp + Tcomm. The following
paragraphs explain how to get their values.

Computing time is spent for the processing data, which
mainly depends on Central Processing Unit (CPU) parameters
of the node involved in computing, and could be calculated:

Tcomp =
!i · �
fCPU

, (1)

where !i – task workload of the task i [Mb]; fCPU – the
CPU processing frequency of the device or server [Hz]; �
– computation to data ratio [cycles/bit]. The comparison of
different processor units is based on their working speed with
data. Computation to data ratio varies for different workloads
and mainly depends on the physical parameters of the com-
puter itself [20]. For this reason, Floating point operations per
second (FLOPS) is a universal measure of CPU performance,
which describes the capability of delivering any arithmetic or
logic operations per second [21].

Communication time corresponds to the time spent trans-
mitting data, and it depends on the channel parameters such
as bandwidth, carrier frequency, bit rate, and propagation
conditions, which is presented as:

Tcomm =
!i

C
+ Td, (2)

where !i – task workload of the task i [Mb]; C – bit rate
[Mbps]; Td – variable that defines all kinds of delays that
exist in the communication path (for example, delay on hops,
communication delay, etc.) [ms].

There is no communication time in the local-computing
mode, because the data is not transferred outside the device.
Hence, the response time for local computing stays the same as
in eq. 1. The communication time for MEC and MCC depends
on the bit rate of the chosen wireless technology. The next
paragraphs explain how to calculate the bit rate for 5G NR.

Supported maximum data rate in 5G NR New cellular
network 5G NR promise is to improve the Quality of Expe-
rience (QoE) for the user and provide new services that were
not supported before, with extreme mobile bandwidth, ultra-
reliability, and ultra-low latency ( 1 ms). The maximum data
rate in 5G NR could be defined as follows [22]:

C5G = 10�6 ·
JX

j=1

✓
vl ·Qm ·f ·Rmax ·

NRB ·K
Tµ
s

· (1�OH)

◆
,

(3)
where 10�6 – conversion to Mbps; J – a number of aggregated
component carriers in a band; vl – the maximum number of
layers; Qm – modulation coefficient; f – the scaling factor;
Rmax – maximum code rate; NRB – is the maximum resource
blocks allocation in bandwidth; K – the number of subcarriers
per resource block; Ts – the average symbol duration in
the correlated Orthogonal Frequency Division Multiplexing
(OFDM) numerology µ; OH – overhead value.

The above is standardized by 3GPP and ETSI and can
be found in [22]–[24]. Here are some parameters in more
detail. The entire channel resource is divided into resource
blocks. The resource block consists of K = 12 subcarriers
with a given subcarrier spacing (SCS). The maximum code
rate Rmax shows the proportion of useful data to redundant



information and equal constant 948/1024. Parameter f is the
scaling factor, and it depends on a number of Multiple-Input
Multiple-Output (MIMO) and modulation order. It could take
values 1, 0.8, 0.75, and 0.4. µ is the OFDM numerology which
is chosen according to the subcarrier spacing [24]. Ts is the
average symbol duration that could be defined as Ts =

10�3

14·2µ .
OH is the overhead, and it takes values according to the
frequency range and stream direction [22].

B. Energy Consumption

Battery life is no less critical metric of the device’s per-
formance than the system’s response time. It influences the
working time of the device and depends on battery capacity,
which is limited in the IoT [25]. The energy taken for the
working process is calculated as the product of the spent time
and the device’s power. The power spent by the device for task
computing and task transmission is not the same. Assume that
there are three different power states: pex is the power that
device uses for task execution, pi is the power of the device in
the idle state, ptr is the power that used for task transmission,
at that pi < pex < ptr [26]. The idle power state refers to the
computing time in the remote server, in other words, when
the device is waiting when the computing will be done in the
edge or in the cloud. The overall energy that was spent on the
offloading could be calculated as P = Pcomp + Pcomm.

Local computing: Based on equation (1) from above, the
local execution energy consumption could be found as:

Pl = Tcomp · pex =
wi

fCPU
· pex, (4)

where wi – task workload of the task i [Mb]; fCPU – the CPU
processing frequency of the device or server [Hz]; pex – the
power that was spent for computing [mW].

Remote computing corresponds to MEC and MCC models.
Based on eqs. 1 and 2, the energy consumption is:

Pr = Tcomp ·pi+Tcomm ·ptr =
wi

fCPU
·pi+

✓
wi

C
+Td

◆
·ptr,

(5)
where wi – task workload of the task i [Mb]; C – bit rate
[Mbps]; Td – delays if any [ms]; pi – the idle state power
[mW]; ptr – the power that spent for task transmission [mW].

