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Abstract— This paper evaluates the implementation of a
low-complexity adaptive direct-state Kalman filter (DSKF) for
robust carrier phase tracking of global navigation satellite system
(GNSS) signals. This architecture consists of a loop-bandwidth
control algorithm (LBCA)-based lookup table (LUT)-DSKF in an
FLL-assisted-PLL (FAP) tracking scheme. The FAP considers the
carrier phase and frequency Doppler measurements to achieve a
robust tracking. The use of the DSKF in the FAP achieves optimal
performance, assuming a known Gaussian distributed model of
the states and the measurements. However, the performance
decays in time-varying scenarios where the measurements’ dis-
tribution changes due to noise, signal dynamics, multi-path, and
non-line-of-sight effects. In addition, the DSKF’s implementation
in real-time applications requires a high computational cost. This
study derives the so-called LUT-DSKF for the FAP, a simplified
DSKF that considers the convergence of the Kalman gains. In
addition, the LBCA is used to adapt the time of response of
this architecture and improve the tracking performance in time-
varying scenarios. The presented technique is compared with
the adaptive LUT-DSKF in a phase-locked loop (PLL) tracking
scheme. These two tracking architectures are implemented in an
open software interface GNSS hardware receiver. The receiver
is evaluated in simulated scenarios with different dynamics and
noise cases for each implementation. The results confirm that the
LBCA-based LUT-DSKF in the FAP exhibits superior dynamic
tracking performance than the adaptive PLL while maintaining
similar static tracking performance and low complexity.

Index Terms—Global navigation satellite system (GNSS), FLL-
assisted-PLL (FAP), lookup table (LUT)-direct-state Kalman
filter (DSKF), discrete algebraic Riccati equation (DARE), loop-
bandwidth control algorithm (LBCA).

I. INTRODUCTION

Synchronization is the key component of global navigation

satellite system (GNSS) receivers. It consists of two stages:

acquisition and tracking. Acquisition coarsely estimates the

code phase and carrier Doppler of incoming GNSS signals.

The tracking stage refines these synchronization parameters

and includes the fine estimation of the carrier phase. A suc-

cessful synchronization permits the decoding of the navigation

message and the estimation of the pseudo-range and pseudo-

range rate, which finally leads to the position, velocity, and

time (PVT) calculation.

The scalar tracking loop (STL) is the standard tracking

scheme used in the tracking stage. This tracking scheme

synchronizes with a single synchronization parameter of an

incoming GNSS signal [1], [2]. There are three parameters in

a GNSS signal in which the GNSS receiver must synchronize

with: the carrier phase φ, the carrier Doppler fd, and the code

phase τ . Therefore, a tracking channel is composed of three

STLs: phase-locked loop (PLL), frequency locked loop (FLL),

and delay locked loop (DLL). The STL contains a correlator,

a discriminator, a loop filter, and a numerically controlled

oscillator (NCO) [2], [3]. The configuration parameters of

the STL are the type of discriminator, the loop bandwidth

B, the integration time τint, the order p, and the correlator

spacing. These parameters determine the robustness against

noise and signal dynamics. The well-known trade-off between

noise filtering capabilities and signal dynamics resistance is

the main problem of techniques with fixed configurations. In

particular, this problem is aggravated in time-varying scenar-

ios. These scenarios are characterized by different realizations

of signal dynamics, noise, and fading effects that lead to

challenges regarding the synchronization capability [1]. For

instance, a high-order STL with wide loop bandwidth and

short integration time is adequate to track rapidly changing

parameters. In contrast, a low-order STL with narrow loop

bandwidth and long integration time is preferable to track

noisy parameters. Therefore, a fixed configuration of the STL

is not an adequate solution for time-varying scenarios.

The Kalman filter (KF) is an optimal infinite impulse

response (IIR) estimator under the assumption of linear Gaus-

sian error statistics [4]–[6]. Good knowledge of the process

noise covariance Q and measurement noise covariance R

allows the KF to optimally adapt its coefficients to achieve

the minimum mean square error (MMSE) [7]. There are

several KF implementation methods in STLs [8] grouped into

error-state Kalman-filter (ESKF) and direct-state Kalman filter

(DSKF) [9]. The former replaces the loop filter of the STL

with a KF [10]–[13], whereas the latter considers the whole

STL as part of the KF [14]–[17]. The implementation of the

DSKF is straightforward due to the relation between the STL’s

coefficients and the DSKF’s Kalman gains [14].

