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ABSTRACT Visible light communication (VLC) has been introduced as a key enabler for high-data rate
wireless services in future wireless communication networks. In addition to this, it was also demonstrated
recently that non-orthogonal multiple access (NOMA) can further improve the spectral efficiency of multi-
user VLC systems. In this context and owing to the significantly promising potential of artificial intelligence
in wireless communications, the present contribution proposes a deep Q-learning (DQL) framework that
aims to optimize the performance of an indoor NOMA-VLC downlink network. In particular, we formulate
a joint power allocation and LED transmission angle tuning optimization problem, in order to maximize
the average sum rate and the average energy efficiency. The obtained results demonstrate that our algorithm
offers a noticeable performance enhancement into the NOMA-VLC systems in terms of average sum rate
and average energy efficiency, while maintaining the minimum convergence time, particularly for higher
number of users. Furthermore, considering a realistic downlink VLC network setup, the simulation results
have shown that our algorithm outperforms the genetic algorithm (GA) and the differential evolution (DE)
algorithm in terms of average sum rate, and offers considerably less run-time complexity.

INDEX TERMS Deep reinforcement learning, multiple access, resource allocation, sum-rate, visible light
communications.

I. INTRODUCTION

THE RAPIDLY emerging services and technologies
have paved the way for shaping the vision of future

sixth-generation (6G) wireless networks, imposing new chal-
lenging constraints relating to system reliability, latency,
rate, and energy efficiency. Such constraints are a conse-
quence of the massive increase in the number of connected
data-hungry, delay-sensitive wireless devices [1]. Motivated
by this, visible light communication (VLC) was identified,
among others, as a key enabling technology that is capable
of meeting the ever-growing demand for efficient high-rate

wireless data services. One of the most attractive advantages
of VLC is the abundant visible light spectrum, which is in the
order of hundreds of Terahertz. Another distinct character-
istic of VLC networks is that they exhibit inherent security,
and are immune to electromagnetic interference [2]. Due to
spectrum availability, VLC can be adopted in various applica-
tions such as healthcare, vehicle-to-vehicle communications,
and Internet-of-Things (IoT). The large bandwidth in VLC
makes it an attractive technique for realizing efficient and
high data-rate IoT connectivity. In an indoor environment,
short communication [3] is realized through the use of LEDs.
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The short-range communication with LEDs can be accom-
plished by modulating the intensity of the LED, a process
known as intensity modulation (IM). At the receiver side, a
photodetector (PD) is used to perform direct detection (DD)
by converting the received light intensity fluctuations into
an electrical current for data demodulation [2]. Yet, although
VLC systems offer a large amount of available bandwidth,
existing off-the-shelf LEDs have a restricted bandwidth, lim-
iting the number of served users by an LED. Therefore, to
reap the full potential of VLC networks, spectrally-efficient
multiple access schemes are required for improved connec-
tivity and the overall quality of service. To that end, one of
the emerging multiple access techniques that is capable of
improving the spectral efficiency is non-orthogonal multiple
access (NOMA) [4]. Through power domain superposition
coding at the transmitter and successive interference can-
cellation (SIC) at the receiver, all users in NOMA systems
can utilize the entire modulation bandwidth of the system
simultaneously. Thus, NOMA offers higher connectivity and
spectrum efficiency (SE) in IoT networks, as compared to
the orthogonal frequency division multiple access (OFDMA)
scheme. Moreover, it has been shown that NOMA per-
form considerably better in high signal-to-noise ratio (SNR)
scenarios [5], rendering it a prominent candidate for VLC
systems that enjoy high SNRs, which are attributed to the
relatively short distances between the transmitter and the
receiver. The performance of NOMA-enabled VLC systems
has been extensively studied [6], [7], [8], [9]. The main
challenge of applying NOMA in VLC systems is the non-
negative real-valued requirement imposed on VLC signals,
rendering current power allocation schemes in RF-NOMA
systems inapplicable to VLC scenarios. Accordingly, in our
paper, we revisit these schemes and develop a deep Q-
learning (DQL) approach in order to obtain optimal resource
allocation while considering the VLC channel characteristics.
The authors in [6] proposed a gain ratio power alloca-
tion (GRPA) method and suggested NOMA as a possible
candidate for high-speed VLC systems. The studies in [7]
and [8] reported more advanced power allocation methods
for NOMA-VLC, at the expense of increased computational
complexity. Likewise, to improve the error rate performance
of uplink NOMA-VLC systems, the authors in [9] proposed
a phase pre-distortion approach.
It is recalled that the typically high energy consumption of

connected devices in wireless networks constitutes a funda-
mental challenge in designing future 6G wireless networks,
which are envisioned to enable a wide range of essential
but energy-consuming applications [10], [11]. Therefore, it
is critical to improve the energy efficiency of future wire-
less communication systems while maintaining or increasing
the desired quality of service (QoS). In this context, it
is worthy to mention that the exploitation of superposi-
tion modulation in NOMA enables energy-efficient wireless
transmission [12], [13]. Thus, in order to ensure a desired
quality-of-service (QoS) levels for all superimposed users,
several research efforts have been devoted in the efficient

design of power allocation mechanisms. To that end, power
allocation problems were studied in [14], [15], whereas the
joint power allocation and sub-channel assignment problems
were investigated in [16], [17], [18], [19].
Joint optimization problems in NOMA have received a

considerable attention from the research community. For
example, Zhao et al. [20] proposed a joint UAV trajec-
tory and NOMA precoding optimization framework, with
the aim to improve the system throughput. In another work,
Peng et al. [21] considered a hybrid precoding and power
allocation scheme in order to maximize the energy efficiency
of mmWave-enabled NOMA UAV networks. Nevertheless,
most of the reported contributions in joint resource allocation
problems for NOMA-enabled networks are non-deterministic
polynomial-time hard (NP-hard) [22], especially when users
are mobile. Therefore, it is challenging to obtain an optimal
solution due to the high amount of uncertainty and the high
computational complexity. As a result, sub-optimal solutions
were subsequently proposed in [23], [24], [25]. Heuristic
optimization techniques like the genetic algorithm (GA) [26]
and the differential evolution (DE) algorithm [27] can solve
these NP-hard problems. However, these techniques often
fall into a local optimum solution. Hence, using heuristic
techniques may limit the performance of NOMA in differ-
ent scenarios for future wireless networks. Therefore, it is
of paramount importance to employ an efficient method for
obtaining an optimal power allocation mechanism for VLC
networks with uniformly distributed users. With this moti-
vation, in the present contribution we utilize an algorithm
based on deep reinforcement learning (DRL), in which an
agent in the network continuously learns from the environ-
ment and adapts the network parameters accordingly. The
proposed algorithm aims to improve the average sum rate of
a VLC network, with uniformly distributed users. This also
provides an answer to the following question: is it practically
feasible to jointly optimize the power allocation and the LED
transmission angle of an indoor VLC-NOMA network?

A. RELATED WORKS
Recently, Q-learning sparked an unprecedented interest by
researchers and engineers in various fields. Q-learning is
a subset of reinforcement learning that relies on Q tables
to store the optimal sequence of actions, which maximizes
the future reward. In the context of optimizing communica-
tion networks, several studies have adopted Q-learning to
enhance the performance of wireless networks from dif-
ferent perspectives [25], [28], [29], [30], [31], [32], [33],
[34], [35]. In [28], the authors proposed a fast RL-based
power allocation scheme to improve the spectral efficiency
of a multiple-input multiple-output (MIMO) NOMA system
in the presence of a smart jammer interference. The study
in [30] used Q-learning to develop a framework for enabling
mobile edge computing with NOMA. By incorporating deep
learning into RL, DRL addresses a challenge associated with
Q-learning in terms of Q table storage and look-up. Based
on this, Yang et al. [31] used a deep Q-network (DQN) to
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model a multi-user NOMA offloading problem, whereas the
authors in [32] designed a power allocation in cache-assisted
NOMA systems using DRL. Likewise, Zhang et al. [33]
proposed a dynamic power allocation mechanism based on
the actor-critic RL, whilst DRL was used in [35] to arrive at
sub-optimal power allocation solutions for an uplink multi-
carrier NOMA system. Finally, He et al. [25] solved a
joint power allocation and channel assignment problem in a
two-user NOMA system using a DRL framework.

