
Received 20 October 2022, accepted 31 October 2022, date of publication 9 November 2022, date of current version 17 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221130

Visualizing Microservice Architecture in the
Dynamic Perspective: A Systematic
Mapping Study
MIA E. GORTNEY 1, PATRICK E. HARRIS 1, TOMAS CERNY 1,
ABDULLAH AL MARUF 1, (Member, IEEE), MIROSLAV BURES 2,
DAVIDE TAIBI 3,4, AND PAVEL TISNOVSKY5
1Computer Science Department, Baylor University, Waco, TX 76798, USA
2Computer Science Department, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 36 Prague, Czech Republic
3M3S Group, University of Oulu, 90570 Oulu, Finland
4Cloudsea Group, Tampere University, 33100 Tampere, Finland
5Red Hat, 612 00 Brno, Czech Republic

Corresponding author: Tomas Cerny (tomas_cerny@baylor.edu)

This work was supported in part by the National Science Foundation under Grant 1854049, in part by the Red Hat Research
https://research.redhat.com, in part by the Ulla Tuominen Foundation (Finland), and in part by the Academy of Finland under
Grant 349488-MuFAno.

ABSTRACT As microservices become more popular, more drawbacks become apparent to developers.
One issue that many teams face today is the failure to visualize the entire system architecture holistically.
Without a full view of the system, the architecture can become convoluted as teams add and subtract from
their system without reconciling their changes. One established practice to determine a view on the entire
system involves dynamic analysis of microservice interaction and dependencies. In this mapping study,
we investigate dynamic analysis as a way to visualize system architecture. Capturing the architectural view
with dynamic analysis has the ability to build the system and then show its behavior at run-time. We identify
dynamic analysis techniques, the corresponding tools, and the models that these practices can generate. The
findings of this study are relevant to developers of decentralized systems looking for a way to visualize their
system architecture in a dynamic perspective.

INDEX TERMS Architecture visualization, dynamic analysis, microservices.

I. INTRODUCTION
The industry adoption of microservice architecture has accel-
erated rapidly.1 Microservices have solved many of the issues
faced by traditional, monolithic systems. The segmentation
of a system into small, independently deployable elements
aids in the development process and production environment.
With microservices, developer teams can work independently
in building the system, even utilizing distinct languages and
frameworks. In production, services can easily be duplicated
to save costs by dynamically managing high workloads or
replacing malfunctioning services. Overall, these benefits

The associate editor coordinating the review of this manuscript and

approving it for publication was Walter Didimo .
1https://www.oreilly.com/radar/cloud-adoption-in-2020/

help to decrease development timewhile increasing profit and
uptime, which is why so many companies, such as Amazon,
Netflix, and Spotify, have taken advantage of microservices.

While microservices solved many of the issues faced by
monolithic systems, new problems have arisen. One major
problem is the system decentralization that is crucial to a
microservice framework. Such decentralization makes it dif-
ficult to create and maintain a unified view of the system.
Without a centralized system view, individual parts could
be well maintained with issues that appear when the parts
interact. There could be inefficiencies and smells that grow
over time as the system evolves [1] and possibly unintention-
ally degrades. There is also no guarantee that the prescribed
system layout matches the actual run-time view of the sys-
tem [2]. A visualization that could illustrate systems based on

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 119999

https://orcid.org/0000-0003-1834-8833
https://orcid.org/0000-0002-3675-239X
https://orcid.org/0000-0002-5882-5502
https://orcid.org/0000-0001-5610-5483
https://orcid.org/0000-0002-2994-7826
https://orcid.org/0000-0002-3210-3990
https://orcid.org/0000-0002-4379-6059


M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

microservice architecture from a high level would make the
system more understandable, fault-tolerant as well as easier
to manage, extend and adapt to evolving needs.

As with most systems at runtime, even microservices gen-
erate event logs; log messages can be coded by developers
or instrumented by tools into the system code or binary.
Despite the decentralization, in production environments, all
generated log data is typically aggregated into a centralized
log to facilitate system debugging. Similarly, monitoring of
microservices is in place in production, collecting various
runtime metrics into a central focal point. This centralized
run-time data is an ideal candidate to be used by tools
to reconstruct the interactions between services and help
uncover the system-centered view of the system architecture.
Visualizing the system architecture is one possible approach
to verify if the actual architecture of a microservice-based
system resembles the prescribed one. For this purpose, dif-
ferent works recently proposed visualizations to represent
the system at runtime. However, there are not yet reviews or
summaries of the different types of visualization.

Our work aims at providing a comprehensive overview
ad a classification of the different approaches proposed to
visualize the architecture of amicroservice system at runtime.

We specifically investigate five aspects: 1) What dynamic
analysis methods can be used to visualize a microservice-
based architecture; 2) What are the available dynamic analy-
sis tools that provide an architectural visualization; 3) What
are the features and properties of these tools; and 4) what
information can be extracted when visualizing the software
architecture. Understanding these aspects represents a crucial
challenge for software engineering. The results of our work
can indeed inform researchers and practitioners on the exist-
ing microservice architectural visualization tools and their
characteristics so that they can make informed decisions on
what of them to adopt when starting the development of a new
system.

We address our goal with a systematic mapping analy-
sis of the literature [3]. Through this process, we identify
and classify the existing literature on the visualization of
microservices-based architecture using tracing data. Starting
from a total amount of 562 resources identified by querying
four, we ended up with the analysis of 20 primary papers
that contributed to addressing the research goals of the study.
We report the results achieved when considering our four
research angles, concluding with a set of recommendations
and lessons learned that may drive future researchers and
practitioners interested in visualizations of the microservices-
based architecture at runtime. Last but not least, we high-
lighted the gaps in current practices and tools and suggested
steps that can be taken to create more enhanced and robust
visualizations.