III. PROBLEM STATEMENT

First, assume that any application might be presented as
a sequence of tasks ti, with i = {1, . . . ,M}. Each task
is assumed to have a workload wi and it can be computed
locally or outside the device. The allocation of the computing
outside the device could be one of the followings: i) at the
Edge of the network in close proximity to the end-user (MEC,
Cloudlets), or ii) in the distant Cloud (MCC). The offloading
decision of task ti is denoted as ki in the sequence of the
computing decisions K and it could be one of the following
ki 2 {�1, 0, 1}, where ki = 0, if the task is processing locally,
ki = �1 and ki = 1, if the task is processing in the edge or in

the cloud, respectively. Based on eqs. (1) and (2) the system
response time for task i is:

T (ki, ti) =
�
1� |ki|

�
· Tcomp(ti)+

|ki| ·
�
Tcomp(ti) + Tcomm(ti)

�
,

ki =

8
><

>:

�1, if MEC
0, if local execution
1, if MCC

(6)

Thus, the energy consumption system model for task i is:

P (ki, ti) =
�
1� |ki|

�
· Pl(ti) + |ki| · Pr(ti), (7)

where ki denotes to offloading decision for task i (ki = 0 for
local computing on the IoT device, ki = �1 for the MEC,
ki = 1 for the MCC).

The optimization problem for the offloading decision strat-
egy can be seen as a multi-objective optimization function
trying to minimize both of the system’s response time and
its energy consumption. We formulate the multi-objective
optimization problem as follows:

min
{ki2{�1,0,1}}i=1,...,M

✓ MX

i=1

T (ki, ti),
MX

i=1

P (ki, ti)

◆
, (8)

where
PM

i=1 T (ki, ti) is the total response time;PM
i=1 P (ki, ti) is the total energy consumption.

IV. SIMULATION AND RESULTS

A. The Designed Tool
Using Matlab R2020b 64-bit App Designer software, we

have created an application to analyze the local and remote
computing systems, see Fig. 2. In fact, this tool is a response
time (T ) and energy consumption (P ) calculator for the
MEC and MCC. computingThe app calculates the mentioned
parameters by changing the slider with the workload. The
application consists of two areas: input and output. The user
could change the device parameters in the input area, set the
power capacity, and adjust wireless and wired parameters. The
output area displays the response time and energy consumption
values and draws the bars. This application is useful for
students who are beginning to learn computing science to
clarify some basic features and differences between local and
remote processing.

B. The Workload From the Practical Application Perspective
5G NR and edge-cloud computing enable to shift the medi-

cal care location from the sorrowful and comfortless hospitals
to homes [28]. Also, remote medical expertise and telesurgery
play an important role in the emergency because it could pro-
vide qualified medical help in any location. Table I contains the
performance requirements for the medical use cases from the
3GPP TR 22.826 V17.2.0 [27] and TS 22.104 V18.0.0 [28]).
The next paragraphs provide their broad descriptions.

Duplicating videos on additional monitors in the context
of robotic surgery, the procedure is complemented by the
imaging system for the surgeon and their assistant. This use



TABLE I: Requirements based on 3GPP TR 22.826 V17.2.0 [27] TS 22.104 V18.0.0 [28]) for suggested computing locations.

Use case Ref. Latency
[ms]

Bit rate Direction Message size
[kb]

UE speed
[km/h]

Number of User
Equipment

(UE)

Computing location

Duplicating Video on additional monitors [27] < 1 120 Gbps UL ⇠12 – ⇠72 0 1 Network Edge (i.e. MEC)
AR Assisted Surgery [27] < 0.75 30; 12 Gbps UL ⇠12 – ⇠72 0 1 Short network distance from

the operating room
(i.e. MEC)

Robotic Aided Surgery [27] < 2 240 Gbps UL; DL ⇠12 – ⇠72 0 1 Short network distance from the
operating room (i.e. MEC)

[28] < 2 2 – 16 Mbps UL; DL 2 – 16 0 1 Edge or Cloud (i.e. MEC or
MCC)

Telesurgery [27] < 20 2 – 16 Mbps UL; DL 2 – 16 0 < 2: 1000 km2 Cloud (i.e. MCC)
[28] < 20 2 – 16 Mbps UL; DL 2 – 16 0 < 2: 1000 km2 Edge or Cloud (i.e. MEC or