B. MOTIVATION
The aim of this work is to jointly optimize power alloca-
tion and LED transmission angle tuning, with uniformly
distributed users in an indoor VLC network. In such a
setup, the problem is NP-hard and cannot be tackled using
conventional optimization methods. The most significant
advantage offered by DQL is its ability to solve complex joint
optimization problems in wireless communication, which
cannot be solved by conventional mathematical tools [36].
The effectiveness of DQL was demonstrated in several works
in the literature. For instance, the authors in [37] optimized
an IRS-NOMA system by using DQL to predict and opti-
mally tune the IRS phase shift matrices. In [38], DQL is used
to allocate optimal channels to a cluster of users in order
to maximize energy efficiency. The DQL algorithm allows
the agent to learn about the communication environment and
develop new knowledge that can lead to an optimal solu-
tion, with imperfect channel state information acquisition.
Therefore, in the current contribution, we leverage the DQL
algorithm in order to solve this complex problem. The moti-
vation underlying the utilization of DQL in our optimization
framework is two-fold:

• The proposed solution can cope with the channel uncer-
tainty and does not require perfect knowledge of channel
state information to maximize the average sum rate.

• The solution avoids an exhaustive search method to
reach the optimal solution, which searches for all the
power allocation coefficients, with all possible LED
transmission angles, thus rendering it to an impractical
solution.

C. CONTRIBUTIONS
To the best of the authors’ knowledge, none of the previous
studies proposed a DQL algorithm to maximize the average
sum rate of uniformly distributed users in a NOMA VLC
indoor network. In this work, we propose an efficient DQL-
based algorithm that maximizes the average sum rate by
jointly optimizing the power allocation and the transmission
angle of the LEDs. The main contributions of this paper can
be summarized as follows:

• We formulate a joint optimal power allocation and LED
transmission angle tuning problem in the downlink of
the considered NOMA-VLC network. The optimization
problem aims to maximize the average sum rate of
uniformly distributed users, under total power and the
individual LED transmission angle constraints.

FIGURE 1. The interplay between the agent and the environment in reinforcement
learning.

• We propose a joint power allocation and LED transmis-
sion angle tuning algorithm to solve the aforementioned
non-convex optimization problem by introducing the
DQL concept. In particular, we define a reward func-
tion that maximizes the sum rate while adhering to the
constraints of power and LED transmission angles.

• We conduct a theoretical complexity analysis of the
proposed deep Q-learning framework and draw valuable
insights on the efficiency of the proposed scheme.

• We validate the superiority of the proposed algorithm
over the fixed power allocation policy and the exhaus-
tive search method. The simulation results indicate that
after a few iterations, the proposed scheme converges
and performs better under varying transmit SNR, cell
radius, and VLC Access Point (AP) height.

• The offered results provide useful insights on the
achievable performance of the proposed technique,
which has a particularly practical importance.

II. INTRODUCTION TO DEEP REINFORCEMENT
LEARNING
In this section, we introduce the concept of DRL, which is a
special case of reinforcement learning. First, it is recalled that
reinforcement learning is a sub-field of machine learning,
where an agent interacts with the environment to perform
the best series of actions that will maximize the expected
future reward in an interactive environment. This interplay
between the agent and the environment is depicted in Fig. 1.
In general, RL can be classified as single-agent or multi-

agent based on the number of agents. In the case of single
agent RL. If the agent can observe the environment’s full
state information, the sequential decision-making problem
can be modeled using the Markov decision process (MDP)
framework. On the other hand, multi-agent reinforcement
learning is typically modeled as a Markov or random game
(a generalized method of traditional parroted game) when
two or more agents have complete environment observation,
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and make decisions accordingly. Without loss of general-
ity, our underlying framework assumes a single agent for
a single VLC access point. In DRL, the best sequence of
actions for an agent will be predicted based on a deep neural
network. Therefore, the deep neural network in DRL acts as
a universal function approximator.
The fundamental elements for RL are:

• Observations: These are the continuous measurements
of the environment’s properties. They are represented
in vector p with O ∈ Rp, where p denotes the number
of the observed properties.

• States: The state st ∈ S denotes the discretized obser-
vation at time step t.

• Actions: An action at ∈ A is one of the valid decisions
that the agent can take at time step t.

• Policy: A policy denoted by π(.) is the mapping
between the actions to be taken by the agent at any
given state of the environment.

• Rewards: The value us,s′,at is the reward obtained after
an agents takes a particular action at in a given state s
at time t, which leads to state s′.

• State-action value: Denoted by Qπ (s, a), and defined as
the expected discounted reward when the agent starts
at state s and selects action a according to policy π .

At a given time step t, when an agent performs an
action at, the agent’s environment changes from the current
state st to the following state s′. As a result of this transition,
the agent receives an immediate reward u′ that represents the
outcome of performing action at while in state st. At time t′,
this system generates an experience tuple e′ = (st, at, u′, s′),
which is stored in buffer D. Based on this, the main goal of
the agent is to maximize the long-term cumulative discounted
reward, which is defined as

Ut =
∞∑

i=0

γ iut+i, (1)

with discount factor γ ∈ [0, 1]. To accomplish this, an
optimal policy π∗ that maps the best actions to states is
required. In other words, the optimal policy will act as a
guide, informing the agent which actions should be taken
at a any given state, in order to maximize the long-term
cumulative reward. It is noted that the Q-value function [39]
is a function that represents the expected cumulative reward
Ut of starting at state st, performing action at, and following
a certain policy π . This function is critical in solving RL
problems, and is given by

Qπ (st, at) = E[Ut|st, at] = E

[ ∞∑

i=0

γ iut+i|st, at
]

= E
[
ut + γQπ

(
s′, a′)|st, at

]
, (2)

where E[ · ] denotes statistical expectation. The optimal π∗
that maximizes (1) for all states and actions, also maxi-
mizes (2). Consequentially, the optimal Q-value function that

FIGURE 2. The structure of the DQN used with two hidden layers.

follows π∗ is obtained using

Qπ∗(st, at) = E

[
ut + γ max

a′ Qπ∗
(
s′, a′)|st, at

]
. (3)

The definition in (3) is known as the Bellman equa-
tion [40]. The purpose of the equation is to divide the
value function into two components: the immediate reward
ut and the long-term cumulative discounted reward Ut.
Rather than summing up over multiple time steps, the
definition (3) simplifies the computation of the Q-value func-
tion by decomposing it into simpler, recursive sub-problems
and determining their optimal solutions. Nevertheless, the
Bellman equation in (3) is nonlinear, and hence, there are
no closed-form solutions to it. As a result, numerous iterative
methods have been proposed (e.g., Q-learning), each of
which has been shown to converge to the optimal Q value
function [39]. However, these methods become impractical
in multi-user systems with a large state or action space, as
the size of the Q-value table (e.g., all possible values of (2)
for all possible states and actions) is extremely large. The
solution to this problem is to estimate the Q value using
function approximations, e.g., deep neural networks, which
is the core idea of the underlying deep Q-network.
The DQN design, shown in Fig. 2, consists of the

following three main components:

• The input layer represents the states of the environment.
• The hidden layer acts as a function approximator. In this
component, the Rectified Linear Unit (ReLU) activation
function is used to compute the hidden layer values. The
ReLU function is defined as

yo =
{
yi for yi ≥ 0
0 for yi < 0,

(4)

where yo is the output from the activation function
while yi is its input. The main advantage of employ-
ing ReLU as an activation function is its computational
efficiency, since it does not compute exponentials and
divisions [41]. Additionally, ReLU introduces more
sparsity in the hidden units, as when yi < 0, the output
values become zero [42]. Therefore, the computational
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FIGURE 3. System Model.

efficiency and the increased sparsity can lead to faster
convergence.

• The output layers represent the predicted state-action
value function, Q∗

π (s, a;Wt).

III. SYSTEM AND CHANNEL MODELS
Fig. 3 shows the underlying system model of the considered
study. We consider a NOMA-VLC indoor network, which
consists of a VLC AP installed on a ceiling at height L. The
VLC AP serves K users, uniformly distributed over a polar
coordinate plane of r radius. Without loss of generality, in
this work, we will focus on the downlink communication.
Although VLC channels consist of a line-of-sight (LOS) and
non-LOS (NLOS) components, this study considers the direct
LOS component, due to the fact that the NLOS component
has much less energy.

