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Abstract—In daily life, mobile and wearable devices with high
computing power, together with anchors deployed in indoor en-
vironments, form a common solution for the increasing demands
for indoor location-based services. Within the technologies and
methods currently in use for indoor localization, the approaches
that rely on Bluetooth Low Energy (BLE) anchors, Received
Signal Strength (RSS), and lateration are among the most
popular, mainly because of their cheap and easy deployment
and accessible infrastructure by a variety of devices. Never-
theless, such BLE- and RSS-based indoor positioning systems
are prone to inaccuracies, mostly due to signal fluctuations,
poor quantity of anchors deployed in the environment, and/or
inappropriate anchor distributions, as well as mobile device
hardware variability. In this paper, we address these issues
by using a collaborative indoor positioning approach, which
exploits neighboring devices as additional anchors in an extended
positioning network. The collaborating devices’ information (i.e.,
estimated positions and BLE-RSS) is processed using a multilayer
perceptron (MLP) neural network by taking into account the
device specificity in order to estimate the relative distances.
After this, the lateration is applied to collaboratively estimate
the device position. Finally, the stand-alone and collaborative
position estimates are combined, providing the final position
estimate for each device. The experimental results demonstrate
that the proposed collaborative approach outperforms the stand-
alone lateration method in terms of positioning accuracy.

Index Terms—Collaborative Indoor Positioning, Multilayer
Perceptron, Received Signal Strength, Bluetooth Low Energy

I. INTRODUCTION

Nowadays, there is a growing demand for indoor location-
based services (LBSs) which are able to ubiquitously and
accurately provide a user’s position relative to the surrounding
environment in an inexpensive manner [1]. Examples of LBS
include navigation and location-aware and tracking services
[2]–[4]. To this end, the pervasiveness of mobile and wearable
devices with high computing power, together with growing
deployment of anchors in indoor environments, play an im-
portant role. Among the large variety of technologies and
methods used, solutions relying on Bluetooth Low Energy
(BLE) and Received Signal Strength (RSS) are very popular,
as they provide a cheap and easy deployment [5]–[8].
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Although the feasibility of using BLE–RSS anchors/devices
for proximity detection applications has been demonstrated
[9], [10], their implementation for accurate positioning appli-
cations is still an open issue. Due to their relatively straight-
forward implementation, lateration algorithms are one of the
most explored solutions to enhance positioning accuracy. Un-
fortunately, they suffer from accuracy degradation mainly due
to four factors:

1) Anchor deployment: a low quantity of anchors deployed
in the environment and/or the inappropriate anchor dis-
tribution increase not only the chance of Non-line-of-
sight (NLOS) conditions but also the locations inside
the operational area with insufficient anchor coverage
for reliable lateration, reducing the overall positioning
accuracy dramatically.

2) Unstable BLE signal strength: RSS of Radio Frequency
(RF) signals are prone to fluctuate due to environmental
conditions (geometries, temperature, crowded environ-
ments), building materials and presence of obstacles or
people between transmitter and receptor devices (NLOS
conditions) [11]–[13]. Such dynamic fluctuations are of-
ten difficult to predict and compensate for, and cause
position estimation errors when used for positioning. In
fact, the BLE signal propagation in indoor environments
has not been properly modeled yet in order to estimate the
relative distance between transmitter and receiver using
smartphones.

3) Hardware heterogeneity: the RSS signature depends on
the transmitters and receivers involved [14]. The diversity
of devices involved in localization – both anchors and
smartphones – comes with variability in the hardware-
specific parameters, such as antenna gains, and thus in
the BLE received signal strength [13], [15]. Furthermore,
the transmission power and transmission period preset in
each device – either by the device owner or manufacturer
– presents variations due to tolerance in the design of
antennas or in the RF circuit components, even in similar
devices.

4) Software limitations: the energy-saving modes and exe-
cution task priorities prescribed by the mobile devices’
operating systems may alter the transmission/reception
period of BLE signals, rendering these devices non-
deterministic for the BLE broadcasting.



In this article, we aim to enhance the positioning accuracy
of the stand-alone lateration method applied to an adverse
indoor scenario that copes with the first, second, and third
issues mentioned above, namely the lack of sufficient bea-
cons or problematic beacon distribution with the associated
presence of large NLOS areas, the lack of appropriate signal
propagation models to deal with fluctuating signal strength in
unpredictable indoor conditions, and the heterogeneity among
mobile devices typically present in any scenario. We do so
by proposing a collaborative indoor position system which
exploits the neighboring mobile devices as additional anchors
in an extended, ad-hoc positioning network. The collaborating
devices’ information (i.e., their stand-alone estimated position
and BLE–RSS) is exchanged and processed using a neural
network model (rather than the traditional path-loss models)
to estimate relative distances, after which lateration is applied
to estimate the device’s collaborative position. Unlike the path-
loss models, which estimate the distance primarily based on
signal attenuation formulas, the neural network model aims
to relate the distance to RSS patterns, pairwise device posi-
tion, identification of devices (transmitter and receiver), and
variation of RSS measurements due to the devices’ hardware
heterogeneity. The collaborative algorithm takes mobile device
variations into account by considering, for each device, a BLE
reference measurement at one meter. Finally, a midpoint line
algorithm is used to combine the collaborative and the non-
collaborative position estimates to provide the final position
estimates of each collaborative device. The key contributions
of this paper are summarized as follows:

• We present a collaborative indoor position approach using
Multilayer Perceptron (MLP) Artificial Neural Network
(ANN) to enhance BLE–RSS lateration-based indoor
positioning.