The MMSE is only achieved if á priori knowledge of Q

and R is available or if these are accurately estimated [7].

If this is not the case, the KF converges to a suboptimal

solution [18]. Hence, for time-varying scenarios in which Q

and R continuously change, both the DSKF and STL share

the same challenge in synchronization capability.

There has been significant research towards robust tracking

solutions to solve this problem [19]. However, there is still

ample investigation to find the best technique in terms of

performance and complexity [15], [20]. Adaptive tracking



methods can improve the tracking performance in time-varying

scenarios. Different methods to estimate the noise covariances

of the KF have been summarized in a review study [21].

One solution can be to implement a moving average filter

to estimate Q and R, and consequently adapt optimally the

response time of the KF [22]. Moreover, it is possible to im-

plement a carrier-to-noise density ratio (C/N0)-based DSKF,

in which R depends on the variance of the STL discriminator’s

output [16]. Q can also be adapted according to the dynamic

stress error [17]. Recent research shows the implementation

of a loop-bandwidth control algorithm (LBCA)-based PLL-

DSKF [14]. The LBCA performs a loop bandwidth-dependent

weighted difference between estimated noise and estimated dy-

namics of the discriminator’s output [23]. The LBCA updates

the loop bandwidth and, in turn, Q, based on their steady-state

relationship.

Despite the tracking performance advantage of the KF,

its implementation in real-time applications requires a high

computational cost compared to the STL. Therefore, efficient

low-complexity methods have been studied [13], [15]. The

complexity of the ESKF can be reduced by taking advantage

of the Kalman gains’ convergence in the steady state [13].

The same can be done for the DSKF, leading to the so-called

lookup table (LUT)-DSKF [15]. The implementation of an

LBCA-based LUT-DSKF in a PLL tracking scheme has been

presented recently [15]. The ratio between the steady-state

process variance and the measurement variance provides a

one-to-one relationship between the steady-state Kalman gains

and the loop bandwidth. Hence, the LBCA can adapt the loop

bandwidth to, in turn, adapt the steady-state Kalman gains.

The aiding of the FLL in the PLL can improve signif-

icantly the robustness to high signal dynamics. Recent re-

search presents the implementation of a LBCA-based FLL-

assisted-PLL (FAP) architecture [24]. This adaptive tracking

architecture consists of two independent LBCAs to adapt the

bandwidths of a second-order FLL and a third-order PLL.

Although good results have been achieved, extensive tuning

was required to find the optimal weighting functions for each

LBCA. Also, two LBCAs implied doubled complexity.

This paper presents the implementation of an adaptive LUT-

DSKF in a FAP tracking architecture. The derivation of the dis-

crete algebraic Riccati equation (DARE) in the DSKF presents

an inter-dependency between FLL and PLL coefficients. The

main novelty of this research is the implementation of a single

LBCA to adapt the LUT-DSKF’s response time based on

the found inter-dependency. This inter-dependant factor is the

ratio between the steady-state process variance qa and the

carrier phase measurement variance Rφ. The LBCA updates

this ratio to change the LUT-DSKF’s response time. The

adaptive LUT-DSKF in the FAP tracking scheme is compared

with the adaptive LUT-DSKF in the PLL [15]. Both methods

are implemented in the carrier phase synchronization tracking

stage of the GOOSE© receiver [25]. Each adaptive technique’s

tracking performance is evaluated under simulated scenarios

with different dynamics and noise levels.

The rest of the paper is organized as follows: Section II

describes the DSKF in the FAP tracking scheme, presents

the system model, the measurement model, and the state

space model (SSM) representation, analyzes the steady-state

convergence and derives the tracking scheme of the LUT-

DSKF. Section III shows the architecture of the LBCA-based

LUT-DSKF. Section IV presents the experimental setup and

the achieved results. Finally, Section V concludes and indicates

future work.

II. DSKF IN FLL-ASSISTED-PLL ARCHITECTURE

This section describes the DSKF in the FAP tracking

scheme of a GNSS receiver. First, the system and measurement

models are presented. Next, the KF equations are described,

the SSM representation is defined and the transfer function is

analyzed. Finally, the LUT-DSKF is derived by solving the

DARE.