A. VLC CHANNEL MODEL
The signal transmitted by the VLC AP can be expressed as

xi =
K∑

i=1

αi
√
Pesi + IDC, (5)

where Pe denotes the total electrical transmit power, IDC
represents the LED DC bias, which is essential for intensity
modulation-based optical baseband transmission, si repre-
sents the modulated symbol of the ith out of K links, and
αi is the power allocation coefficient for the corresponding
link. It is assumed that the transmitted signal for each user

follows a uniform distribution with zero mean and unit vari-
ance. Based on this and a given total power constraint, the
following constraint should hold,

K∑

i=1

αi = 1. (6)

Furthermore, the optical transmit power of the LED can be
expressed as

Popt = ηE[x] = ηIDC, (7)

where η denote the LED efficiency, which, without loss of
generality, is assumed to be normalized to unity. Based on
this, the received signal at the kth user can be expressed as

yk = √
Pehk

⎛

⎝
k−1∑

i=1

αisi + αksk +
K∑

i=k+1

αisi

⎞

⎠ + zk, (8)

where the channel gain hk is given by [43]

hk = (m+ 1)ARp
2πd2

k

cosm(φk)T(ψk)g(ψk) cos(ψk), (9)

with zk is the additive white Gaussian noise with zero mean,
and variance σ 2

k , A denoting the area of the PD, Rp repre-
senting the responsivity of the PD, and dk is the Euclidean
distance between the VLC AP and the kth user. Also, T(ψk)
and g(ψk) denote the optical filter gain and the optical con-
centrator, respectively. It is also noted that (9) indicates that
the channel gain hk is inversely proportional to the distance
of the kth user. As shown in Fig. 3, the light emitted from the
LED follows a Lambertian radiation pattern with an order.

m = − 1

log2
(
cos

(
φ1/2

)) , (10)

where φ1/2 is the transmission angle of the VLC AP, ψc
denotes the receiver’s field of view (FOV), whereas ψk and
φk denote the angle of incidence and the angle of irradiance,
respectively.
It is recalled that in power-domain NOMA systems, users

with stronger channel conditions are allocated lower signal
power, whereas users with severe channel conditions are
allocated more power, which implies that α1 ≥ · · · ≥ αk ≥
· · · ≥ αK−1 ≥ αK . Without loss of generality, we assume
that the users in the considered setup are sorted in ascending
order according to their channels, namely,

|hK | ≥ |hK−1| ≥ · · · ≥ |hk| ≥ · · · ≥ |h1|. (11)

In order to perform reliable signal detection, the kth user
performs SIC in order to cancel the incurred interference
experienced from signals with higher power levels. Also,
the signals of the users that are allocated with lower power
coefficients are treated as noise.
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B. IMPERFECT CSI MODEL
Unlike the majority of previous related contributions, which
assumed perfect CSI knowledge for the underlying VLC
system model, this work makes the practical assumption
of imperfect CSI knowledge. CSI is typically obtained at
receivers via pilot symbols. The channel coefficients are
transmitted to the transmitter via an RF or infrared (IR)
uplink, where channel uncertainty increases as uplink and
downlink channel noise increases. Additionally, channel
uncertainty is increased due to quantization errors intro-
duced by the imperfect digital-to-analog, analog-to-digital
conversion processes, which ultimately degrades system
performance. It is worth noting that the current analysis
uses the same noisy CSI model as [44], which takes into
account the resultant CSI error regardless of the source of
the error, i.e., location uncertainty, orientation uncertainty,
and LED half-angle uncertainty.
The channel coefficient for the VLC link can be mod-

eled by using the minimum mean squared error (MMSE)
estimation method, yielding [44]

hk = ĥk + ek, (12)

where ĥk ∼ N (0, 1 − σ 2
e ) is the estimated channel gain and

ek denotes the estimated error in the channel which follows
a Gaussian distribution with mean = hk and variance = σ 2

e .
It is worth noting that the random variables ĥk and ek are
uncorrelated.

C. VLC CHANNEL MODEL OF UNIFORMLY
DISTRIBUTED USERS
Without loss of generality, we assume that the users are
uniformly distributed within the attocell. This assumption is
widely considered as a baseline in several contributions in
the literature, e.g., [45], [46], [47], and it can be readily
generalized into Poisson or normal distributions. Following
this assumption, the relationship between the angle of inci-
dence, the angle of irradiance, the Euclidian distance of the
kth user, the height L, and the radical distance rk is given by

cos(φk) = cos(ψk) = L

dk
, (13)

where

dk =
√
r2
k + L2. (14)

Substituting (13) and (14) in (9), the DC gain of the LOS
component can be expressed as

hk = 	(m+ 1)Lm+1

(
r2
e + L2

)m+3
2

, (15)

where

	 = ARpU(ψk)g(ψk)

2π
(16)

is a constant. Furthermore, given that users are uniformly dis-
tributed, the following probability density function (PDF) is

used frk(r) = 2r/re. Therefore, the PDF of the corresponding
channel gain is given by

fhk(t) = 2
(
	(m+ 1)Lm+1

) 2
m+3

re2(p+ 3)t
2

m+3 +1
, t ∈ [λmin, λmax] (17)

where

λmin = 	2(m+ 1)2L2m+2

(
re2 + L2

)m+3
(18)

and

λmax = 	2(m+ 1)2L2m+2

L2(m+3)
. (19)

Based on this and in order to obtain the corresponding cumu-
lative distribution function (CDF), we integrate (17) over the
range [λmin, λmax], yielding

Fh2
k
(t) = 1 + L2

r2
e

−
(
	(m+ 1)Lm+1

) 2
m+3

r2
e t

1
m+3

. (20)

With the aid of order statistics [48], the PDF of the ordered
channel gain of the kth user denoted by f ′hk(t), can be
obtained as

f ′h2
k
(t) =

K!fh2
k
(t)

(k − 1)!(K − k)!
Fh2

k
(t)k−1

[
1 − Fh2

k
(t)

]K−k
, (21)

which after some algebraic manipulations can be equivalently
expressed as follows:

f ′h2
k
(t) = �

m+ 3

K!t−
1

m+3 −1

(k − 1)!(K − k)!

×
(
�

t
1

m+3

− L2

re2

)K−k(
1 − �

t
1

m+3

+ L2

r2
e

)k−1

(22)

where the constant � = 1
r2
e
(C(m+ 1)Lm+1)

2
m+3 .

Note that the PDF in (22) has a convenient mathemati-
cal form as it consists of only elementary functions, which
renders it tractable both analytically and computationally.

D. AVERAGE SUM RATE OF NOMA-VLC WITH
UNIFORMLY DISTRIBUTED USERS
Following [43], the average sum-rate of NOMA VLC under
imperfect CSI can be expressed as 1

RVLCk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log2

(
1 + ĥ2

kα
2
k∑K

i=k+1 ĥ
2
kα

2
i + 1

ρ
+σ 2

e

)
, k = 1, . . . ,K − 1

log2

(
1 + ρĥ2

kα
2
k + σ 2

e

)
, k = K

(23)

1. It should be noted that Shannon’s capacity equations is valid for VLC
systems, if the transmitted signal is frequency-upshifted. Wherein, the real-
valued baseband transmission signal model for VLC can be converted into
a complex-valued baseband channel by applying a frequency-upshift to an
intermediate frequency (IF), which has a slightly higher center frequency
than half the bandwidth of the transmitted signal before applying the bias
current.
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where ρ = Pe/σ 2
k denotes average transmit SNR. It is worth

noting that (23) is derived under the assumption of perfect
SIC process. In addition, the decoding order is assumed to
be fixed and known to the receivers.
For a K number of uniformly distributed users and an

arbitrary power allocation strategy, the average sum rate
of NOMA-VLC is given at the bottom of the page [49].
The average sum rate in (24) is expressed in bits per sec-
ond (bits/s), whereas the average energy efficiency metric is
expressed in terms of bit per joule, and can be calculated
using

ξ = R̂NOMA
VLC

QVLC
, (25)

where QVLC represents fixed power consumption of the VLC
AP, expressed in watts.