• We present a MLP ANN model to estimate relative dis-
tances between collaborative devices in order to provide
a most reliable distance estimation. The MLP model
provides a better modeling of the NLOS and Line-of-
sight (LOS) conditions of the environment with respect
to path-loss-based models, as well as, the characteris-
tic inherent of each receiving device. Additionally, the
proposed model avoids setting the parameters needed in
path-loss-based models.

• We experimentally demonstrate, using a scenario with a
poor quantity and inappropriate distribution of anchors,
and rich NLOS conditions, that our collaborative ap-
proach outperforms the stand-alone lateration approach
with respect to positioning accuracy in such conditions.

II. RELATED WORK

The design of reliable Indoor Positioning System (IPS),
which provide a balance between position accuracy and low-
cost and easy deployment, is one of the main concerns in
the design of location-based services (LBSs) [1]. To meet
this concern, diverse solutions have been proposed. In this
section, we focus on those fields relevant for this work, namely
lateration, artificial neural network, and collaborative IPS.

A. Lateration

Lateration approaches estimated the target position by con-
sidering the distance between the target and multiple reference
anchors (minimum three)[16]. The distance is the result of
the conversion of RSS measured between reference anchors
and target [16], [17]. Free space path, two-ray ground, and
logarithmic path-loss are some of the most used models to
convert RSS into distance [18]–[20].

In the context of indoor positioning, it has been shown
in literature that having more (even redundant) anchors yield
better positioning accuracy –independent of the lateration ap-
proach used– and least-square lateration performs better than
traditional lateration. For example, Dag et al. [16] proposed
an RSS-based lateration algorithm, which was implemented
using a least-squares method and required redundant anchors
deployment. The distances between anchors and target were
estimated with the Logarithm Distance Path Loss (LDPL)
model, whose parameters were computed statistically. The
experiments were conducted in a 6m× 6m area, considering
196 measurement points collected with a single device in com-
plete LOS. The authors conclude that adding least-squares to
lateration reduces the error by 67.6% to 2.8m, and including
redundant anchors reduces the error to 1.35m. Cengiz [17]
also proposed a least-square lateration approach and performed
an accuracy error analysis using simulated environments. The
analysis included the level of Gaussian noise, number of
anchors, and size of the area. The results were compared
with a traditional lateration, concluding that increasing the
density of anchors deployed improves positioning accuracy.
The proposed method significantly improved lateration in
scenarios with a strong noise component (high Gaussian noise,
σ = 5), reducing the error from 4.5m to 1.9m, 5.9m to 3.9m
and 18m to 7.5m for 6× 6m2, 12× 12m2 and 24× 24m2

test areas respectively.
In line with literature, our method uses least-square-based

method for lateration. Moreover, our approach aims to increase
the amount of anchors, yet in contrast to previous works
that deploy additional fixed anchors in the environment, we
dynamically extend the positioning network using the devices
of the users in a collaborative setting.

B. Artificial neural network

Artificial Neural Networks (ANNs) are commonly used to
self-learn the relationship between data provided to resolve
complex problems [21]. Specifically, in indoor positioning they
are used to provide robustness against noise and interference
that affect the positioning accuracy [22]. For example, Wu
et al. [21] presented a path-loss model based on Multilayer
Perceptron (MLP) neural networks for wireless communica-
tion networks. For that purpose they considered several models
using input vectors with fifteen features of the environment.
The authors conclude that the introduction of environment
features in the MLP model input and adding two hidden
layers (with 5 and 10 neurons) provide an accurate and
efficient path-loss prediction. On the other hand, Elbes et
al. [23] proposed an indoor localization approach based on



Wi-Fi fingerprinting and Long Short-Term Memory (LSTM)
neural networks for position estimation. The experiments were
carried out in 54× 32m2 test L-shape area with ad-hoc Wi-Fi
anchors deployed and a single smartphone to scan the signals.
The LSTM model consist of 42 input features, 2 outputs, 300
neurons, learning rate λ = 0.2, drop error, and 250 epochs.
The results reported an average error of around 1 m.