The remainder of this paper is organized as follows.
Section II gives a general background on microservices,
software architecture reconstruction (SAR), and dynamic
analysis. Section III summarizes similar mapping studies
that have been performed in this field. Section IV describes

how the authors collected the relevant papers on visualizing
architecture. Section V answers the research questions listed
in section IV. Section VI discusses challenges in this field
of research and potential gaps to be filled in the future.
Section VII discusses our results and begins to form final
conclusions. Section VIII details any threats to the validity of
our study and what steps were taken to mitigate those threats.
Finally, we conclude the paper in section IX with a general
summary of our contributions.

II. BACKGROUND
A microservice-based system is characterized by a makeup
of distinct containers, also commonly called services. Each
container is an independent part with a small but specific
responsibility to play in the overall system. Services can
communicate with each other using lightweight protocols,
but good design principles dictate that they should depend
on as few other services as possible in order to maintain low
coupling. Containers also are self-contained environments
meaning they do not require a full operating system to run,
so one physical machine can support many containers with
little overhead. Similarly, connected services can also be
deployed across multiple physical machines. Microservices
take advantage of three-tiered architecture with service end-
points at the top, business logic in the middle, and data
persistence at the bottom.

Over time, large microservice-based systems tend to have
services added, modified, moved, or removed, making the
system more difficult to maintain and introducing possible
regression and technical debt. These changes are often per-
formed by numerous developer teams, each working on a
specialized part of a system that can contain thousands or
tens of thousands of different containers. As the system grows
more complex, the architecture drifts from its intended view
in a process called software architecture erosion [4]. As the
name suggests, this process can erode, or degrade, the perfor-
mance of the system by introducing various inefficiencies or
anti-patterns. To mitigate the effects of software architecture
erosion, it is necessary to visualize or reconstruct software
architecture in order to capture an entire, holistic view of the
system.

To reconstruct software architecture, both static and
dynamic analysis [5] can be used. Static analysis takes the
code base and attempts to reconstruct the architecture using
the system data recorded in the source code and other arti-
facts. As opposed to dynamic analysis, it does not execute
the system. Dynamic analysis is performed by executing the
system on sufficient inputs without extracting system data
from the source code but rather by considering generated
logs or collected run-time metrics. To collect sufficient run-
time data, the inputs on which the system executes might be
in the form of tests that intend to cover all possible system
interactions; or for the software architecture reconstruction
process, many approach resort to using production traffic.
The produced run-time data include event logs, and traces,

120000 VOLUME 10, 2022



M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

to identify the interactions among different services, consid-
ering how the system operates.

In dynamic analysis, data from system artifacts produced
at run-time are aggregated and analyzed to reveal physical
or logical connections between system parts. Cerny et al. [6]
reviewed the benefits and drawbacks of dynamic analysis for
reconstructing software architecture. Dynamic analysis relies
on traffic from the system at run-time instead of inspect-
ing code, meaning that dynamic analysis can be language-
independent and analyze a system that consists of many
different code bases. Additionally, dynamic system analysis
can capture complex behaviors and performance metrics that
cannot be extracted from static code.

On the other hand, Cerny et al. [6] conclude dynamic anal-
ysis is only as reliable as the data produced by the system in
a given timeframe being analyzed. If a specific call contained
in the code is never executed, it would be lacking from a
reconstructed architecture.

This paper reviews research works applying dynamic anal-
ysis to provide a holistic system view of a microservice
system, evaluates practical tools to do so, and determines
what gaps exist in these practices.

III. RELATED WORK
Research into visualizing software architecture has mainly
been conducted with a focus on static analysis and exami-
nation of source code. Some research into traceability as a
practice has been done but not extensively.

Mattila et al. conducted a study in [7] on 83 articles
from 2010 to 2015. They focused on using static analysis
to capture metrics within the source code, such as coupling,
code complexity, and cohesion. These metrics can then be
visualized. This study found that the three main themes of
visualization are interaction, methods used, and tools. These
themes are then most related to graph and tree visualizations.

Salameh et al. found in [8], composed of 29 studies
between 2002 and 2014, that there were several different
concepts to base visualizations on: graph-based, notation-
based, matrix-based, or metaphor-based. Graph-based visu-
alizations are denoted by nodes and links that capture the
structural relationships of the software. The notation-based
method uses notations such as Unified Modeling Language
to illustrate the inner workings of the software. Matrix-based
visualizations use matrices to display detailed dependencies
between two modules, and metaphor-based uses an anal-
ogy to better illustrate an object-oriented system and its
evolution.

While static analysis is most commonly used in software
visualization, research has been done on identifying traceabil-
ity between source code and design artifacts. Javed and Zdun
discovered in [9], which is composed of 11 studies between
1999 and 2013, that there are different techniques for iden-
tifying traceability in source code. One of these techniques
is model-based traceability. Model-based traceability focuses
on providing links between pieces of source code and the
component in themodel they represent.When the source code

changes, the model changes. A similar technique was uncov-
ered by Aung et al. in [10], which is made up of 33 studies up
to the year 2019. In this study, they identify traceability as an
integral part of software change impact analysis, also called
CIA. To recover traces to be used in a model, there are four
different approaches: information recovery, heuristic-based,
machine learning, and deep learning. Traceability based on
information recovery is most similar to dynamic analysis,
which is covered extensively in this study. Our study will
be the first to cover the research on visualizing architecture
through dynamic analysis as a singular topic.