A. System and Measurement Model

Assuming a Brownian motion model for the accelera-

tion state [26] and based on the backward Euler transform

(BET) [27], [28], the discrete system model of the DSKF is

represented as:


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where n is the sample index, φ is the carrier phase, f is

the carrier Doppler, a is the angular acceleration, τint is the

integration time, and wa is the zero-mean Gaussian distributed

perturbation that suffers the acceleration in cycles/s3. x is the

state vector, A is the discrete state matrix, and the term Gw

determines the discrete process noise that drives the signal

dynamics.

The process covariance matrix Q is defined as:

Q = GE[wwT]GT (2)

= G



0 0 0
0 0 0
0 0 qa


GT (3)

= qa



τ6int τ5int τ4int

τ5int τ4int τ3int

τ4int τ3int τ2int


 (4)

where qa is the variance of the random process wa in

cycles2/s6.

The measurement model is as follows:
[
zφ[n]
zf [n]

]

︸ ︷︷ ︸
z[n]

=

[
1 0 0
0 1 0

]

︸ ︷︷ ︸
H

Ax[n− 1] +

[
vφ
vf

]

︸︷︷︸
v[n]

(5)



where zφ and zf are the carrier phase and frequency Doppler

measurements, and vφ and vf are the zero-mean Gaussian

distributed noise of zφ and zf . H defines the measurement

model matrix, z describes the measurement vector, and v

represents the measurement noise vector.

The measurement covariance matrix R is:

R = E
[
zzT

]
=

[
Rφ 0
0 Rf

]
(6)

where Rφ and Rf are the variances of vφ and vf .

B. Kalman Filter Algorithm

The KF is divided into two stages: prediction and update.

The prediction step estimates the predicted state x̂[n] and pre-

dicted error covariance P̂[n]. These predictions are calculated

based on the previous updated state x[n − 1] , the previous

updated error covariance P[n− 1] and Q:

x̂[n] = A x[n− 1] (7)

P̂[n] = AP[n− 1]AT +Q[n] (8)

The dimension of the presented variables depends on the

KF’s state order p: {x, x̂} ∈ R
p×1,

{
A, P̂, P, Q

}
∈ R

p×p.

The update stage determines the updated states x[n] based

on x̂[n], the measurement residual δz[n] and the Kalman

gains K. δz is the difference between z[n] and the estimated

measurement z̃[n] that is calculated based on x̂[n]. K weights

δz[n] and depends on P̂[n] and R[n]:

δz[n] = z[n]−H x̂[n] = z[n]− z̃[n] (9)

S[n] = H P̂[n]HT +R[n] (10)

K[n] = P̂[n]HT S−1[n] (11)

x[n] = x̂[n] +K[n] δz[n] (12)

P[n] = (I−K[n]H[n]) P̂[n] (13)

where S[n] is the innovation covariance matrix, and I is the

identity matrix. The order p and the number of measure-

ments m determine the dimension of the presented variables:

{δz, z, z̃} ∈ R
m×1, {S, R} ∈ R

m×m, K ∈ R
p×m,

H ∈ R
m×p, I ∈ R

p×p.

C. State Space Model and Transfer Function

The system and measurement models in Equation (1) and

Equation (5) present three states, p = 3, and two measure-

ments, m = 2. The open-loop SSM representation is obtained

combining Equation (7) and Equation (12):

x[n] = Ax[n− 1] +



α2 β2

α1 β1

α0 β0


 τint

︸ ︷︷ ︸
K

[
δφ[n]
δf [n]

]

︸ ︷︷ ︸
δz[n]

(14)

[
φ̃[n]

f̃ [n]

]

︸ ︷︷ ︸
z̃[n]

= HAx[n− 1] (15)

where φ̃ is the estimated carrier phase and f̃ the estimated

carrier Doppler.