In contrast to related work, our MLP architecture is intended
for use with heterogeneous mobile devices to estimate the
relative distance between neighboring devices in a collabora-
tive approach. To this end, our MLP architecture exploits the
usual short distance between neighboring devices to reduce
the dimensionality of features and, consequently, obtain a
lightweight neural network architecture that is feasible to
implement on mobile devices. Specifically, the MLP architec-
ture relates the distance to four main elements of BLE-RSS
collaborative approaches. The elements used for the features
of the architecture are the RSS patterns, pairwise device
position, identification of devices (transmitter and receiver),
and variation of RSS measurements due to devices’ hardware
heterogeneity.

C. Collaborative indoor positioning systems

Collaborative IPSs aim to enhance positioning of de-
vices/users by using wireless communication technologies,
both for relative distance estimation and information exchange
between them [24]. Within the collaborative IPSs, those rely-
ing on BLE-RSS for the non-collaborative and collaborative
phase, as our approach, are scarce (for a comprehensive
overview of collaborative IPSs, we refer to our recent system-
atic literature review [24]). One of the most representative ones
is proposed by Qiu et al. [20], which presented a collaborative
IPS based on inertial sensing, adaptive multi-lateration, and a
mobile encountering approach. All these sources of data were
combined using a particle-filter model to locate a target.

The author conclude that the accuracy improvements are
approximately 28.19% in LOS and 19.99% in NLOS when
using adaptive ranging device-specific parameter with respect
to the none adaptive approach.

In contrast to what has been done in the literature, we do
not rely on the LDPL model to estimate the relative distance
between a receiver (RX) and a transmitter (TX). Instead, we
use a neural network to process the RSS value depending on
the transmitter and receiver location and receiver calibration.

D. Overall summary

From the above-mentioned systems, we can summarize that
the lateration methods considerably decrease the positioning
accuracy as the density of anchors in the area decreases and
the noise signal increases. ANNs can mitigate the effect of the
environment on the position and distance estimation, as well
as reduce the accuracy error. Additionally, the implementation
of collaborative approaches can help to reduce the positioning
error of individual estimations. To the best of our knowledge,
this is the first BLE–RSS indoor positioning system that
implements a collaborative approach based on ANNs.

III. SYSTEM OVERVIEW

Under simulations or in ideal testbed conditions, i.e. sce-
narios featuring a rich amount and well distributed anchors in
the environment and LOS conditions, RSS-based lateration ap-
proaches have provided high accuracy with positioning errors
within the range of 0.8m to 1.3m [16], [17]. Nevertheless, in
real environments (e.g., offices, stores, libraries) the position-
ing accuracy decreases dramatically. Real environments are
characterized by large NLOS areas and anchor deployments
that may not be exclusively designed for positioning tasks.
In addition, each environment requires a dedicated modeling
of the RF signal propagation to compensate for environment-
specific conditions and accurately convert RSS into distance.

In this work, we propose a collaborative IPS using ANNs
to enhance BLE–RSS lateration-based methods. Our approach
tackles three main sources of positioning inaccuracy: mit-
igating the inaccuracy due to NLOS areas and inadequate
deployment of anchors; reducing the impact of a inappropriate
signal propagation modeling; and minimizing the impact of
device heterogeneity. Potential application scenarios of our
approach is indoor positioning in buildings with a poor infras-
tructure deployment, but with a moderate amount of mobile
devices (people) inside and where the latency for users/devices
positioning is moderate (e.g., tracking library assistants in
libraries, patients in hospitals, personnel in government offices,
among others).

Our collaborative approach is divided in three phases which
are described in this section. The first phase is devoted to reg-
istering devices used in the collaborative approach, the second
phase consists of the stand-alone (non-collaborative) lateration
algorithm for position estimation of each device/user, and the
last phase is devoted to collaboratively enhance the position
of the target device/user.

A. Registering a device for collaborative positioning

The registration procedure aims to identify a mobile device
and record an RSS reference value, to be used in the collabo-
rative algorithm. To this end, a fixed reference anchor (BX)
emitting BLE advertisements is placed at an entry point to the
environment. Each new user is then asked to position himself
at 1 meter from the anchor (marked on the floor) in LOS,
and measure and record the RSS value (i.e., RSS1m

RX(BX)).
This lightweight calibration procedure is performed only once
for each (new) device. To ease this procedure, the calibration
could be integrated with the electronic locking system of
the main doors, calibrating the device every time the user’s
smartphone is used to unlock a door.

B. Stand-alone phase

The stand-alone phase is devoted to estimating each initial
individual device/user’s position considering the RSS and the
Ground-Truth (GT) coordinates of BLE anchors deployed in
the environment. For reference, in this article this position
estimation is performed using a lateration method based on



the LDPL model, a minimization problem, and the Levenberg-
Marquardt algorithm for weighted nonlinear least-squares to
solve the minimization problem.

The LDPL model expresses the relation between RSS and
distance, as described by Eq. (1) [25]:

RSSd
RX(TX) = RSS1m

RX(BX)− 10 η log

(
d

d0

)
(1)

Where RSSd
RX(TX) is the RSS measured at a distance d

between transmitter (TX), which can be a BLE beacon or
a smartphone, and receiver (RX); RSS1m

RX(BX) is the RSS
measured at 1m; and η is the path-loss attenuation factor.