IV. MAPPING STUDY METHOD
In this study, we used a structured procedure to collect and
synthesize the research works on visualizing architecture
from a dynamic perspective. We followed the guidelines
presented by Petersen et al. [3]. Our complete mapping study
document can be found below,2 detailing our filtration and
mapping process.

In the first phase of our mapping study, we defined a set of
research questions to acquire an extensive understanding of
our topic. Next, we identified the search terms for querying
across different indexing sites. Once all papers were gath-
ered, we manually filtered through out-of-scope papers by
using the exclusion criteria and reading through the titles and
abstracts. Finally, we rigorously analyzed the filtered list of
papers to answer the research questions.

The research questions we examined in this mapping study
are as follows:
RQ1 What dynamic analysis practice can be used to visual-

ize software architecture involving microservices?
RQ2 What dynamic analysis tools currently exist?
RQ3 What are the tools’ features and properties?
RQ4 What information can be extracted when visualiz-

ing architecture and how can that information be
represented?

We used four major indexing sites and portals (indexers),
namely IEEE Xplore, ACMDigital Library (DL), ScienceDi-
rect, and SpringerLink. We tailored our search queries to
look for papers related to visualizing architecture and the
dynamic perspective. We divided our search query into three
parts. In the first part of our query, we included the search
term ‘‘visual’’ along with the related terms ‘‘dashboard’’,
‘‘graph’’, ‘‘view’’, and ‘‘model’’. In the second part, we used
terms related to dynamic perspective including ‘‘dynamic’’,
‘‘run-time’’, and ‘‘runtime’’. For the last part, we added the
term ‘‘microservice’’ to refine our results to only distributed
systems. We avoided using terms such as ‘‘tracing’’, ‘‘pro-
cess mining’’, and ‘‘logging’’ as these terms are specific
methods for gathering information to visualize microservice-
based systems. Instead, we wanted to keep our query broad
in order to encompass all techniques for data extraction and
visualization. The full search query is presented in Listing 1

2https://bit.ly/3Rz0lsC

VOLUME 10, 2022 120001



M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

TABLE 1. Related work research questions.

and returned a total of 562 results across the indexing sites as
shown in Table 2.

Listing 1. Search query for the indexers.

To vet works based on their relevance, we used the follow-
ing inclusion criteria:
1. Papers that involved discussion of process mining or log

analysis
2. Papers that involved discussion of distributed tracing
3. Papers that reviewed existing dynamic analysis tools
4. Papers that introduced new dynamic analysis tools

We also filtered out non-relevant papers using the following
exclusion criteria:
1. Papers that were in non-English languages
2. Papers without available full-text
3. Papers published before 2010
4. Papers that were not peer-reviewed
5. Papers that were duplicate results

Using the exclusion criteria to filter through papers first, the
final result was 75 papers. After reading through all titles
and abstracts of the ones remaining, we narrowed the set of
papers down to 35. Then, we went through the related work
section of the remaining papers to include relevant studies
that the search query omitted. We included 5 papers through
snowballing. The final step of the filtering process was to
read fully through all remaining papers. This step resulted in
20 papers for the final total.

An overview of our search and filtering process is given in
Figure 1. The number of papers returned by search queries for
different indexers can be seen in Table 2. The complete list of
filtered results is listed in Table 3 along with the papers we
found by exploring related work sections. Once we narrowed
down the relevant works to 20 papers, we studied them to dis-
cover dynamic analysis techniques to visualize architecture
effectively along with tools to accomplish these practices.

Our full-text study process included matching the texts to
our research questions and our inclusion criteria. If the text

TABLE 2. Search query results for various index sites.

did not answer the research questions or match the inclusion
criteria, it was discarded.

To answer our first research question, we focused on iden-
tifying if a study focused on a specific dynamic analysis
practice and how it was using that practice to visualize archi-
tecture. This research question coincided with our process
mining and tracing inclusion criteria points because we knew
both were defined dynamic analysis techniques. To answer
our second and third research questions, we looked for spe-
cific tools that accomplished visualization through dynamic
analysis. We made a distinction between new tools and old
tools that would need an extension with our inclusion criteria.
To answer our fourth research question, we searched for
specific graphs or models that could successfully capture the
information collected to provide visualization. We kept our
study open to models or graphs that would need to be built
upon as well.

To identify the dynamic tools available (RQ2), two authors
looked individually for tools in the selected papers. In case of
disagreements, a third author helped to discuss and to make
a decision, obtaining a total of 8 tools. Moreover, we decided
to look beyond the scope of research into what tools are
being used in the industry. We used a Google search with
the query ‘‘microservices visualization tool’’ to see what was
available in the grey literature. Google returned 167 results.
After the application of our inclusion and exclusion criteria,
we narrowed down the list to 5 new tools. Similarly, the
results were screened by two authors, with the help of a third
author, to solve disagreements. We finally selected a total of
13 tools (8 from the selected publications and 5 fromGoogle).
Each visualization tool and its features can be seen in Table 6.

120002 VOLUME 10, 2022



M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

FIGURE 1. SLR process at each step.

TABLE 3. Final list of the 20 primary studies identified by search process.

After the identification of the list of tools, we manually
extracted the information to answer RQs 3 and 4.