The open-loop transfer function is obtained combining the

Z-transform of Equation (14) and Equation (15):

z̃(z) = HA
(
I−A z−1

)
−1

K z−1 δz(z) (16)

Equation (16) is derived as follows:

z̃φ =

2∑

l=0

αlτ
3−l
int z−1

(1− z−1)3−l
δφ+

βlτ
3−l
int z−1

(1− z−1)3−l
δf (17)

z̃f =

1∑

l=0

αlτ
3−l
int z−1

(1− z−1)3−l
δφ+

βlτ
3−l
int z−1

(1− z−1)3−l
δf (18)

The following relation between carrier Doppler and carrier

phase is considered:

δf =
1− z−1

τint

δφ (19)

Finally, two open-loop transfer functions are observed:

Hoφ(z) =
2∑

l=0

(αl + βl−1)τ
3−l
int z−1

(1− z−1)3−l
+

β2

τint

(20)

Hof (z) =

1∑

l=0

τint

(αl + βl−1)τ
1−l
int z−1

(1− z−1)3−l
+

β1

1− z−1
(21)

These equations show the inter-dependency between PLL

and FLL coefficients in the FAP architecture. Figure 1 presents

the linear model representation of the LUT-DSKF’s state

prediction, innovation, and state update for the FAP based on

Equation (20).

PLL

FLL

COMPARATOR

+

∆

α0

α1

α2

β0

β1

β2

+
∫

+
∫

+
zφ[n] + δφ

δf

NCO

φ̃[n]

−

Fig. 1: Linear model of third-order DSKF in FAP.



D. LUT-DSKF

In the steady-state region, the Kalman gains K converge

to a steady-state value given a constant qa, Rφ, and Rf . The

expression of the DARE is [29], [30]:

Pss = APss A
T +Q

−APss H
T(HPss H

T +R)−1HPss A
T (22)

where Pss ∈ R
3×3 is the steady-state convergence of the error

covariance matrix P. The following is assumed to facilitate

the DARE’s solution [13]:

Ri,j ≫
(
HPss H

T
)
i,j

∀i, j = 1, 2 (23)

Rf ≫ Rφ (24)

The approximated solution of Pss for a third-order DSKF

in the FAP is defined as:

Pss ≈ APss A
T +Q−APss H

T R−1 HPss A
T (25)

=


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1/6
a R

5/6
φ τint 2q
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a R

2/3
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1/2
a R

1/2
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1/2
a R

1/2
φ τint 2q

2/3
a R

1/3
φ τint

sym. sym. 2q
5/6
a R

1/6
φ τint


 (26)

Applying Equation (26) into Equation (11), and considering

the assumption of Equation (23), the steady-state Kalman gain

matrix Kss is represented as:

Kss ≈ Pss H
T R−1 (27)

=




2(qa/Rφ)
1/6τint 2(qa/Rφ)
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(29)

where γ is the ratio (qa/Rφ)
1/6 in Hertz. The coefficients

of the PLL {α0, α1, α2} and the coefficients of the FLL

{β0, β1, β2} are dependant on γ. This parameter determines

the time of response of the LUT-DSKF. In the following

section, the LBCA is used to adapt γ.

III. LBCA-BASED LUT-DSKF IN FAP

This section describes the architecture of the LBCA-based

LUT-DSKF in the FAP tracking scheme. The LBCA updates

the loop bandwidth based on a weighted loop-bandwidth

dependent difference between estimated dynamics and noise

statistics [23]. In previous studies, the LBCA has been imple-

mented in the standard STL [20], [24], the DSKF [14], and the

LUT-DSKF [15]. Also, this algorithm has been implemented

in the interference mitigation stage to adapt the FLL of an

adaptive Notch filter (NF) [31].

The LBCA can update any parameter related to the system’s

time of response. Equation (29) shows that γ is directly

related to all the coefficients of K. Since the loop bandwidth

calculation of the LUT-DSKF in a FAP tracking scheme is not

trivial to solve, γ is selected to be adapted through the LBCA.

Figure 2 shows the architecture of the modified LBCA to

adapt γ. First, the normalized dynamics Dδφ of the carrier

phase error is calculated:

Dδφ[n] =
|µδφ[n]|

|µδφ[n]|+ σδφ[n]
(30)

where |µδφ| is the absolute mean and σδφ the standard

deviation of the carrier phase discriminator’s output. Second,

the difference between Dδφ and a weighting function g is

performed:

c[n] = gMax Dδφ[n]− g[n, γτint] (31)

where c is the control value, and gMax is the maximum value of

g. The weighting function g depends on the product between

the integration time τint and γ. Finally, the control value

updates the current parameter γ:

γ̂[n] = γ[n] + c[n] (32)

where γ̂ is the updated ratio between the steady-state process

noise variance qa and the carrier phase measurement variance

Rφ. To avoid possible noise instabilities, γ̂ goes through a

Schmitt trigger:

γ[n+ 1] =





6
5BPLL0

ifn = 0

γ̂[n] + ∆ if γ̂[n]− γ[n] ≥ ∆

γ̂[n]−∆ if γ[n]− γ̂[n] ≤ ∆

γ[n] otherwise

(33)

where ∆ is the update step set to 0.5 Hz, and BPLL0
is the

initial loop bandwidth of the PLL set to 8 Hz.

The selected weighting function g is the one that presented

best results in the adaptive PLL architecture [20]:

g[n, γτint] =

[
0.014
0.086

]T [
Sig (50 (γτint − 0.06))
Sig (250 (γτint − 0.36))

]
(34)

Abs. Mean

Estim.

Stand. Dev.
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Stand. Dev.

Estim.

Norm.
Control

Logic

Weighting

Function

+

÷ (·)2

Schmitt

Trigger

z−1

δφ[n]

|µδφ[n]|

σδφ[n]

D̄δφ[n] c[n]

γ[n]

γ̂[n] γ[n+1]

LOOP-BANDWIDTH CONTROL ALGORITHM (LBCA)

g[n, γτint]

δf [n] σf [n]

Rφ

Rf

Fig. 2: LBCA architecture used in the LUT-DSKF of a FAP

tracking scheme.



where Sig is the Sigmoid function [32]. To reduce the

Sigmoid’s complexity, the piecewise linear approximation of

nonlinearities (PLAN) technique is used [20], [33].

The standard deviation estimation of the frequency discrim-

inator’s output is required to calculate the ratio between Rδφ

and Rf . Due to this operation, the LBCA used in the FAP

requires an extra division and multiplication compared to the

LBCA implemented in the PLL [15]. The ratio between Rδφ

and Rf and γ update the steady-state Kalman gains of the

FLL {β0, β1, β2} (see Equation (29)). Figure 3 presents the

architecture of the LBCA-based LUT-DSKF.

Comp.
zφ[n]

FLL

δf [n]

PLL

δφ[n]

LBCA

γ[n+1],
Rφ

Rf

γ[n+1]

NCO

φ̂[n]

Fig. 3: Adaptive LUT-DSKF of a FAP tracking scheme using

LBCA.

IV. RESULTS

This section describes the test setup to evaluate the LBCA-

based LUT-DSKF in the FAP and the PLL and presents the

static and dynamic tracking performance results. The dataset

used to plot the presented results is available on the cloud [34].

A. Evaluation Setup

The evaluation setup is the same as in previous studies [15],

[20], [23], [35]. The Spirent GSS9000 radio-frequency con-

stellation simulator (RFCS) generates controlled scenarios at

different C/N0 and signal dynamics levels. The simulator is

configured to perform 20 minutes simulations of a specific

scenario at different C/N0 levels. A static scenario and a

dynamic scenario are selected to evaluate the adaptive DSKFs.

In the static scenario, the Global Positioning System (GPS) L1

C/A signal of satellite vehicle (SV) 4 is selected to evaluate

the static tracking performance. For the dynamic scenario,

the GPS L1 C/A signal of SV 17 is used to evaluate the

dynamic tracking performance. The maximum line-of-sight

(LOS) signal dynamics for this dynamic simulated scenario

is 8.7 g/s.

The simulator is connected to the GOOSE© platform: a

GNSS receiver with an open software interface [25], [36]. The

tracking stage of this GNSS receiver is partially implemented

in hardware (e.g., correlators and NCO) and software (e.g.,

discriminators and loop filters). Once the acquisition coarsely

estimates the frequency doppler fd and the code phase τ , the

FLL and the DLL try to achieve a more accurate synchro-

nization. The FAP is enabled when a more refined estimate

of fd is achieved. At this stage, the receiver performs the

synchronization with the navigation data and the integration

time increases to the symbol period. Since the evaluation is

done using GPS L1 C/A, the integration time is increased to

20 ms.