Mathematically, the lateration approach is expressed by
Eq. (2) as a minimization of the sum of squared errors between
the measured distances (dm) and hypothetical ones (gm(x

¯
)),

based on the unknown target position, gm(x
¯
), which is denoted

by Eq. (3) [26].

min
x
¯

M∑
m=1

(gm(x
¯
)− dm)

2 (2)

gm(x
¯
) ,

√
(x− bxm)

2 − (y − bym)
2 (3)

Where, m = {1, 2...M} are the number of BLE anchors de-
ployed; x

¯
= {x, y} are the device/user’s unknown coordinates;

and {bxm, bym} the GT coordinates of BLE anchors.
Algorithm 1 shows the pseudo-code for the stand-alone lat-

eration approach, whose workflow is summarized as follows:
• 1st step: Collect the RSS from BLE anchors

(RSSd
RX(TX)) within a time window (tw) of 60 s, by

discarding those not belonging to the deployed scenario
(input data for Algorithm 1);

• 2nd step: Group the RSS readings by anchor removing
the outlier values. We consider the values falling out of 25
and 75 percentiles (lines 1–2 in Algorithm 1) as outliers;

• 3rd step: Apply the average operator to the RSS values
of each anchor, in order to get one averaged RSS value
per anchor (line 3 in Algorithm 1);

• 4rd step: Select ”strong reference BLE anchors”, defined
as the anchors with averaged RSS equal or greater than
a predefined threshold (lines 4–8 in Algorithm 1);

• 5th step: Estimate the relative distances of selected ref-
erence BLE anchors to the device/user’s target position,
by using the LDPL model, which is expressed by eq.(1),
and their RSS values (line 9 in Algorithm 1);

• 6th step: Estimate the device/user’s position, P̂
Lat1

, using
the Levenberg-Marquardt Weighted Least Squares (L-
MWLS) lateration method to fit the Euclidean Distance
model. Henceforth, Lat1 will refer to the L-MWLS
lateration method. The input data to fit the model are
the distances estimated in the 5th step, the weights and
the GT of the BLE anchors. The weight value for every
BLE anchor is computed as the inverse of its distance
square with respect to the device/user;

• 7th step: Share the estimated position, P̂
Lat1

(RX) =
[P̂Lat1

x (RX), P̂Lat1
y (RX)].

We set the threshold value to −83 dBm and the path-
loss attenuation factor to η = 2.1, as we previously used
in [27] and which are in phase to values in literature [16].
Each device involved in the collaborative positioning model
will have its own value for RSS1m

RX(BX) calculated from the
data collected in the device registration phase (see Table II).

Algorithm 1 Stand-alone Lateration
Input: Deployed anchors information collected within a time win-

dow tw: RSSd
RX(TX) values and GT

Input: LDPL: η = 2.1 and RSS1m
RX(BX)

Input: threshold
Output: Estimated device/user position P̂

Lat1
(RX)

1: Group the RSSd
RX(TX) values by beacon

2: Remove RSSd
RX(TX) outliers values of each group

3: Average RSSd
RX(TX) values of each group : RSSd

RX(TX)

4: for i← 1 to number of SSd
RX(TX)(i) do

5: if (SSd
RX(TX)(i) ≥ treshold) then

6: Include i-th anchors to reference anchors set (refanchorset)
7: end if
8: end for
9: Estimate the distances between anchors of refanchorset and the

device/user position using Eq.1, η and RSS1m
RX(BX)

10: Estimate the device/user position (P̂
Lat1

(RX)) using the
Levenberg-Marquardt Weighted Least Squares method

11: Share the estimated device/user position (P̂
Lat1

(RX) =
[P̂Lat1

x (RX), P̂Lat1
y (RX)])

C. Collaborative phase

The collaborative phase uses the neighboring mobile de-
vices’ information, which include the measured BLE-RSSs,
the estimated positions for the receiver and transmitter devices,
and the RSS at 1m of the receiver to collaboratively estimate
the device/user’s position, and ultimately provide the final
position estimate based on the combined collaborative and
stand-alone estimates, aiming to improve the latter. Each
device/user, which exchanges information and collaborates
with others, acts as an additional anchor, creating an extended
ad-hoc positioning network, hereby improving the coverage of
the original anchor network.

The collaborative phase relies on four main elements: 1)
information exchanged between devices; 2) estimation of
relative distances using a Multilayer Perceptron (MLP) neural
network; 3) a lateration algorithm to collaboratively estimate
the target device/user’s position; and 4) a method to combine
the stand-alone and collaborative position estimations.

1) Information exchanged between devices/users: Cur-
rently, the operating systems of mobile and wearable devices
permit broadcasting BLE advertisements. This feature allows
them to act as BLE anchors and share information, enabling
the development of collaborative positioning systems [28].
The information used in our collaborative positioning sys-
tem includes: the RSS received at receiver from transmitter
(RSSRX(TX)), the RSS at 1m (RSS1m

RX(BX)) of the re-
ceiver obtained after registering the device and the position of
each collaborative device/user estimated by the stand-alone lat-
eration (P̂Lat1

x (TX),P̂Lat1
y (TX),P̂Lat1

x (RX),P̂Lat1
y (RX)).