V. RESULTS
Out of 562 papers returned by the search, there was a small
number of relevant works available. The majority of the
papers considered visualizing architecture theoretically, not
practically. There was also a big focus on detecting anoma-
lies, which is an advantage of visualizing architecture but
not the main focus. Only 20 papers were considered for the
final analysis (Table 3). This section presents the findings
of the study by answering the research questions in separate
subsections.

A. RQ1: CURRENT DYNAMIC ANALYSIS TECHNIQUES
To attain an architectural run-time view, one must use
dynamic analysis. This section describes three different
dynamic analysis techniques: process mining, distributed
tracing, and monitoring. A brief description will be given as
well as any advantages or disadvantages that arose during our
research. Table 4 gives an overview of the dynamic analysis
techniques and their corresponding references.

1) PROCESS MINING (LOG ANALYSIS)
One of the most common practices we found is process
mining, also referred to as log analysis. It is a proce-
dure that involves reading through event logs as the sys-
tem is running and extracting information about the system.
Mazak et. al. [25] defined three techniques in process mining:
the discovery technique, the conformance checking tech-
nique, and the enhancement technique. The discovery tech-
nique is the process of extracting a process model directly
from log data. The conformance-checking technique is the
process of connecting an event log with an existing process
model. The enhancement technique is the process of changing
or extending a process model [25].

The procedure of analyzing log messages is relatively
simple. Zuo et al. [29] describes the iterative partitioning
log mining method (IPLoM). This method processes log
messages vertically and aligns each term along a potential
subset. Another method is looking for calls to other services.
Finding and parsing these messages allows information to be
extracted and then visualized into different models. One com-
mon visualization of process mining is the business process
diagram, which will be discussed more in Section V-D [20].
Since many decentralized systems already use centralized

VOLUME 10, 2022 120003



M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

logging platforms, i.e., Splunk,3 process mining tools are
easy to set up. Additionally, since process mining orders log
messages by time [25], a linear flow of the system from end-
point to endpoint can be derived (more often, however, using
tracing), as well as bottlenecks within the flow. A drawback
to this procedure is it can only find relations between services
based on the event logs. Many services may not log every call
made, meaning resulting visualizations may be incomplete.
Along the same lines, many logs may not be detailed enough
or contain information that is too low-level to provide more
than a basic understanding of the functioning of the overall
system [26]. As a result, a process mining approach can only
be as good as the quality and quantity of the event logs.

2) DISTRIBUTED TRACING
Another common practice in dynamic analysis that can be
identified in the current approaches is distributed tracing.
Distributed tracing involves labeling a request with a unique
identifier and using this identifier to follow the request as it
moves throughout a system [12]. Since the request maintains
its unique identifier in header information, it can be tracked
as it moves through multiple services across many machines,
like in a decentralized system.

Distributed tracing follows a five-step procedure of tracing
and analysis. The five steps are logging, collection, prepro-
cessing, storage, and analysis. The messages involving the
trace or correlation ID are recorded and collected. They are
preprocessed and then sent to storage where they are ana-
lyzed [21]. These traces can be used to visualize architecture
dynamically as they capture system workflow and record
services and dependencies while the system is running [12].

One issue that distributed tracing has encountered over the
years is the lack of a standard protocol for collecting and
sending data to tracing tools. To fill this gap, the OpenTrac-
ing4 and OpenCensus5 standards were created. OpenTracing
is a vendor-neutral API that allows the sending of telemetry
data to a tool like Jaeger6 or Zipkin.7 OpenCensus is a set of
language-specific libraries that developers use to instrument
their code for sending to tracing tools.4 These standards com-
bined to form OpenTelemetry,8 which allows for a platform
that developers can use to format their information to send to
an observability tool. Once the information is sent to the tool,
metrics, and visualizations can be extracted from the data.

Distributed tracing is a completely dynamic process in
that it does not record data when the system is not running.
This caveat is what puts tracing at a disadvantage. When
visualizing services and the connections between them, dis-
tributed tracing only focuses on the components currently
in use. To combat this disadvantage, tracing information
would have to be stored continuously, and the system would

3https://www.splunk.com/
4https://opentracing.io
5https://opencensus.io
6https://www.jaegertracing.io/
7https://zipkin.io
8https://opentelemetry.io/docs/concepts/what-is-opentelemetry/

TABLE 4. Dynamic analysis techniques and corresponding references.

need to be built upon over time. Processing in this way can
quickly become a problem due to the sheer volume of tracing
data [12], [17].While this disadvantage exists, it does not out-
weigh the many advantages of distributed tracing. Keeping
track of system traces when visualizing architecture allows
for an extension of functionality. Traces can be used to iden-
tify high coupling, cyclic dependencies, and other inherent
problems [12], [22]. Anomaly detection through tracing can
be essential to developers as they are building their system,
which makes tracing an integral part of system architecture
reconstruction [30].

3) MONITORING
The last principal dynamic analysis practice that can be iden-
tified is monitoring. Monitoring is a detection process that
can be used in two different ways. The first way is scanning
for systemmetrics and dependencies as the system is running,
similar to tracing [13]. The second way is detecting changes
in the system and updating the system model accordingly.

The monitoring practice can capture multiple kinds of
metrics in order to fully understand the system. Numerical
metrics, such as the number of bytes sent between containers;
categorical metrics, like names and labels; and ontological
metrics, which represent the hierarchy of similar concepts,
can all be captured using monitoring [13]. These metrics can
be used to visualize connections between services and the
activity that happens between them. They can also be used to
detect future problems in the system, such as high coupling,
and allow developers to fix those issues before they continue
developing further [4].