IV. PROBLEM FORMULATION
The main objective of this work is to perform a joint
power allocation and LED transmission angle φ1/2 tuning
optimization, with the aim to maximize the average sum
rate of uniformly distributed users. Accordingly, the joint
optimization problem is formulated as

max
αk
φ1/2

R̂NOMA
VLC (P1)

s.t. Pe ≤ Pmax, (P1.a)
K∑

k=1

αk = 1,∀k ∈ K, (P1.b)

30◦ ≤ φ1/2 ≤ 70◦. (P1.c)

where the first constraint (P1.a) refers to the maximum
allowed transmission power, the second constraint (P1.b) is
set to ensure that the total transmit power of the super-
imposed signal equals to Pe. The final constraint (P1.c)
aims to ensure that the selected LED transmission angles
fall within a practical range. Due to the high computa-
tional complexity and the varying nature of the channels,
it is challenging to obtain a global optimum solution
to (P1).
To solve the above optimization problem, two approaches

can be considered. The first approach is the simplest in
terms of implementation, in which the use of a fixed power
allocation policy, and a fixed LED transmission angle is con-
sidered. However, such an approach results in a sub-optimal
solution. The other approach is the exhaustive search, which
can lead to an optimal solution; however, this comes at

the expense of increased complexity. In the following sec-
tions, we introduce DRL as an alternative approach to solve
the underlying optimization problem. In the next section,
we will demonstrate the proposed DRL-based optimization
framework for joint power allocation and LED transmission
tuning.

V. JOINT POWER ALLOCATION AND LED
TRANSMISSION ANGLE TUNING (JPA-LTAT):
DRL-BASED FRAMEWORK
In what follows, we propose a DRL-based framework to
solve the optimization problem (P1). First, we will present
how the DQN is trained with an appropriate policy selection
criterion. Then we introduce an algorithm that relies on the
DRL framework to achieve optimal performance.

A. TRAINING PHASE
The DQN is trained and updated to approximate the action-
value function of Qπ∗(s, a). It is recalled that the experience
tuple is defined as et = (st, at, ut, s′). The agent saves its
experiences in a buffer D = {

e1 e2 . . . et
}
that is used to

train the DQN using the gradient descent algorithm [7].
While it is ideal for DQN training to use all data in each

iteration, this is prohibitively expensive when the training set
is large. A more efficient method is to evaluate the gradients
in each iteration using a random subset of the replay buffer
D, referred to as mini-batch. Accordingly, the loss function
is defined as follows

L(W) =
∑

e∈D

⎛

⎜⎜⎝u+ γ max
a′ Qπ∗

(
s′, a′, Ŵ

)

︸ ︷︷ ︸
target

−Qπ∗(s, a,W)

⎞

⎟⎟⎠

2

,

(26)

where (26) denotes the DQN’s loss function for a random
mini-batch D at time slot t and Ŵ denotes the quasi-static
target parameters that are updated every t time slots. Finally,
the optimal weights are obtained using

W∗ = argmin
W

L(W). (27)

In order to minimize the loss function defined in (26), the
weights of the DQN are updated at every time step t using a
stochastic gradient descent (SGD) algorithm on a mini-batch
sampled from the replay buffer D. To this effect, the SGD
algorithm will update the weights W in an iterative process
with a learning rate of μ > 0 as follows [50]

Wt+1 = Wt − μ� Lt(Wt). (28)

R̂NOMA
VLC = 	K

ln(2)(m+ 3)

{
K−1∑

l=0

(K − 1)!(−	)l
l! (K − 1 − l)!(v1 + 1)

(
L2

r2
e

+ 1

)K−1−l
[�(λmax, v1, b1)−�(λmin, v1, b1)]

+
K−1∑

k=1

k−1∑

p=0

K−k∑

q=0

(K)!(	)p+q(−1)p+K−k−q

p! (k − 1 − p)q!(K − k − q)!

(
L2

r2
e

+ 1

)k−1−p(
L2

r2
e

)K−k−q
[�(λmax, v2, b2)−�(λmin, v2, b2)]

}
. (24)
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B. POLICY SELECTION
Generally speaking, Q-Learning is considered as an off-
policy algorithm, which means without actually following
any greedy policy, it estimates the reward for future actions
and adds a value to the new state [51]. Based on this, we con-
sider a near-greedy action selection policy. The near-greedy
policy has two modes:
1) Exploration: The agent tries different actions at every

time step t to discover an effective action at.
2) Exploitation: The agent chooses an action at time

step t that maximizes the state-action value function
Qπ (s, a;Wt) based on the previous experience.

In the near-greedy policy, the agent has an exploration
rate of ε and an exploitation rate of 1 - ε, where 0 < ε

< 1, and ε is a hyper-parameter that controls the trade-off
between exploitation rate and exploration rate of the agent.
For every time step t, the agent performs a specific action at
at a given current state st. Accordingly, the agent receives a
positive or negative reward us,s′,a[t] and moves into a target
state s′ := st+1.

The period of time in which the agent interacts with the
environment is called an episode, where each episode has
a total duration time of T time steps. The convergence of
an episode is governed by the target objective being ful-
filled. Also, the dimension of the input layer is set equal to
the number of the states in S, the dimension of the output
layer is equal to the number of possible actions A. For the
hidden layer, we choose a smaller depth, as it has a consider-
able impact on the computational complexity. Therefore, we
opted for a depth that offers a reasonable balance between
performance and computational complexity.

C. PROPOSED ALGORITHM
In this subsection, we propose the joint power allocation
and LED transmission angle tuning (JPA-LTAT) algorithm;
an optimization framework based on DRL. The JPA-LTAT
algorithm optimizes the average sum rate of the VLC system,
assuming that the CSI of each user is unknown. At each
time step t, the algorithm calculates the average sum rate
of NOMA users in the considered VLC network, which is
given in (24). In what follows, we provide some details on
the action space, state space, and the reward function.

1) STATE SPACE

All possible states form the state space, denoted as S, which
are characterized by power allocation coefficients of each
user in the VLC network.
In this paper, the state space S contains the power allo-

cation coefficients of each user in the VLC network and
the LED transmission angle of the VLC AP. Accordingly,
the resultant state space S = {

α1 α2 . . . αK φ1/2
}
.

For instance, assuming an initial equal power allocation
for 4 users, the initial state space for K = 4 users and
M = 1 VLC access point of 45◦ LED transmission angle is

S =
{
α1 = 0.25 α2 = 0.25 α3 = 0.25 α4 = 0.25
φ0.5 = 45◦

}

TABLE 1. VLC network parameters.

2) ACTION SPACE

All the actions can be taken by the agent from the action
space, denoted as A. The possible actions in the action space
A are:

• Increase / Decrease power allocation factor of user k
by a step size of �k, where �k is a fixed value to be
added to (or subtracted from) each αk where k ∈ K,
while maintaining a unity sum such that

∑K
k=1 ak =

1,∀k ∈ K.
• Increase / Decrease the LED transmission angle of the
VLC AP by step size ιm, where ιm is a fixed value to
be added to (or subtracted from) the value of the LED
transmission angle of the mth VLC AP, such that the
LED transmission angle is 30◦ ≤ φ1/2 ≥ 70◦.

The total number of actions in the action space A are
calculated using |A| = 2M + 2K.

3) REWARD FUNCTION

The reward function plays an essential role in the RL algo-
rithm. We use the average sum rate of the VLC-NOMA
system, which is calculated using (24), to represent the
immediate reward ut returned after choosing action at in
state st.
Having described the State Space, Action Space, and the

Reward Function. In the following, we describe in detail the
operational steps of the JPA-LTAT algorithm. Algorithm 1
further summarizes the JPA-LTAT algorithm.

1) The VLC network environment is initialized according
to Table 1. The DRL hyper-parameters are initialized
as in Table 2. The policy network weights Wt are
randomly initialized.

2) The power allocation coefficients are reset to their
initial values at the start of each episode to improve the
learning experience. Similarly, the LED transmission
angle is also reset to the initial value of 45◦.
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Algorithm 1: JPA-LTAT Algorithm
Input: The average sum rate of the VLC network.
Output: The optimal power allocation coefficients of each user,

and the optimal LED transmission angle.
1 Initialize time, actions, states, and replay buffer D
2 while No convergence or Not aborted do
3 while t < T do
4 t:= t+1
5 Observe current state st
6 ε = max(ε.d, εmin)
7 Sample τ ∼ Uniform(0,1)
8 if τ ≤ ε then
9 Select a random action at

10 else
11 Select an action based on at=arg max Qπ (s, a;Wt)

12 if 30◦ ≤ φ1/2 ≥ 70◦ then
13 Abort episode.

14 Compute the average sum rate based on (24).
15 Store experience et = (st ,at ,us,s′,at , s

′) in D.
16 Minibatch sample from D, ej = (sj,aj,uj,sj+1).
17 Set yj:= uj + γ maxa′ Qπ∗ (sj+1, a

′;Wt).
18 Obtain the optimal weights W� by performing SGD on ((yj

- Qπ∗ (sj,aj,Wt))2

19 Update Wt:= W� in the DQN.
20 Record the Loss Lt .
21 Update st:=s′.

TABLE 2. Deep Q-learning hyper-parameters.