All these collected data are used as inputs for the neural
network presented in next subsection and the collaborative
algorithm presented in Algorithm 2.

2) Multilayer Perceptron (MLP) neural network and rela-
tive distances: The MLP neural network model’s architecture
used to estimated the relative distances is presented in Fig-
ure 1. Its architecture consists of 6 input layers, 1 hidden layer
with 3 neurons, and one output layer. The activation function
used is the hyperbolic tangent. In the training, the scaled
conjugate gradient back propagation was used as training
function and 50 epochs were considered. Further information
about the selection of hyperparameters of the MLP neural
network is provided in Section IV.

The 6 inputs that feed the MLP neural network model
correspond to the exchanged information between each pair
(target device–neighbor device) and the output is the estimated
distance of that specific pair. The input are: the RSSRX(TX),
which corresponds to the RSS of the BLE advertisement sent
by the transmitter TX and measured at the receiver RX; the
x and y coordinates of the transmitter (neighbor device/user)
position estimated by the stand-alone lateration algorithm
(P̂Lat1

x (TX),P̂Lat1
y (TX)); and the x and y coordinates of the

receiver (target device/user) position estimated by the stand-
alone lateration algorithm (P̂Lat1

x (RX),P̂Lat1
y (RX)).

Finally, the RSS1m
RX(BX) is the RSS value measured at

1m of distance between transmitter and receiver assigned at
each mobile device by phase one (see Table II).

Input Layer Output LayerHidden Layer
(3 neurons)

  
 

 

 

 

Estimated
distance

Fig. 1: MLP neural network model architecture. Used to esti-
mate relative pairwise distance between target and neighboring
devices/users.

3) Collaborative lateration algorithm: The lateration algo-
rithm used in the collaborative phase is the same algorithm
used in the stand-alone phase (see Section III-B). The main
two differences are within the data used to perform the
lateration.

• First, rather than fixed BLE beacons in the environment
with well-known position, the anchors considered in the
collaborative lateration algorithm are the neighboring
devices/users, of which only the position estimated by
the stand-alone lateration is known.

• Second, the relative distances between the target de-
vice/user and the neighboring devices/users is computed
using a MLP neural network model instead of the LDPL
model.

4) Combining stand-alone and collaborative estimated po-
sitions: Once the position of the target device is collabora-
tively estimated using neighbor devices/users as anchors, it is
combined with the stand-alone estimation to come to a final
estimated position. In this article, we used a midpoint line
algorithm, as described in Eq. (4).

ˆ̂
Px(RX) =

P̂ lat1
x (RX) + P̂ lat2

x (RX)

2
(4)

ˆ̂
Py(RX) =

P̂ lat1
y (RX) + P̂ lat2

y (RX)

2
(5)

Where ˆ̂P = [
ˆ̂
Px(RX), ˆ̂

Py(RX)] represents the final estimated
position, with x and y coordinates, of device/user RX , with
RX = {1, 2....N} and N the number of devices. P̂ lat2

x (RX)
and P̂ lat2

y (RX) are the position estimated, x and y coordi-
nates, with the collaborative lateration and P̂ lat1

x (RX) and
P̂ lat1
y (RX) are the position estimated, x and y coordinates,

with the stand-alone lateration, both for device/user RX .
5) Full collaborative workflow: Finally, algorithm 2 shows

the pseudo-code for the collaborative positioning algorithm.
The algorithm inputs are the shared information exchange
by each collaborative device/user within a time window (wt)
of 60 s and correspond to the RSS transmitted by each
collaborative device/user (RSSRX(TX)), position of each
collaborative device/user estimated by the stand-alone latera-
tion (P̂Lat1

x (TX),P̂Lat1
y (TX),P̂Lat1

x (RX),P̂Lat1
y (RX)), and

the RSS at 1m (RSS1m
RX(BX)). The algorithm workflow is

summarized as follows:

• 1nd step: Group the RSS readings by device and remove
outlier values. We consider those values falling out of 25
and 75 percentiles (lines 1–2 in Algorithm 2) as outliers;

• 2rd step: Apply the average to the RSS values of each de-
vice/user, getting one averaged RSS value per device/user
(line 3 in Algorithm 2);

• 3th step: Estimate the relative distances of neighboring
devices/users to the target device/user, using the MLP
model, which structure is depicted in Figure 1.
The inputs of ANN model are:RSSRX(TX),
(P̂Lat1

x (TX),P̂Lat1
y (TX),P̂Lat1

x (RX),P̂Lat1
y (RX)),

RSS1m
RX(BX) and (input values in Algorithm 2);

• 4th step: Estimate the device/user’s position
(P̂

Lat2
(RX)) using the Levenberg-Marquardt Weighted

Least Squares (L-MWLS) lateration method to fit the
Euclidean Distance model. The input data to fit the model
are the relative distances estimated by the MLP neural
network model (step 3), the weights and the estimated
positions (P̂

Lat1
) of the neighboring devices/users. As

in the stand-alone algorithm, the weight value for every
BLE anchor is computed as the inverse of its distance
square with respect to the device/user;



• 5th step: Compute the final estimated device/user’s posi-
tion (ˆ̂P(RX)) based in the formula expressed in eq.(4),
using the estimated standalone position P̂

lat1
(RX) and

collaborative estimated position P̂
lat2

(RX), where (RX)
is the identifier of the device/user to estimate its position.