System evolution is the most common use of the moni-
toring practice. Heinrich [18], [19] describes the iObserve
approach, which involves the Monitor, Analyze, Plan, and
Execute process (MAPE). By following this process, the
system can automatically update the model as changes are
made [19]. This feature can pose a problem if the develop-
ers cannot reconcile the new and old models. So, iObserve
proposes a metamodel that can keep track of the old model
and compare it to the new one [18]. Tracking changes at run-
time is something that is unique to the monitoring approach
and sets it apart from the other dynamic practices. Building a
system architecture is a great start to visualizing architecture
but monitoring changes and updating accordingly is also an
important part of creating the system view.

B. RQ2: ARCHITECTURE VISUALIZATION TOOLS
USING DYNAMIC ANALYSIS
Visualizing architecture from the dynamic perspective
involves employing different practices, including log analy-

120004 VOLUME 10, 2022



M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

FIGURE 2. Logical architecture generated by microart [15].

sis, distributed tracing, and monitoring. In a practical sense,
tools are needed to carry out these procedures and accom-
plish a true visualization of the architecture. In this section,
examinations of some outstanding tools will be detailed.

1) MICROART
It is an architecture recovery tool that is capable of recovering
both the physical and logical architectures of the system.
The physical architecture is the overall abstraction, while
the logical architecture is related to service discovery [15].
MicroArt divides its initial visualization process into three
phases which are extraction, abstraction, and presentation.

The extraction phase is divided into static and dynamic
analysis. The system name, its developers, and the service
descriptors are retrieved with static analysis, while dynamic
analysis extracts the communication logs and the container
information [16]. The dynamic analysis is carried out by
a monitoring tool that collects the information and a log
analysis tool that filters it. The abstraction phase focuses
on regrouping and filtering the information gathered in the
extraction phase to map to MicroArt’s domain-specific lan-
guage (DSL) [16]. The presentation phase involves taking the
components defined in the DSL and visualizing an architec-
tural model. After modeling the initial architecture, MicroArt
uses service discovery resolution to further refine the model
and showcase the system’s behavior in the logical architec-
ture [16]. MicroArt accomplishes this by utilizing tracing
to understand the system’s actions at run-time. An exam-
ple of the architecture generated by MicroArt can be seen
in Figure 2.

MicroArt uses all three techniques discussed in Section V-A
to capture a system’s architecture. In the future, the develop-
ers plan to extend this tool by supporting the use of other tools
in its processes. They have also expressed they will continue
to test it on open-source platforms to further strengthen its
capabilities [15].

2) DAPPER
It is a tracing program developed by researchers at Google.
It was designed with low overhead, application-level trans-
parency, and scalability inmind to provide ubiquitous deploy-
ment and continuous monitoring [27]. The approach Dapper
uses provides a black-box view of the systemwithout the need
for additional annotations or application-level modifications.

Dapper organizes trace information into spans, trees, and
annotations. A single span exists for every remote procedure
call, and each span records annotations provided by Dapper’s
instrumentation library to implement a detailed trace. Support
is available for the addition of custom annotations to record
data that may be more specific to a certain system. Dapper
implements its instrumentation by recording the context of
callbacks in common libraries [27]. Span data is then written
to local log files, pulled from each host by Dapper daemons,
and written to a Dapper Bigtable repository [27]. The causal
and temporal relations between spans are then plotted on a
graph to illustrate the connections among services. The data
is filterable by certain time windows and clusters to provide
a fine level of control, and each trace is visible along with
how long each trace took. A diagram of Dapper’s process
collection procedure can be seen in Figure 3.

Dapper is very low-level, which can be useful in determin-
ing exactly what procedure calls are bottlenecks in the sys-
tem, but a higher-level abstraction would be better to have an
understanding of the system as a whole. There are also cases
where Dapper is unable to follow the control path directly,
meaning manual trace parsing may be necessary [27].
However, Dapper’s approach in combining multiple traces
into a single repository is unique in the field and useful in
troubleshooting a system with low overhead as an added
benefit.

3) JAEGER AND ZIPKIN
Both are popular open-source distributed tracing systems.
They are designed for mid-to-small-sized distributed sys-
tems [17]. The framework for both Jaeger and Zipkin is meant
to be reusable and capture traces on a smaller scale [14]. The
system stores the original trace information and visualizes a
single trace at a time [17]. Jaeger creates a tree-like structure
similar to themodel produced byDapper, while Zipkin imple-
ments its own data model [14]. An example of Jaeger’s trace
and span comparison graph can be seen in Figure 4. Both of
these tools have been used several times in combination with
other tools to visualize system architecture, but on their own,
the volume of traces needed is too much for the system [12].
While both of these tools are great for tracing on a small scale,
their functionality is not exactly what we are looking for in
our study of visualizing architecture.

4) KIALI
It is a visualization platform for Istio servicemeshes.Multiple
types of topology graphs to visualize the system are produced

VOLUME 10, 2022 120005



M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

FIGURE 3. Dapper process collection [27].

by Kiali as a means to provide developers with different
levels of granularity. These include a high-level service topol-
ogy, a low-level workload topology, and an application-level
topology.9 Each topology is organized by Kubernetes names-
paces to display the most relevant information to developers.
The flow of live traffic between services and the health of
each service is also displayed by Kiali.