3) JPA-LTAT uses the ε-greedy algorithm to select an
action from the action space for a given state in our
time-sequential decision process.

4) To allow the exploration of the action space, τ is
randomly sampled from a uniform distribution.

a) If the sampled value is less than or equal to the
value of ε, then the agent takes a random action.

b) Otherwise, the agent will select an action based
on the learned policy at=arg max Qπ (s, a;Wt),
which aims to maximize the cumulative future
reward.

5) In order to maximize the Q-value, which is constructed
from the policy network outputs, the agent observes the
next state and performs the following set of possible
actions:

a) Increase or decrease the power allocation factor
αk by step size �k, ∀k ∈ K for each user in the
VLC network.

b) Increase or decrease the LED transmission angle
of the VLC AP φ1/2, by step size ι.

6) Following (24), compute the average sum rate for the
new set of power allocation factors and the newly
modified LED transmission angle and store it as a
reward ut.

7) If the agent tries to exceed the constraint of the
LED transmission angle, outside the specified range
30◦ ≤ φ1/2 ≥ 70◦, abort the episode.

8) Following that, st, s′, at, and ut are stored in the replay
memory buffer D, which has a capacity of M.

9) Using the gradient descent algorithm with a learning
rate μ, a mini-batch is sampled from the buffer and is
used to train the policy network to minimize the loss
function, which is given by (26).

10) The resulted loss L(W) at time step t is recorded and
the next state s′ is updated as current state st.

D. COMPLEXITY ANALYSIS OF THE PROPOSED
ALGORITHM
It is crucial to quantify computational complexity of the
proposed algorithm. However, since deep learning algo-
rithms are dependent on hyperparameters, applying analytical
methodologies to guarantee the convergence of the proposed
DQL-based method is difficult. This is a common chal-
lenge in the literature for analytically proving optimality
and convergence [52], [53], [54], [55]. Therefore, instead of
convergence, we are presenting the following theorem that
shows the amount of work per iteration in Algorithm 1.
Theorem 1: For an indoor NOMA-VLC system with K

users and M access points, the computational complexity of
the proposed Algorithm 1 is given by:

O
((

2M2 + 2K2 + 4MK
)

× H + C1(K)
)
, (29)

Proof: First, the DQL agent observes the state of the
system, executes the most valuable action, and calculates
the reward based on (24). Assuming that the computational
complexity of calculating the reward is

C1(K), (30)

where C1 is directly proportional with K. Second, it is
known that the size of the state space and the size of the
action space have a significant role in the complexity of
the deep Q-learning algorithm. Following [56], the com-
putational complexity of the Q-learning algorithm with the
greedy policy is estimated to be O(S×A×H) each iteration,
where S is the number of states, A is the number of actions,
and H is the number of steps per episode. It is recalled that
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FIGURE 4. Convergence comparison between DQL, GA, and DE for K = 4 users.

the size of the state space is K + M, and the size of the
action space is 2K+2M. Therefore, the amount of work per
iteration is

O
((

2M2 + 2K2 + 4MK
)

× H
)
. (31)

Based on this and by incorporating (30) into (31), equa-
tion (29) is deduced, which completes the proof.

E. FIXED POWER ALLOCATION
FPA is considered as one of the simplest power allocation
schemes. In this scheme, the allocated power among the
users is predefined and fixed according to the following,

Pk = αPk−1, (32)

where α is the fixed power allocation factor. It is worth
noting that FPA yields a complexity of O(1); however, it
does not yield optimal or near-optimal performance.

VI. ACHIEVED RESULTS AND DISCUSSION
This section discusses and analyzes the performance of the
proposed DQL-based algorithm, which maximizes the aver-
age sum rate of the NOMA-VLC indoor network. Without
loss of generality, we assume K users, uniformly distributed
in an indoor environment, with a room size of 4×4 meters
and a height of 3 meters. The room has a single VLC AP in
the ceiling, with a fixed power consumption of 4 Watt and 1
Watt/Amps conversion efficiency. The rest of the simulation
parameters are summarized in Table 1. The DQL Algorithm
was realized and trained on a PC equipped with Nvidia
GPU 2080Ti and an 18-core 2.6GHz processor. Note that we
have developed our framework using Python and TensorFlow
library [57]. The Deep Q-Learning hyper-parameters are
shown in Table 2.

Fig. 4 shows the convergence performance comparison
between the proposed DQL-based algorithm, the GA, and
the DE algorithm. The settings for the GA is as follows:
the number of bits per variable is 8, the population size is
20, crossover rate is 0.9, and we chose two typical mutation

TABLE 3. Time per iteration for each algorithm.

FIGURE 5. Average sum rate vs. transmit SNR for K = 4 for NOMA, using DQL, GA,
and DE using NOMA.

rates of 0.1 and 0.2. It worth mentioning that each algorithm
has a different execution time per iteration, which is shown
in Table 3. To begin with, the proposed algorithm converges
after 48 iterations with a maximum average sum rate of 35.9
bpcu. Notably, the convergence rate is faster than the two
baseline schemes. For example, the GA with mutation rate
= 0.1, takes approximately 478 iterations for convergence.
On the other hand, the GA with mutation rate = 0.2 con-
verges after 481 iterations, which is similar with the case of
mutation rate = 0.1. The DE algorithm converges after 1787
iterations, which is the highest amongst all the techniques.
The rapid convergence of the proposed algorithm is partly
attributed to the fact that the DQL algorithm can leverage
the GPU cores in order to parallelize the operations. s for
the average sum rate performance, the proposed algorithm
achieves a maximum average sum rate of 35.9 bpcu, which
outperforms both baselines. The DE algorithm achieves a
maximum average sum rate of 35.5 bpcu, which outper-
forms the GA with both mutation rates. The GA with the
lower mutation rate achieves 32.5 bpcu, which is slightly
better than GA with higher mutation rate that achieves an
average sum rate of 32.1 bpcu.
Fig. 5 shows the average sum rate vs the transmit SNR,

where we compare the proposed DQL-based algorithm, the
GA with mutation rate of 0.1, and the DE algorithm for
K = 4 users. It can be shown that the proposed algorithm
outperforms both baselines (GA and DE) in the medium to
high SNR values. When the SNR ≤ 130 dB, all algorithms
achieve nearly the same average sum rate. The divergence
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FIGURE 6. Average sum rate vs. transmit SNR for K = 4, using DQL-PA, EPA, and
FPA for NOMA and OFDMA.

between the curves begin when the SNR = 140 dB, where
the proposed algorithm outperforms both the GA and DE
baselines. As the SNR approaches 150 dB, the proposed
algorithm yields an average sum rate of 17.8 bpcu, which
is around 33% more than the average sum rate achieved
by DE, and 47% more than average sum rate of the GA.
Finally, it can be deduced that the DE outperforms the GA
in the medium to high SNR range. However, the difference
between the DE and GA fluctuates as the SNR increases.
Fig. 6 depicts the average sum rate as a function of SNR

for equal power allocation (EPA), FPA, and DQL-based
power allocation for both NOMA and OFDMA as a bench-
mark solution, with K = 4 users. In the case of NOMA, it can
be shown that our algorithm outperforms both techniques in
the entire SNR range. Moreover, it can be further observed
that as the SNR increases, the performance gap between
our algorithm and the other two methods, FPA and EPA,
becomes more substantial. For instance, at SNR = 150 dB,
NOMA-DQL-PA yields an average sum rate of 17.1 bpcu,
compared to 10.2 bpcu and 11 bpcu achieved by NOMA-
EPA and NOMA-FPA, respectively. For the case of SNR
= 180 dB, NOMA-FPA and NOMA-EPA techniques yield
an average sum rate of 21 bpcu and 22 bpcu, respectively,
whereas DQL-PA achieves an average sum rate of 36 bpcu,
which is approximately 71% higher than the NOMA-EPA
and NOMA-FPA techniques. For the OFDMA counterpart, it
can be seen that even with OFDMA technique, the proposed
algorithm offers a noticeable enhancement over FPA and
EPA.For instance, when the SNR = 180 dB, the proposed
algorithm achieves 12 bpcu, compared to 8 bpcu in FPA and
EPA. Finally, it can be seen that NOMA-based techniques
outperform OFDMA-based techniques in terms of the aver-
age sum rate. This is expected since in NOMA, each user
utilizes the entire bandwidth, whereas OFDMA divides the
bandwidth between the 4 users.
In Fig. 7, we compare FPA and DQL-PA algorithms in

terms of average sum rate as a function of LED transmission

FIGURE 7. Average sum rate vs. LED transmission angle φ1/2 for K = 4, using
DQL-PA and FPA.