MCC)
Robotic Aided Diagnosis [28] < 20 2 – 16 Mbps N/A 0.64 0 20: 100 km2 Edge or Cloud (i.e. MEC or

MCC)
Cardiac telemetry outside the hospital
(body-worn IoT device)

[27] < 100 0.5 Mbps N/A 8 500 10 – 1000:
1 km2

Hospital cloud (i.e. MCC)

UL – Uplink DL – Downlink N/A – not available in the corresponding document

Fig. 2: The tool interface designed in the Matlab App

case assumes at least two monitors without noticeable delays
for each surgery operator in the room, which allow the surgery
team to work efficiently during the operation. The image from
the laparoscope is going to a medical application instantiated
at the network edge and then broadcast to the monitors in
the operating room. Any image delay can lead to operators’
desynchronization and patient injury. Augmented Reality (AR)
assisted surgery is a promising use case for minimally invasive
operations based on the 3D display of patient anatomy. Two
head-mounted displays, i.e., AR glasses, show the real-time
video stream from the surgical tools with implanted cameras.
This use case needs a lot of computation capacity and ultra
low latency (less than 750 µs) because the mistake caused
by the operator could lead to the patient’s death. Robotic
aided surgery is an innovative surgical operation that uses
tiny instruments to access the problematic body areas when
the surgeon and the robot are collocated in the same oper-
ating room. The surgical devices and motion controllers are
synchronized to achieve an accurate incision and operated
at frequencies around 1 GHz, referred to as human tactile
sensing. Telesurgery is a use case very similar to robotic
aided surgery, with the difference that the surgeon console
and the robotic set have different geographical locations. It
also provides highly accurate invasive procedures with robotic
equipment. Robotic aided diagnosis is a part of the mobile

specialist practice, which describes when a medical expert
could provide a high-quality examination to a patient in any
location around the world. Due to the distance between the
patent and the expert, the medical application is initiated
remotely in the Edge or Cloud. Cardiac telemetry this use
case contains wearable IoT devices to monitor the patient’s
activity and vital measurements continuously. Since the on-
body IoT device must be worn for weeks or even months, it
needs to be discreet and lightweight for comfortable use.

To summarize the above, all medical use cases could
be divided into three groups: i) use cases with high in-
tensive tasks and strict performance requirements (i.e., AR
Assisted Surgery), ii) use cases with moderate intense tasks
and moderate performance requirements (i.e., Robotic Aided
Surgery), and iii) use cases with low-intensive tasks and low-
performance requirements (i.e., Cardiac Telemetry). Further
in this work, the high, medium and low intensive tasks are
referred to AR Assisted Surgery, Robotic Aided Surgery, and
Cardiac Telemetry use cases.

C. Simulation Parameters
For the simulation, we took the following parameters.

Assume that the device’s CPU works with a 2 GHz frequency,
referred to as Qualcomm processors [29]. The battery capacity
parameter is 8390 mAh [25]. The Edge server has a 16
core 4.7 GHz CPU (e.g., 1.5U Rackmount AMD Ryzen
Server) [30], and the Cloud server has a 96 unit 3 GHz
CPU (e.g., Amazon EC2) [31]. The CPU frequencies satisfy
the formula fIoT < fMEC < fMCC , comprising that the
Cloud has more computational power than MEC, and both
are stronger than IoT. Also, assume that the device consumes
power equal to 0.9 Watts during the processing time, 1.2
Watts for data transmission to the base station, and an idle
state – 0.003 Watt [32], [33]. This values meet the condition
pi < pex < ptr [26], described in Section II-B. Table II
contains the used parameters for simulation.

We also assume that the 5G NR is the chosen wireless
communication technology. According to eq. (3), the bit
rate depends on the bandwidth, modulation, and the number
of antennas. Parameters used for calculating the supported
maximum bit rate in the wireless channel are summarised in



TABLE II: Simulation parameters

Parameter Acronym Value Ref.
Processor:

IoT fIoT 2 GHz [29]
MEC fMEC 75 GHz [30]
MCC fMCC 288 GHz [31]

Computation to data ratio � 1.1 · 103 cycles/bit [20]
Wireless communication:

Bandwidth B 40 MHz
Modulation Qm QAM-64

Spatial streams Nss SISO
Scaling factor f 0.75 [22]