The complexity of the LUT-DSKF is similar to the standard

STL since the Kalman gain calculations are removed by

calculating directly the steady-state values [15]. The LBCA-

based LUT-DSKF in the FAP tracking scheme is implemented

in software. This section evaluates the LBCA-based third-order

LUT-DSKF in the FAP and the PLL tracking architectures.

B. Tracking Performance

The tracking performance PTracking evaluates the tracking of

a single SV. This metric is the same as in previous studies [15]:

PTracking = (σδφ − σLB) · λ (35)

where λ is the wavelength of the GNSS signal, σδφ is the

average of the last ten minutes un-smoothed carrier phase

error’s standard deviation, and σLB is the square root Cramér-

Rao bound (CRB) of the carrier phase estimation.

The carrier tracking error difference upper threshold,

Pth
Tracking is calculated using the three-sigma rule-of-thumb σth

δφ:

Pth
Tracking =

(
σth
δφ − σLB

)
λ (36)

For a two-quadrant phase discriminator, σth
δφ has the follow-

ing value in cycles:

σth
δφ =

1

24
(37)

A low value of PTracking indicates good tracking perfor-

mance. If the measured PTracking is lower than Pth
Tracking, one can

ensure a stable tracking and no cycle-slips [1]. The opposite

case means that the probability of losing the lock increases.

Figure 4 presents the tracking performance of the LBCA-

based LUT-DSKF in the FAP and the PLL. On the one hand,

the carrier tracking error difference, PTracking, in meters is

depicted in Figure 4a. Both adaptive PLL and FAP tracking

architectures maintain the tracking lock until 24 dBHz. An

improvement bias of the adaptive FAP is observed with respect

the adaptive PLL. However, this bias is almost negligible, and

it can be concluded that both algorithms perform similarly

in the static case. It was expected that the noise addition

of the frequency measurement would lead to worse tracking

performance of the FAP configuration. Interestingly, the FAP

achieves similar tracking performance.

On the other hand, Figure 4b shows the dynamic tracking

performance of the adaptive PLL and adaptive FAP. Both

architectures maintain the carrier lock until 32 dBHz. At

28 dBHz, both techniques lose the lock, but a lower value

of PTracking is observed in the adaptive FAP compared to the
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Fig. 4: Tracking performance using LBCA-based LUT-DSKF in PLL and FAP tracking schemes.
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Fig. 5: Standard deviation of phase discriminator’s output in

dynamic scenario (SV G17) at 28 dBHz.

adaptive PLL. To answer this behaviour, Figure 5 a closer look

of the un-smoothed carrier phase error’s standard deviation

is shown at 28 dBHz. The adaptive PLL loses lock just once

dynamics are present, halfway through the simulation, whereas

the adaptive FLL resists the high dynamics until the last three

minutes of simulation. This observation explains the lower

value of PTracking in the adaptive FAP.

V. CONCLUSION

This paper evaluates the tracking performance of an adaptive

third-order LUT-DSKF in the FAP tracking scheme using a

single LBCA. First, the relation of the DSKF in the FAP is

analyzed by explaining the system and measurement model,

the state space model, and the transfer function. Second, to

reduce the complexity of the DSKF, the convergence of the

Kalman gains is calculated solving the DARE, deriving the

so-called LUT-DSKF. From this simplification, a relationship

between Kalman gains based on the ratio parameter γ has

been observed (see Equation (29)). Third, the response time

of the LUT-DSKF is adapted through γ using the LBCA.

Fourth, the static and dynamic tracking performance of the

LBCA-based LUT-DSKF in the FAP and in the PLL tracking

architectures are presented. The results show that the adaptive

FAP mantains a similar static performance compared with the

PLL, but achieves a significant improvement in the dynamic

performance.

The inter-dependency between FLL and PLL coefficients in

a FAP architecture is one of the main findings of this paper.

This inter-dependency benefits the implementation of a low

complex adaptive technique using a single LBCA. Another

important observation is the fact that it is not necessary to set

the third coefficient of the FLL, β2, to zero, as it is usually

done. In fact, while deriving the DARE, one can observe that

β2 equals to zero is not the optimal configuration.

An extension of the presented tracking architecture is a

LUT-DSKF adapted to a multi-frequency tracking architec-

ture. The use of the LBCA in this architecture cannot only

improve the tracking performance in dynamic and noisy sce-

narios, but it is also a good candidate for multi-path detection

and mitigation.
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