FIGURE 8. Average sum rate vs. LED transmission angle φ1/2 using DQL-PA, with
different K and transmit SNR values.

angle φ1/2, with K = 4. It can be shown that our algo-
rithm outperforms FPA over the entire LED transmission
angle range. More specifically, the performance gap between
the two techniques increases as the transmit SNR increases.
Furthermore, the LED transmission angle’s impact on the
performance follows a similar pattern in both techniques.
Therefore, it becomes evident by Fig. 8 that there is an
optimal LED transmission angle, which is both unique and
significant.
In Fig. 9, the average sum rate is shown versus the LED

transmission angle φ1/2, for a different number of users K,
using the DQL-PA algorithm. Similar to Fig. 6, we observe
that the number of users K plays a vital role in defining
the optimal LED transmission angle. More specifically, for
the case of SNR = 170 dB, the optimal transmission angle
for K = 3 is 35◦, whereas, for K = 6, the optimal trans-
mission angle is around 30◦. Interestingly, the optimal angle
tends to decrease as the number of users gets higher. This
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FIGURE 9. Average sum rate vs.VLC AP height L, using DQL-PA with tuning, and
FPA without tuning.

FIGURE 10. Average energy efficiency vs. cell radius r , using DQL-PA with tuning,
and FPA without tuning.

phenomenon is analogous to water-filling power allocation
techniques [58], in which the strong users are allocated more
power, and conversely, weak users are allocated less power.
Also, the fact that there is a unique optimal LED trans-
mission angle for each K necessitates the need for jointly
optimizing the power allocation and LED transmission angle
using the DQL technique.
Fig. 9 shows the average sum rate as a function of the

VLC AP vertical length L, using DQL-PA with tuning, and
FPA with fixed LED transmission angle, with five users. In
this scenario, the impact of the channel symmetry dilemma in
VLC is investigated. As the vertical distance becomes large,
the channel symmetry becomes worse. At SNR = 180 dB,
our DQL-PA with tuning outperforms the FPA approach
with no tuning by 65% to 70%. Even at the worst channel
symmetry conditions for DQL-PA with tuning, the average
sum rate is 29.5 bpcu, which is still higher than the best-case
scenario for the FPA with no tuning, which is 19.2 bpcu.

This shows that our proposed framework outperforms the
other benchmark method of FPA with no tuning, even with
varying channel symmetry.
Finally, Fig. 10 demonstrates the average energy efficiency

as a function of the cell radius r, using DQL-PA with tuning
and FPA with a fixed LED transmission angle. This is an
important metric since it can quantify how much energy we
expect to save from the use of our approach compared to the
conventional scheme. It is shown that DQL-PA with tuning
outperforms FPA with no tuning, even after varying the dis-
tances between the users from 3 to 7 meters. For instance,
the average energy efficiency of DQL-PA with tuning at
r = 7 and SNR = 180 dB is 7.28 b/J, compared to 5.24 b/J
in the case of FPA with no tuning. Moreover, DQL-PA with
tuning in the case of r = 7 meters outperforms the FPA with
no tuning in the case of r = 3 meters by 21%.

VII. CONCLUSION
In this work, we proposed an algorithm to maximize the
average sum rate and average energy efficiency in an indoor
NOMA-VLC network. We leveraged the DRL algorithm to
train an agent, in order to obtain an optimal power allocation
policy for the users. Jointly with the power allocation, the
agent can select the optimal LED transmission angle at the
VLC AP. To this effect, the obtained results demonstrated
that our algorithm outperforms the GA and the DE in terms
of average sum rate, and offers considerably less run-time
complexity. It was also shown that the joint optimization
of the power allocation and the LED transmission angle is
more effective as the number of users increases compared
to the sole optimal power allocation approach.

REFERENCES
[1] L. Bariah et al., “A prospective look: Key enabling technologies,

applications and open research topics in 6G networks,” IEEE Access,
vol. 8, pp. 174792–174820, 2020.

[2] H. Chang et al., “A 100-Gb/s multiple-input multiple-output visible
laser light communication system,” J. Lightw. Technol., vol. 32, no. 24,
pp. 4121–4127, Dec. 15, 2014.

[3] A. Memedi and F. Dressler, “Vehicular visible light communications:
A survey,” IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 161–181,
1st Quart., 2021.

[4] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang,
“Non-orthogonal multiple access for 5G: Solutions, challenges, oppor-
tunities, and future research trends,” IEEE Commun. Mag., vol. 53,
no. 9, pp. 74–81, Sep. 2015.

[5] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of
non-orthogonal multiple access in 5G systems with randomly deployed
users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505,
Dec. 2014.

[6] H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat,
“Non-orthogonal multiple access for visible light communications,”
IEEE Photon. Technol. Lett., vol. 28, no. 1, pp. 51–54, Jan. 1, 2016.

[7] X. Zhang, Q. Gao, C. Gong, and Z. Xu, “User grouping and
power allocation for NOMA visible light communication multi-
cell networks,” IEEE Commun. Lett., vol. 21, no. 4, pp. 777–780,
Apr. 2017.

[8] L. Yin, W. O. Popoola, X. Wu, and H. Haas, “Performance evaluation
of non-orthogonal multiple access in visible light communication,”
IEEE Trans. Commun., vol. 64, no. 12, pp. 5162–5175, Dec. 2016.

[9] X. Guan, Q. Yang, Y. Hong, and C. C.-K. Chan, “Non-orthogonal
multiple access with phase pre-distortion in visible light communica-
tion,” Opt. Exp., vol. 24, no. 22, pp. 25816–25823, Oct. 2016.

VOLUME 3, 2022 2295



HAMMADI et al.: DEEP Q-LEARNING-BASED RESOURCE ALLOCATION IN NOMA VLCs

[10] H. Zhang, F. Fang, J. Cheng, K. Long, W. Wang, and V. C. M. Leung,
“Energy-efficient resource allocation in NOMA heterogeneous
networks,” IEEE Wireless Commun., vol. 25, no. 2, pp. 48–53,
Apr. 2018.

[11] J. Tang et al., “Energy efficiency optimization for NOMA with
SWIPT,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 3,
pp. 452–466, Jun. 2019.

[12] A. E. Mostafa, Y. Zhou, and V. W. S. Wong, “Connection density
maximization of narrowband IoT systems with NOMA,” IEEE Trans.
Wireless Commun., vol. 18, no. 10, pp. 4708–4722, Oct. 2019.

[13] A. Shahini and N. Ansari, “NOMA aided narrowband IoT for machine
type communications with user clustering,” IEEE Internet Things J.,
vol. 6, no. 4, pp. 7183–7191, Aug. 2019.

[14] Y. Zhang, H.-M. Wang, T.-X. Zheng, and Q. Yang, “Energy-efficient
transmission design in non-orthogonal multiple access,” IEEE Trans.
Veh. Technol., vol. 66, no. 3, pp. 2852–2857, Mar. 2017.

[15] T. A. Zewde and M. C. Gursoy, “NOMA-based energy-efficient wire-
less powered communications,” IEEE Trans. Green Commun. Netw.,
vol. 2, no. 3, pp. 679–692, Sep. 2018.

[16] J. Shi, W. Yu, Q. Ni, W. Liang, Z. Li, and P. Xiao, “Energy efficient
resource allocation in hybrid non-orthogonal multiple access systems,”
IEEE Trans. Commun., vol. 67, no. 5, pp. 3496–3511, May 2019.

[17] H. Zhang et al., “Energy efficient dynamic resource optimization
in NOMA system,” IEEE Trans. Wireless Commun., vol. 17, no. 9,
pp. 5671–5683, Sep. 2018.

[18] F. Fang, J. Cheng, and Z. Ding, “Joint energy efficient subchannel and
power optimization for a downlink NOMA heterogeneous network,”
IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1351–1364, Feb. 2019.

[19] Z. Song, Q. Ni, and X. Sun, “Spectrum and energy efficient resource
allocation with QoS requirements for hybrid MC-NOMA 5G systems,”
IEEE Access, vol. 6, pp. 37055–37069, 2018.