Kiali uses Istio data collected by Prometheus to produce
its graphs.5 Istio is an extension of Kubernetes used to aid
with microservice deployment and operation. Information is
provided to Kiali from tracing tools like Jaeger, container-
level service data, health indexes, and other sources through
the implementation of Istio proxies throughout the system
that can intercept requests.5

Since Kiali is made to work on top of Istio and relies on
information from Istio to construct a visualization, it cannot
easily be extended to support other microservice-based sys-
tems. Additionally, while Kiali provides different levels of
abstraction to view the system, all of the levels are funda-
mentally still dependency-graph views [28]. This means Kiali
lacks visualization ofmore complex causally-related data that
can be provided by tracing.

5) OTHER PUBLICLY AVAILABLE TOOLS
After extensive research, we have determined that there are
few well-researched tools for architecture visualization in
the dynamic perspective. In order to fully understand what
instruments are available to practitioners and in addition to
the systematic mapping study, we also performed a Google
search using similar terms to Listing 1 to identify tools used
in the industry.

One found microservice system visualization tool is Data-
Dog. It is a monitoring and security platform for microser-
vices that has a visualization tool built into it.10 This
platform allows for microservices to be visualized and moni-
tored in real-time. Changes are constantly being tracked, and
the graph is subsequently updated. This tool is focused more
on identifying problems in efficiency or during run-time, but
visualization is an important aspect of it.

9https://kiali.io/
10https://www.datadoghq.com/microservice-visualization/

FIGURE 4. Jaeger generated trace/spans.

ExplorViz is a visualization tool with the ability to cap-
ture live traces and generate two different views from their
analysis, the landscape-level and the application-level [31].
The landscape-level view provides an overall look at the
system, while the application-level view focuses more on one
specific application or service and its properties. ExplorViz is
completely open-source and has been used in several projects
within the industry, including PPI AG and Adesso SE.

Another open-source tool available to visualize micro-
services is Mosaic. Mosaic generates a service map that
allows for analysis of the health of the services and identi-
fication of dependencies.11 This tool also can track custom
events executed by the services and record them for anal-
ysis. Ortelius12 is similar to Mosaic because it generates a
dependency graph. Ortelius can also keep track of versions
for both the entire system and individual services through the
use of its proactive visualization maps.10 These maps are able
to provide a logical view of the system by which it can be
shared, versioned, and extended.10

C. RQ3: TOOLS’ FEATURES AND PROPERTIES
To adequately compare found tools and determine their
unique features and properties, we constructed a set list of
features to compare the tools across. We focused on two
aspects, the reconstructed view and the recovery technique.
For the view, we were looking for physical and logical
architecture recovery and service identification. We denoted
whether each tool utilized static or dynamic analysis to dif-
ferentiate between what kind of data could be visualized.
Process mining and distributed tracing were also included as
features to classify tools by the dynamic analysis techniques
they used. Lastly, we included whether a tool is open-source.
Through this research, we discovered thatmany tools focused
on distributed tracing as their dynamic analysis practice,
and process mining was less common. Physical architecture
recovery was also more common than logical architecture
recovery. Overall, most tools were able to accomplish phys-
ical architecture recovery and service identification through
the use of dynamic analysis. Table 6 compares each found
tool across a collection of features discussed above.

11https://bit.ly/3c1zipD
12https://ortelius.io/blog/2021/03/26/microservice-monitoring-and-

visualization/

120006 VOLUME 10, 2022



M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

TABLE 5. Tool comparison across list of analysis approaches (RQ1).

TABLE 6. Tool comparison across list of features.

D. RQ4: EXTRACTING INFORMATION WITH
ARCHITECTURE VISUALIZATION
Through dynamic practices, such as process mining,
distributed tracing, and monitoring, information about a
distributed system can be collected. Using the architecture
visualization tools previously discussed, this information can
be captured in different types of models and graphs. This
section will describe which models can be visualized in this
way and what benefits each model offers, thus answering our
fourth research question. Table 7 gives an overview of the
models and graphs and their corresponding references.

1) SERVICE DEPENDENCY GRAPH
During our study, we found the most commonly extracted
model is the service dependency graph (Figure 5). It visu-
alizes the microservices and the connections between them,
which are also known as dependencies. This kind of model
can be extracted using information obtained from log anal-
ysis, distributed tracing, or monitoring. The service depen-
dency graph is an important step in a process known asGMAT
(Graph-based Microservice Analysis and Testing) [24]. After
creating this model, cyclic dependencies can be detected, and

FIGURE 5. Service dependency graph.

microservice retrieval can be enabled to reuse services rather
than creating new ones [23], [24]. The advantage of a model
like this is it is easy to understand and generate. It also allows
the opportunity for extension, as described below.

Abdelfattah [11] describes a way to capture this graph
in a 3D environment. By implementing this 3D model, the
developers would be able to see the system from differ-
ent angles and move the services around to create different
topologies [11]. In this proof of concept, three levels are

VOLUME 10, 2022 120007



M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

FIGURE 6. Business process model [20].

implemented: the system level, the service level, and the
function level. The system level is a high-level overview of
the entire system. The service level shows the perspective
of the system from the services side. The function level
attempts to visualize a UML communication diagram [11].
This study is one case of taking the service dependency
graph and extending it to capture more information about the
system.

2) BUSINESS PROCESS MODEL
This model is a graph describing business processes using
information obtained from process mining [20]. The model
follows multiple paths through the system, capturing the
remote calls to other services. The paths converge at the
end of the graph, producing one result. Process mining is
used to extract the information needed to form this graph.
By studying the origin and content of log messages, a par-
ticular path can be captured through the system [20]. This
graph has an advantage over distributed tracing because it can
capture multiple paths, while tracing can only capture one.
The business process model helps to capture dependencies as
well as detect anomalies, which is a key point of visualizing
architecture. Figure 6 is an example of a business process
model.