Algorithm 2 Collaborative module
Input: Collaborative devices information collected

within a time window tw: RSSRX(TX),
P̂Lat1
x (TX),P̂Lat1

y (TX),P̂Lat1
x (RX),P̂Lat1

y (RX), and
RSS1m

RX(BX)

Output: Improved estimated device/user position (ˆ̂Pdev(n))
1: Group the RSSRX(TX) values by device
2: Remove RSSRX(TX) outliers values of each group
3: Average RSSRX(TX) values of each group: RSSdev(i)
4: Estimate the relative distance between the target device and the

near collaborative devices using the trained ANN model
5: Estimate the device/user’s position (P̂

Lat2
(RX)) using the

Levenberg-Marquardt Weighted Least Squares (L-MWLS) Lat-
eration method

6: Compute the final estimated device/user’s position (ˆ̂P(RX))
using the midpoint line algorithm of eq.(4)

IV. EXPERIMENTS AND RESULTS

A. Objectives and Experimental setup

The principal goal of our experiments is to assess the
feasibility and benefits of our collaborative approach with
respect to a traditional BLE-RSS lateration baseline to mit-
igate inadequate deployment of BLE anchors and increased
NLOS conditions. Specifically, we evaluate and compare the
positioning accuracy of both in a realistic environment.

We performed the experiments in a real office scenario.
The office covers an approximate area of 10.8× 16.7m2

and contains seven deployed BLE beacons (anchors), with a
transmission power and period of −4 dBm and 250ms respec-
tively. Figure 2 shows the complete scenario through a 3D
representation, which allows us to illustrate the complexity of
the environment. The NLOS conditions are mainly created by
the furniture, which includes chairs, desks, desktop computers,
bookshelves, and the concrete metal-reinforced pillars.

Fig. 2: 3D Office Scenario representation

In this office scenario, a comprehensive data collection was
conducted. First, the five collaborative devices were registered
during the registration phase (see Section III-A) and their
RSS1m

RX was measured using a fixed BLE beacon from the
environment. Table II summarizes the five devices that were

used in the experiment, and their corresponding RSS1m
RX

value, which depend on the smartphone model and range from
−78.79 dBm to −62.39 dBm.

Then, seven different collaborative distributions (called con-
figurations in this paper) made up of these five devices were
considered. In each configuration, the five devices simulta-
neously broadcast and save the information of surrounding
devices, including the BLE anchors, for 2 hours. Devices
broadcast every 100 ms in accordance with the low latency
mode supported by Android devices [29]. However, as mobile
devices are not ad-hoc positioning devices, the broadcast
period is affected mainly by the priority of executing tasks
and power saving modes implemented by operating systems.
The data collection for each configuration was performed
independently, at a different time. As already mentioned,
for the lateration approach based on the Logarithm Distance
Path Loss (LDPL), the path-loss factor was determined to be
η = 2.1 for all the five devices. Figure 3 and Figure 4 show
the distribution of the devices in each configuration and the
BLE anchors in the scenario, and Table I summarizes the GT
coordinates of them.
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TABLE I: Position of the anchors, BLE beacons and collaborative devices in the 7 configurations

BLE anchors Config. 1 Config. 2 Config. 3 Config. 4 Config. 5 Config. 6 Config. 7

n x y x y x y x y x y x y x y x y

1 0 0 5.05 3.7 1.33 6.1 6.93 1.3 7.75 6.1 2.05 9.7 2.05 9.7 2.05 9.7
2 0 10.68 6.55 4.55 4.49 3.05 9.93 1.3 11.75 2.75 3.6 3.3 8.7 6.4 14.66 6.45
3 3.78 6.51 8.05 0.7 7.66 0.1 12.93 1.3 12.75 0.1 16.45 2.5 16.45 2.5 16.45 2.5
4 6.68 10.64 5.05 0.7 1.33 0.1 9.03 0.1 7.75 0.1 2.05 2.5 2.05 2.5 2.05 2.5
5 9.2 3.7 8.05 3.7 7.66 6.1 9.03 3.7 12.75 6.1 16.45 9.7 16.45 9.7 16.4 9.7
6 14.2 6.05 - - - - - - - - - - - - - -
7 16.65 10.65 - - - - - - - - - - - - - -
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Fig. 5: Target vs Predicted distances from the test dataset estimated with MLP1–MLP4 architectures