[20] N. Zhao et al., “Joint trajectory and precoding optimization for UAV-
assisted NOMA networks,” IEEE Trans. Commun., vol. 67, no. 5,
pp. 3723–3735, May 2019.

[21] X. Pang, J. Tang, N. Zhao, X. Zhang, and Y. Qian, “Energy-efficient
design for mmWave-enabled NOMA-UAV networks,” Sci. China Inf.
Sci., vol. 64, no. 4, pp. 1–14, Apr. 2021.

[22] Y.-F. Liu and Y.-H. Dai, “On the complexity of joint subcarrier and
power allocation for multi-user OFDMA systems,” IEEE Trans. Signal
Process., vol. 62, no. 3, pp. 583–596, Feb. 2014.

[23] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L.-
C. Wang, “Deep reinforcement learning for mobile 5G and beyond:
Fundamentals, applications, and challenges,” IEEE Veh. Technol. Mag.,
vol. 14, no. 2, pp. 44–52, Jun. 2019.

[24] H. Ye, L. Liang, G. Y. Li, J. Kim, L. Lu, and M. Wu, “Machine
learning for vehicular networks: Recent advances and application
examples,” IEEE Veh. Technol. Mag., vol. 13, no. 2, pp. 94–101,
Jun. 2018.

[25] C. He, Y. Hu, Y. Chen, and B. Zeng, “Joint power allocation and chan-
nel assignment for NOMA with deep reinforcement learning,” IEEE
J. Sel. Areas Commun., vol. 37, no. 10, pp. 2200–2210, Oct. 2019.

[26] G. Wang, Y. Shao, L.-K. Chen, and J. Zhao, “Subcarrier and power
allocation in OFDM-NOMA VLC systems,” IEEE Photon. Technol.
Lett., vol. 33, no. 4, pp. 189–192, Feb. 15, 2021.

[27] Z. Dong, T. Shang, Q. Li, and T. Tang, “Differential evolution-based
optimal power allocation scheme for NOMA-VLC systems,” Opt.
Exp., vol. 28, no. 15, pp. 21627–21640, 2020.

[28] L. Xiao, Y. Li, C. Dai, H. Dai, and H. V. Poor, “Reinforcement
learning-based NOMA power allocation in the presence of smart
jamming,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3377–3389,
Apr. 2018.

[29] N. C. Luong et al., “Applications of deep reinforcement learn-
ing in communications and networking: A survey,” IEEE Commun.
Surveys Tuts., vol. 21, no. 4, pp. 3133–3174, 4th Quart., 2019,
doi: 10.1109/COMST.2019.2916583.

[30] Z. Yang, Y. Liu, Y. Chen, and N. Al-Dhahir, “Cache-aided NOMA
mobile edge computing: A reinforcement learning approach,” IEEE
Trans. Wireless Commun., vol. 19, no. 10, pp. 6899–6915, Oct. 2020,
doi: 10.1109/TWC.2020.3006922.

[31] P. Yang, L. Li, W. Liang, H. Zhang, and Z. Ding, “Latency
optimization for multi-user NOMA-MEC offloading using reinforce-
ment learning,” in Proc. 28th Wireless Opt. Commun. Conf. (WOCC),
May 2019, pp. 1–5, doi: 10.1109/WOCC.2019.8770605.

[32] K. N. Doan, M. Vaezi, W. Shin, H. V. Poor, H. Shin, and T. Q. S. Quek,
“Power allocation in cache-aided NOMA systems: Optimization and
deep reinforcement learning approaches,” IEEE Trans. Commun.,
vol. 68, no. 1, pp. 630–644, Jan. 2020.

[33] S. Zhang et al., “A dynamic power allocation scheme in power-domain
NOMA using actor-critic reinforcement learning,” in Proc. IEEE/CIC
Int. Conf. Commun. China (ICCC), Aug. 2018, pp. 719–723.

[34] Y. Zhang, X. Wang, and Y. Xu, “Energy-efficient resource allocation
in uplink NOMA systems with deep reinforcement learning,” in Proc.
11th Int. Conf. Wireless Commun. Signal Process. (WCSP), Oct. 2019,
pp. 1–6.

[35] H. T. H. Giang, T. N. K. Hoan, P. D. Thanh, and I. Koo, “Hybrid
NOMA/OMA-based dynamic power allocation scheme using deep
reinforcement learning in 5G networks,” Appl. Sci., vol. 10, no. 12,
p. 4236, Jun. 2020.

[36] V. Andiappan and V. Ponnusamy, “Deep learning enhanced NOMA
system: A survey on future scope and challenges,” Wireless Pers.
Commun., vol. 123, no. 1, pp. 839–877, Mar. 2022.

[37] M. Shehab, B. S. Ciftler, T. Khattab, M. M. Abdallah, and
D. Trinchero, “Deep reinforcement learning powered IRS-assisted
downlink NOMA,” IEEE Open J. Commun. Soc., vol. 3, pp. 729–739,
2022.

[38] T. Manglayev, R. C. Kizilirmak, Y. H. Kho, N. A. W. A. Hamid,
and Y. Tian, “AI based power allocation for NOMA,” Wireless Pers.
Commun., vol. 124, pp. 3253–3261, Jan. 2022.

[39] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. Cambridge, MA, USA: MIT Press, 2018.

[40] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[41] J.-B. Wang et al., “A machine learning framework for resource allo-
cation assisted by cloud computing,” IEEE Netw., vol. 32, no. 2,
pp. 144–151, Mar./Apr. 2018.

[42] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neu-
ral networks,” in Proc. 14th Int. Conf. Artif. Intell. Stat., 2011,
pp. 315–323.

[43] H. Marshoud, D. Dawoud, V. M. Kapinas, G. K. Karagiannidis,
S. Muhaidat, and B. Sharif, “MU-MIMO precoding for VLC with
imperfect CSI,” in Proc. 4th Int. Workshop Opt. Wireless Commun.
(IWOW), Sep. 2015, pp. 93–97.

[44] H. Marshoud, P. C. Sofotasios, S. Muhaidat, G. K. Karagiannidis,
and B. S. Sharif, “On the performance of visible light communication
systems with non-orthogonal multiple access,” IEEE Trans. Wireless
Commun., vol. 16, no. 10, pp. 6350–6364, Oct. 2017.

[45] A. Khazali, D. Tarchi, M. G. Shayesteh, H. Kalbkhani, and
A. Bozorgchenani, “Energy efficient uplink transmission in coopera-
tive mmWave NOMA networks with wireless power transfer,” IEEE
Trans. Veh. Technol., vol. 71, no. 1, pp. 391–405, Jan. 2022.

[46] P. S. Bouzinis, P. D. Diamantoulakis, and G. K. Karagiannidis,
“Incentive-based delay minimization for 6G-enabled wireless feder-
ated learning,” Front. Commun. Netw., vol. 3, p. 7, Mar. 2022.

[47] A. Fahim and Y. Gadallah, “An optimized LTE-based technique for
drone base station dynamic 3D placement and resource allocation in
delay-sensitive M2M networks,” IEEE Trans. Mobile Comput., early
access, Jun. 15, 2021, doi: 10.1109/TMC.2021.3089329.

[48] H. A. David and H. N. Nagaraja, Order Statistics. Hoboken, NJ, USA:
Wiley, 2004.

[49] A. Al Hammadi, P. C. Sofotasios, S. Muhaidat, M. Al-Qutayri,
and H. Elgala, “Non-orthogonal multiple access for hybrid VLC-RF
networks with imperfect channel state information,” IEEE Trans. Veh.
Technol., vol. 70, no. 1, pp. 398–411, Jan. 2021.

[50] L.-J. Lin, Reinforcement Learning for Robots Using Neural Networks.
Pittsburgh, PA, USA: Carnegie Mellon Univ., 1992.

[51] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. Cambridge, MA, USA: MIT Press, 2018.

[52] U. Challita, L. Dong, and W. Saad, “Proactive resource management
for LTE in unlicensed spectrum: A deep learning perspective,” IEEE
Trans. Wireless Commun., vol. 17, no. 7, pp. 4674–4689, Jul. 2018.

[53] Y. Wei, F. R. Yu, M. Song, and Z. Han, “User scheduling and resource
allocation in HetNets with hybrid energy supply: An actor-critic rein-
forcement learning approach,” IEEE Trans. Wireless Commun., vol. 17,
no. 1, pp. 680–692, Jan. 2018.