Maximum code rate Rmax 948/1024 [22]
Number of resource blocks NRB 106 [23]

Subcarrier spacing SCS 30 kHz [24]
OFDM numerology µ 1 [24]

Average symbol duration Ts 0.0357 · 10�3 [22]
Overhead value OH 0.2 [22]

Power consumption:
Local execution pex 0.9 W [26]

Transmission state ptr 1.2 W [32]
Idle state pi 0.003 W [33]

Power budget A 8390 mAh [25]
Operating voltage V 3.3 V [33]

Table II. Shifting the frequency range to mmWave values in
5G NR is advantageous in terms of throughput and latency but
disadvantageous in terms of propagation because it increases
the path loss [34]. Propagation modeling is one of the key
parameters for understanding wireless communication. In this
work, we assume that the communication channel is estab-
lished and the BS knows which modulation is going to be
used. In the direct propagation and big amount of antennas,
the bit rate could bring the values up to 3260 Mbps. As
an example, we use a device, which could not include more
sophisticated antenna configurations yet, thus, bandwidth for
data transmission is set to 40 MHz with only one spatial
stream (Single-Input Single-Output (SISO)), and Quadrature
Amplitude Modulation (QAM) – 64. Assume that fiber optic is
used for wired communication between the BS and the MCC.

D. Numerical Results
Fig. 3 shows the performance parameters on the small

workload (10 kb) that are referred to as the low intensive
tasks. The power consumption spent for the local execution
is higher than for data transmission. Task execution on the
resource-limited device is not the best solution for the high
workloads, as it could cause a system failure. Figures 4 and 5
show that with the increasing workload (1 Mb and 10 Mb), the
offloaded strategies are winning in terms of consumed power
that will increase the device lifetime.

E. System’s Performance Bottlenecks
The system has two bottlenecks. The first bottleneck appears

with the amount of computing capacity. In this work, we
assume that the task could use all the computing capacity
of the server. In real, half or more of CPU power could be
allocated to other users’ tasks. The computing time depends
on CPU parameters, which means that if the device has a
small computing capacity, e.g., IoT, it will not get more
packages until the first one proceeds. So, when the processor
is overloaded, it will filter the packets. The high overloading

Fig. 3: The response time (T) and power consumption (P) for
IoT-only, MEC-only, MCC-only with workload w = 0.01 Mb

Fig. 4: The response time (T) and power consumption (P) for
IoT-only, MEC-only, MCC-only with workload w = 1 Mb

Fig. 5: The response time (T) and power consumption (P) for
IoT-only, MEC-only, MCC-only with workload w = 10 Mb

Fig. 6: The local computing and communication time limits

could lead the system failure. Important to mention that the
quantity parameter of the CPU is measured in FLOPS. It
mainly depends on the processor architecture, so the amount
of bits processing in one register simultaneously is correlated
with the exact CPU parameters [21].

At the same time, MEC and MCC paradigms have in-
comparably more computational power. In these paradigms,
the bottleneck also appears in the channel throughput. The
communication time in the mentioned paradigms depends
on the communication technology and channel parameters –
bandwidth, modulation, and spatial streams. The system will
not take more than it is allowed to process at one time or bring
the system failure. Thus, the remaining part of the workload
is waiting for when the channel will be free.



Fig. 6 shows that the tasks can be waiting in the queue due
to processor overloading or channel overloading. In the MEC-
only model, referred to as a blue dotted line in the figure,
an error is likely to occur on the server since the channel
throughput allows to send more data than the server could
proceed. In the MCC-only model, referred to as a blue dash-
dotted line in the figure, where computational power is much
greater, transmission delays occur on the devices with simple
communication parameters (e.g., SISO).

V. CONCLUSION

This work discussed three computing strategies and wire-
less communication problems in a MEC and MCC systems.
Processing locally is the best choice in terms of security
and response time as the data is not sent to the third-party,
but it has strict limitation in the battery lifetime. MEC and
MCC are perspective solutions to satisfy the requirements
of medical applications running on energy-constrained IoT
devices. Simulation results have revealed that MEC and MCC
offloading strategies provide up to 100 times more computa-
tional capabilities (depending on the technical characteristics
of the server). Latency optimization of the communication in
the medical use cases refers to joint resource allocation and
intelligent orchestration of the task. This work is a part of
the research, so the future direction is to implement multiple
users and servers in the system and improve the system by
introducing offloading strategies for not-idealistic cases, i.e.,
partial offloading and constrained communication resources.
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