3) SERVICE ENDPOINT CALL GRAPH
The service endpoint call graph, also referred to as the
microservice call graph, resembles a tree, with each node
being a service endpoint and each edge being a remote
call [22]. These kinds of graphs are generated through dis-
tributed tracing. They do not capture the system as a whole,
but they can be used to partially construct the full system
architecture. The more detailed view allows developers to
get a low-level look at the system, which allows for anomaly
detection on a smaller scale [22].

FIGURE 7. Service dependency graph versus service endpoint call graph.

4) DIFFERENCES
The service dependency graph, business process model,
and service endpoint call graph are all ways of visualizing
microservice architecture through dynamic analysis. What
separates these visualizations? The service dependency graph
focuses more on the overall visualization of the system.
It showcases services and their dependencies through connec-
tions between nodes. Through the use of tracing and log anal-
ysis, this graph can be captured. The business process model
and service endpoint call graph both focus more on individual
traces with more information about the remote calls. The
business process model is more equipped to handle compli-
cated traces through multiple services, while the service end-
point call graph seems more suited for the smaller scale. The
service endpoint call graph is generated from tracing, while
the business process model is a result of log analysis. The log
analysis approach the business process model takes is more
suited to capturing messages than the service endpoint call
graph, which depicts REST calls. The service endpoint call
graph considers the dependencies between each endpoint
in a microservice whereas the service dependency graph
considers the microservice as a whole. Figure 7 illustrates
this distinction. In order to capture an entire visualization
with current behavior included, combining or extending these
representations is the logical next step.

TABLE 7. Models/Graphs and corresponding references.

VI. GAPS AND CHALLENGES
This section outlines challenges uncovered by other
researchers and offers potential solutions for future tools to
provide a more complete and comprehensive visualization of
microservice-based systems.

Heinrich [18] found that existing tools lack the ability
to update as the system undergoes structural changes. Sys-
tems may change during run-time for many reasons, such as

120008 VOLUME 10, 2022



M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

FIGURE 8. Summary of dynamic analysis approaches for microservices, mapped to identified tools
providing architectural visualization.

workload balancing or migration, replication, or dealloca-
tion of a container. Without a dynamic visualization, mod-
eled and actual views of the system may quickly grow
inconsistent.

Accordingly, tools should use real-time data to construct
a visualization of the system as it changes or evolves. Such
a tool could be useful for troubleshooting and root-cause
analysis. Likewise, another interesting angle could visualize
how a proposed change to the system would affect other
system parts. This change impact analysis can help develop-
ers debug potential issues with an architecture modification
before deployment of the new architecture.

Silva et al. [28] found that many available tools to recon-
struct and visualize software architecture focus on providing
a service dependency graph but do not take advantage of more
complex data. Oftentimes, different perspectives are needed
to get insight into the system beyond dependency graphs.

More enhanced visualizations are needed to utilize com-
plex, causally-related data and offer more intuitive designs.
A few examples might be a visualization capable of switch-
ing between different architectural views (perhaps combined
with static analysis), using a 3D space to better fit complex
systems, or creating interactive graphs that can be filtered and
searched through to better manage a large amount of informa-
tion. A tool capable of providing these functionalities would
be scalable to support the visualization of large architectures
with little added difficulty, flexible to supply varying points
of view of a system, and useful to quickly find the relevant
information needed.

Granchelli et al. [16] recommended the development of
component resolution modules in order to visualize non-
container system parts like databases, load balancers, and log-
ging services. To be able to record and visualize interactions

with non-service system parts would make visualizations
more complete.

Another avenue is to combine dynamic and static analysis.
MicroART begins to do this by combining dynamic analy-
sis with service names and descriptors found by analyzing
the codebase [16]. However, static analysis has a lot more
potential. Cerny et al. found that static analysis is much
better for understanding the system before deployment [6].
Since this is the case, the static analysis will not compete
for processing power with the system during runtime and
can be used to show the impact of a code change before it
is implemented. Another paper introduced Microvision [32]
to visualize microservices using static analysis. It was able
to generate a call graph in a three-dimensional AR virtual-
ization. Combined static and dynamic methods to generate
visualizations would yield a more reliable perspective beyond
what is visible at runtime.

VII. DISCUSSION
The analysis of the literature enabled us to identify three
dynamic analysis techniques (process mining, distributed
tracing, and monitoring) to reconstruct and visualize the
system architecture. Figure 8 summarizes the analysis
approaches, mapped to assessed tools, and provided archi-
tectural views. From the analysis of the literature, we were
also able to distill different observations and provide
recommendations.

A. RECOMMENDATIONS TO SYSTEM DEVELOPERS
It is obvious that systems produce logs, but it should be a
common best practice that each microservice system utilizes
tracing. This might require additional investment into an API
gateway or the use of a service mesh; however, the benefits

VOLUME 10, 2022 120009



M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

outweigh the investment when it comes to debugging the
system and understanding dependencies of log statements
that interweave in time across services. Thus, with teleme-
try vendor-neutral APIs like OpenTracing and OpenCen-
sus, such investment becomes feasible. Considering between
plain event logs and tracing should no longer be a question.
Building on such infrastructure enables many introduced
tools to determine visualized system-centered perspective.
In addition, monitoring can add valuable detail to such a
perspective.