[54] Y. Sun, M. Peng, and S. Mao, “Deep reinforcement learning-based
mode selection and resource management for green fog radio access
networks,” IEEE Internet Things J., vol. 6, no. 2, pp. 1960–1971,
Apr. 2019.

2296 VOLUME 3, 2022

http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1109/TWC.2020.3006922
http://dx.doi.org/10.1109/WOCC.2019.8770605
http://dx.doi.org/10.1109/TMC.2021.3089329


[55] Z. Dai, Y. Zhang, W. Zhang, X. Luo, and Z. He, “A multi-agent
collaborative environment learning method for UAV deployment and
resource allocation,” IEEE Trans. Signal Inf. Process. Netw., vol. 8,
pp. 120–130, Feb. 2022, doi: 10.1109/TSIPN.2022.3150911.

[56] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan, “Is Q-learning
provably efficient?” in Proc. Int. Conf. Adv. Neural Inf. Process. Syst.,
vol. 31, 2018, pp. 4868–4878.

[57] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Symp. Oper. Syst. Des. Implement. (OSDI),
Nov. 2016, pp. 265–283.

[58] C. Xing, Y. Jing, S. Wang, S. Ma, and H. V. Poor, “New viewpoint
and algorithms for water-filling solutions in wireless communications,”
IEEE Trans. Signal Process., vol. 68, pp. 1618–1634, Feb. 2020,
doi: 10.1109/TSP.2020.2973488.

AHMED AL HAMMADI (Member, IEEE) received
the B.Sc. and M.Sc. degrees from the Electrical
Engineering and Computer Science Department,
Khalifa University, Abu Dhabi, UAE, in 2011 and
2015, respectively, where he is currently pursu-
ing the Ph.D. degree in electrical and computer
engineering. His research interests include visible
light communications, mmWave massive MIMO,
machine learning, and optimization techniques for
next-generation wireless networks.

LINA BARIAH (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees in communications engi-
neering from Khalifa University, Abu Dhabi, UAE,
in 2015 and 2018, respectively. She was a Visiting
Researcher with the Department of Systems
and Computer Engineering, Carleton University,
Ottawa, ON, Canada, in 2019, and an Affiliate
Research Fellow with the James Watt School of
Engineering, University of Glasgow, U.K. She is
currently a Senior Researcher with Technology
Innovation Institute, a Visiting Research Scientist

with Khalifa University, and an Affiliate Researcher with University at
Albany, USA. She serves as the Session Chair and an Active Reviewer for
numerous IEEE conferences and journals. She is currently an Associate
Editor for the IEEE COMMUNICATION LETTERS, an Associate Editor for
the IEEE Open Journal of the Communications Society, and an Area Editor
for Physical Communication (Elsevier). She is a Guest Editor in IEEE
Network Magazine, IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY,
and IEEE Communication Magazine. She was a member of the technical
program committee of a number of IEEE conferences, such as ICC and
Globecom. She is currently organizing/chairing a number of workshops. She
is a Senior Member of the IEEE Communications Society, IEEE Vehicular
Technology Society, and IEEE Women in Engineering.

SAMI MUHAIDAT (Senior Member, IEEE) received
the Ph.D. degree in electrical and computer engi-
neering from the University of Waterloo, Waterloo,
ON, Canada, in 2006. From 2007 to 2008, he
was a Postdoctoral Fellow with the Department of
Electrical and Computer Engineering, University
of Toronto, Toronto, ON, Canada. From 2008
to 2012, he was an Assistant Professor with
the School of Engineering Science, Simon Fraser
University, Burnaby, BC, Canada. He is currently
a Professor with Khalifa University, Abu Dhabi,

UAE, and a Visiting Professor with the Department of Electrical and
Computer Engineering, Carelton University, Ottawa, ON, Canada. He
is also a Visiting Reader with the Faculty of Engineering, University
of Surrey, Guildford, U.K. He was a recipient of several scholarships
during his undergraduate and graduate studies and the winner of the
2006 Postdoctoral Fellowship Competition. He was a Senior Editor
of the IEEE COMMUNICATIONS LETTERS, and an Associate Editor of
IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE COMMUNICATIONS

LETTERS, and IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.
He is currently an Area Editor of the IEEE TRANSACTIONS ON

COMMUNICATIONS.

MAHMOUD AL-QUTAYRI (Senior Member, IEEE)
received the B.Eng. degree in electrical and elec-
tronic engineering from Concordia University,
Canada, in 1984, the M.Sc. degree in electrical
and electronic engineering from the University
of Manchester, U.K., in 1987, and the Ph.D.
degree in electrical and electronic engineering
from the University of Bath, U.K., in 1992. He
is currently a Full Professor with the Department
of Electrical and Computer Engineering and the
Associate Dean for Graduate Studies with the

College of Engineering, Khalifa University, UAE. Prior to joining Khalifa
University, he worked with De Montfort University, U.K., and University of
Bath, U.K. He has authored/coauthored numerous technical papers in peer-
reviewed journals and international conferences. He also coauthored a book
titled Digital Phase Lock Loops: Architectures and Applications and edited
a book titled Smart Home Systems. This is in addition to a number of book
chapters and patents. His current research interests include wireless sensor
networks, embedded systems design, in-memory computing, mixed-signal
integrated circuits design and test, and hardware security.

PASCHALIS C. SOFOTASIOS (Senior Member,
IEEE) was born in Volos, Greece, in 1978.
He received the M.Eng. degree from Newcastle
University, U.K., in 2004, the M.Sc. degree from
the University of Surrey, U.K., in 2006, and the
Ph.D. degree from the University of Leeds, U.K.,
in 2011. He was with the University of Leeds;
the University of California at Los Angleles,
CA, USA; Tampere University of Technology,
Finland; the Aristotle University of Thessaloniki,
Greece; and the Khalifa University of Science

and Technology, UAE, where he is currently an Associate Professor with
the Department of Electrical Engineering and Computer Science, Khalifa
University. His research interests include digital and optical wireless com-
munications and special functions and statistics. He received the Scholarship
from UK-EPSRC for his M.Sc. studies and from UK-EPSRC and Pace plc
for his Ph.D. studies. He received the Exemplary Reviewer Award from the
IEEE COMMUNICATIONS LETTERS in 2012, the Best Paper Award from
ICUFN 2013, and the IEEE TRANSACTIONS ON COMMUNICATIONS in
2015 and 2016. He is a Regular Reviewer of several international journals
and a member of the Technical Program Committee of numerous IEEE
conferences. He is currently the Editor of the IEEE COMMUNICATIONS

LETTERS.

MÉROUANE DEBBAH (Fellow, IEEE) received the
M.Sc. and Ph.D. degrees from the École Normale
Supérieure Paris-Saclay, Cachan, France, in 1999
and 2002, respectively. He was with Motorola
Labs, Saclay, France, from 1999 to 2002, and the
Vienna Research Center for Telecommunications,
Vienna, Austria, until 2003. From 2003 to 2007,
he was an Assistant Professor with the Mobile
Communications Department, Institut Eurecom,
Sophia Antipolis, France. In 2007, he was
appointed as a Full Professor with Centrale

Supélec, Gif-sur-Yvette, France. From 2007 to 2014, he was the Director
of the Alcatel-Lucent Chair on Flexible Radio. From 2014 to 2021, he
was the Vice-President of the Huawei France Research Center, Boulogne-
Billancourt, France, and jointly the Director of the Mathematical and
Algorithmic Sciences Laboratory and the Lagrange Mathematical and
Computing Research Center, Paris, France. Since 2021, he has been the
Chief Research Officer with the Technology Innovation Institute, Abu Dhabi,
UAE. His research interests lie in fundamental mathematics, algorithms,
statistics, information, and communication sciences research. He was a
recipient of the ERC Grant MORE (Advanced Mathematical Tools for
Complex Network Engineering) from 2012 to 2017. He received more
than 20 best paper awards, including the Mario Boella Award in 2005,
the IEEE Glavieux Prize Award in 2011, the Qualcomm Innovation Prize
Award in 2012, the 2019 IEEE Radio Communications Committee Technical
Recognition Award, and the 2020 SEE Blondel Medal.

VOLUME 3, 2022 2297

http://dx.doi.org/10.1109/TSIPN.2022.3150911
http://dx.doi.org/10.1109/TSP.2020.2973488


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