TABLE II: RSS1m
RX(BX) values by device

RX Device RSS1m
RX(BX) values (dBm)

1 Galaxy S8 -68.88
2 Lenovo Yoga Book -74.75
3 Galaxy A7 Duos -62.39
4 Galaxy S6 -62.99
5 Galaxy A5 -78.79

The data collected in the seven configurations were split
into two datasets, where the devices cover different areas,
and the distances among devices, and between devices and
anchors, varies. Each dataset is used for different purposes:
configurations 2, 3, 6, and 7 (see Fig. 3) were used to train the
model and configurations 1, 4, and 5 (see Fig. 4) were used for
evaluation. In order to tune the MLP neural network, the first
dataset was randomly split into training (70%) and validation
(30%) with 968798 and 242199 samples respectively. The
testing dataset contains 936103 samples and it was used to
test the MLP ANN for relative distances, and implement the
BLE-RSS lateration baseline and collaborative approach.

The selected scenario is challenging and covers an area with
low Geometric Dilution of Precision (GDOP) and strong het-
erogeneous NLOS conditions (diversity in obstacles): only 7
BLE beacons provide positioning, and there is device diversity
in the collaborative phase. The proposed collaborative model
targets dynamically extending the anchor coverage by using
the collaborative user’s devices, replacing the traditional LDPL
model with a MLP ANN that processes the RSS considering
the receiver and emitter location and the calibration of RSS
(at 1m) to minimise the device diversity effect.

B. Multilayer Perceptron (MLP) neural network tuning

We tested four Multilayer Perceptron (MLP) neural network
architectures in order to determine the best architecture and
set of hyperparameters of our model. As hyperparameters,
we considered different numbers of hidden layers (1 and 2)
and neurons, as well as two types of activation functions, the
Hyperbolic tangent sigmoid (tansig) and Log-sigmoid (logsig).
Table III summarizes the hyperparameters configured in the
proposed architectures.

TABLE III: Tested MLP architectures and hyper parameters

Parameters MLP1 MLP2 MLP3 MLP4

No. Input layers 6 6 6 6
No. Hidden layers (HLs) 1 1 2 2
No. Output Layer 1 1 1 1
No. Neurons HL1 3 3 6 12
No. Neurons HL2 - - 3 6
Training function trainscg
Activation function tansig logsic tansig tansig
Performance Function Mean Square error

Before presenting the main positioning results of the pro-
posed collaborative approach and the lateration baseline, we
present the results of evaluating the four proposed MLP
architectures with the training dataset in order to determine
which of them provides a more accurate estimation of relative
distances. Figure 5 shows the density scatter plots of the real
distance against estimated distance by each MLP neural net-
work architecture. Also, the Root Mean Square Error (RMSE)
and correlation coefficient (R) values are indicated in each of
them.



From those values and density scatter plots, we can notice
that the Multilayer Perceptron (MLP) architectures with one
hidden layer (MLP1 and MLP2) present a RMSE lower than
the architectures with two hidden layers (MLP3 and MLP4),
as well as a greater correlation coefficient (0.74 and 0.69 for
MLP1 and MLP2 respectively). Therefore, architectures with
a single hidden layer are able to estimate the distance more
accurately. In specific, MLP1, which use an hyperbolic tangent
sigmoid activation function (tansig), presents a higher density
of predicted values closer to the real values in comparison
with the MLP2, which use a Log-sigmoid activation function,
as can be observed in the density scatter plots of Figure 5 (a)
and (b). Additionally, we notice that the density increases for
the range between 3m to 6m and around 15m. The results
of high density values around the short distance demonstrate
the potential of the MLP architecture to improve the accuracy
of position estimations in collaborative IPS in scenarios with
a high density of collaborating mobile devices (i.e., when the
distance between neighboring devices is short).

As a result of assessing different MLP architectures, the
MLP1 with one hidden layer (3 neurons), a scaled conjugate
gradient backpropagation training function, and a hyperbolic
tangent sigmoid activation function was selected to estimate
relative distances with BLE–RSS data.

C. Results of the collaborative model
Table IV presents the main results of the lateration base-

line and our collaborative approach using various evaluation
metrics (i.e., RMSE, mean, median, 70th and 90th percentile),
and also indicates the relative difference between them.

TABLE IV: Main results metrics provided by the Lateration
baseline and our proposed collaborative approach

Lateration baseline Collaborative approach

Eval. metric Error (m) Error (m) Diff.

RMSE 5.76 5.22 ↓ 9.37%
Mean 5.36 4.55 ↓15.11%

Median 5.54 4.84 ↓12.63%
75th percentile 7.08 6.68 ↓ 5.64%
90th percentile 8.08 8.08 0 %

As reported in Table IV, our collaborative approach out-
performs the lateration baseline in four of the five evaluation
metrics, with a maximum of 15.11% of difference for the
“mean” metric.

Figure 6 introduces the Empirical Cumulative Distribution
Function (ECDF) of the lateration baseline (black dotted line)
and our proposed approach (red line). For the first 40% of
cases, our collaborative model significantly outperforms the
baseline, for the next 50% of cases, the improvement is
moderate, being quite close for the last 10% of cases.

It should be noted that the positioning accuracy of the
lateration baseline was significantly degraded, compared to
BLE-RSS approaches reported in the literature (2m to 3m
error [27], [30]), due to the adverse test scenario conditions,
namely poor quantity and inappropriate distribution of an-
chors, unstable signal strength and hardware heterogeneity.

However, the magnitude of the errors is in line with scenarios
that consider the low-density anchor deployment issue. For
example, Cengiz [17] reported a mean error accuracy of 7.5m
in their lateration algorithm, which was tested on a 24× 24m2

area with 8 anchors.
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Fig. 6: Empirical CDF provided by the Lateration baseline and
our Collaborative approach

Figure 7 provides a more detail representation of the individ-
ual positioning errors of the laterations used in the stand-alone
phase and the collaborative phase.

Fig. 7: Comparison of individual errors provide by the Later-
ation baseline and our Collaborative lateration approach

From the scatter plot, we can deduce that the lateration
used in the calibration phase is providing better positioning
results than the one based on the few beacons deployed in the
environment. However, for a few cases the behavior is just
the contrary as the accuracy is a few meters worse than the
baseline. Nevertheless, the strongest feature of the proposed
collaborative model is the combination of the lateration results
from both phases, providing an ensembled output. According
to the ensemble theory, the combination of estimators im-
proves the accuracy of any of the individuals involved.



V. CONCLUSION AND FUTURE WORK

In this paper, we presented a collaborative indoor posi-
tioning system using Multilayer Perceptron (MLP) Artifi-
cial Neural Networks (ANNs) to enhance the accuracy of
the models based on BLE and RSS lateration, in typical
adverse conditions, namely poor quantity and inappropriate
distribution of anchors, unstable signal strength and hardware
heterogeneity. The proposed approach is divided in three
phases. The first phase is devoted to registering devices used
in the collaborative approach and establishing an RSS baseline
measurement at 1m, the second phase consists of the stand-
alone (non-collaborative) lateration algorithm for position es-
timation of each device/user, and the last phase is devoted to
collaboratively estimate the position of the target device/user
and combine it with the non-collaborative position estimate.

We evaluated our collaborative system in an indoor scenario
(Office) and compared it with a lateration baseline. Our
indoor scenario presents the aforementioned typical adverse
conditions: an inadequate deployment of BLE anchors, rich
NLOS conditions and heterogeneity among mobile devices
used, causing a considerably reduction of positioning accu-
racy in RSS-based approaches. Experimental results show the
feasibility and benefits of our proposed collaborative approach
to outperform the positioning accuracy of the traditional lat-
eration baseline under these adverse conditions. Particularly,
our approach decreases, with respect to the lateration baseline,
the mean, median, RMSE and 75th percentile positioning error
metrics with 15.11%, 12.63%, 9.37% and 5.64% respectively.

Furthermore, the results highlighted the usefulness of an
MLP neural network model to model the signal propagation
at short distance considering the inherent characteristic of
each receiving device and in NLOS conditions, which is
essential for estimating the distance between (heterogeneous)
collaborative devices in real-world conditions.

As future work, we plan to use robust baseline approaches,
which are able to provide a better positioning accuracy. We
will consider more complex algorithms to combine indepen-
dent collaborative estimates and reduce the overall positioning
error. Additionally, we will enhance the neural network tuning,
testing it in diverse and complex scenarios.
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[2] D. Gualda, M. C. Pérez-Rubio, J. Ureña, et al., “Locate-us: Indoor
positioning for mobile devices using encoded ultrasonic signals, inertial
sensors and graph-matching,” Sensors, vol. 21, no. 6, 2021.

[3] Y. He and J. Chen, “User location privacy protection mechanism
for location-based services,” Digital Communications and Networks,
vol. 7, no. 2, pp. 264–276, 2021.

[4] M. A. Cheema, “Indoor location-based services: Challenges and op-
portunities,” SIGSPATIAL Special, vol. 10, no. 2, pp. 10–17, 2018.

[5] K. E. Jeon, J. She, P. Soonsawad, et al., “Ble beacons for internet
of things applications: Survey, challenges, and opportunities,” IEEE
Internet of Things Journal, vol. 5, no. 2, pp. 811–828, 2018.

[6] G. Li, E. Geng, Z. Ye, et al., “Indoor positioning algorithm based on
the improved rssi distance model,” Sensors, vol. 18, no. 9, 2018.

[7] J. Yang and Y. Chen, “Indoor localization using improved rss-based
lateration methods,” in GLOBECOM 2009-2009 IEEE Global Telecom-
munications Conference, 2009.

[8] F. J. Aranda, F. Parralejo, F. J. Álvarez, et al., “Performance analysis
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