B. RECOMMENDATIONS TO TOOL DEVELOPERS
Our recommendation is that both monitoring and distributed
tracing should be considered in future tools. On the other
hand, we believe that approaches based on plain logs without
tracing IDs are outdated for microservices and should not
be considered in future research. The benefits of dynamic
analysis are they come in the platform-agnostic format as
opposed to static analysis. However, for tracing, we still need
to add libraries to the microservice code to parse, embed, and
use the tracking ID. Platforms like Spring Cloud makes it
somewhat easy, but this is not yet the case for all platforms.
Similarly, monitoring can produce basic statistics; however,
for more details, we might need to influence the service
code.

Throughout this study, we have named tools that imple-
ment these dynamic analysis techniques. Most of the tools
use either a separate Docker container to instrument the sys-
tem from its own independent component or have a library
that must be included. The most commonly used languages
for these libraries are C#, Java, Go, Python, Ruby, and
JavaScript. Both of these approaches, as long as the library
supports numerous languages, make setting up these tools
fairly easy and straightforward as well as relatively platform-
independent.

1) CHOOSING THE RIGHT VISUALIZATION
The choice of a particular visualization should be driven by
the problem, perspective, or concern we target. We cannot
conclude that there is an obvious winner in what assessed
research literature presented. However, the most common
visual perspectives are business process models, models of
system topology, and service dependency models. These are
also easy to determine and are often provided as a by-product
of tools meant for distributed tracing and debugging.

The choice of the right visualization corresponds to the
anticipated system architecture description. There are dif-
ferent views to describe software architecture, and all are
important. Among examples are the domain view, the service
view, the topology, the used technology view, and data and
control flows. It might be important for domain experts to
analyze security or persistence, and they might need to recog-
nize logical components, services, the deployment topology,
etc. Considering that dynamic analysis sees microservices or
containers as black boxes, we cannot demand for unrealistic
expectations, such as a view with internal details. It is the task

of static analysis to provide the internal perspective. At the
same time, static analysis cannot describe how the system is
used because such data does not exist.

2) KEEPING IN MIND WHO IS THE TARGET USER
There is another perspective relevant to microservices - sep-
aration of duty. Microservice developers do not manage
telemetry data or are the primary consumer of the visual-
ization, but the DevOps engineers are. DevOps might not
know anything about the internal details of microservices,
but they deploy and monitor them, and they are the pri-
mary consumers of visualizations described in this paper.
Obviously, developers and especially system engineers need
to know about the system-centered perspective, and thus they
interact with DevOps. Architects prescribe the architecture
and microservice specifics to developers, and these models
might be one of the few instruments they have these days to
analyze whether the system was designed as intended.

C. REALISTIC EXPECTATIONS
Finally, it holds for dynamic analysis - with no run-time
data, there is no visualization. The results can only be as
good as the quality of the run-time data [26]. This does not
necessarily mean the quality with which we log and collect
metrics. The entire process is dependent on system execu-
tion, typically driven by run-time interaction. If we deploy a
system with ten features and only one is used, we will not see
the entire picture. Similarly, the required interaction and log
generation introduce a considerable delay between when a
change was introduced by developers and when we can detect
the new code through the trace log. While one can argue
that quality testing assists with preventing faulty deployment
to production, we must consider that microservice systems
can be really complex and what it implies for the testing
infrastructure and its evolvability.

VIII. THREATS TO VALIDITY
The main threat that can arise when performing a mapping
study relates to the inclusion and exclusion of relevant stud-
ies. It is important to ensure that the works considered are
applicable to our research questions and that relevant papers
were not excluded from our study.

Several steps throughout the literature review process were
taken to mitigate this threat. Firstly, we have followed stan-
dard guidelines and practices outlined by similar mapping
studies in our field (see section 3). Additionally, we tested
37 different search queries with our four indexers and exam-
ined the results of each query to determine how applicable
the results were to our research. Our final query was broad
enough in scope to encompass multiple methods for dynamic
analysis and proved to return themost applicable results while
keeping unrelated papers to a minimum. Finally, each paper
was reviewed by multiple reviewers to minimize any bias or
error of any one reviewer during the filtration and extraction
process.

120010 VOLUME 10, 2022



M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

IX. CONCLUSION
In this study, we have analyzed how creating and maintaining
a unified view of a decentralized system is possible through
the use of dynamic analysis. There are three main dynamic
analysis techniques: process mining, distributed tracing, and
monitoring. All three practices focus on collecting data at run-
time and creating visualizations by analyzing that data. There
are several well-researched tools available to accomplish
these practices, such as MicroArt, Dapper, Jaeger, Zipkin,
and Kiali. In the industry, more tools exist, like DataDog
and ExplorViz. It was a common theme that these tools use
distributed tracing to visualize architecture, while monitor-
ing and process mining was less common. Once the data
is collected and analyzed, different models or graphs can
be captured, such as a service dependency graph, business
process model, or service endpoint call graph. These graphs
visualize different things, but the main focus of all is that
the main architecture is captured while the behavior of the
components is also shown. Visualizing both the system and
its behavior is an instrumental part of software development,
and dynamic analysis is a defined way of accomplishing that.

In future work, we plan to develop a new prototype visual-
ization involving hierarchical navigation, various views, and
rendering in 3D space.

REFERENCES
[1] A. Baabad, H. B. Zulzalil, S. Hassan, and S. B. Baharom, ‘‘Software

architecture degradation in open source software: A systematic literature
review,’’ IEEE Access, vol. 8, pp. 173681–173709, 2020.

[2] L. de Silva and D. Balasubramaniam, ‘‘Controlling software architecture
erosion: A survey,’’ J. Syst. Softw., vol. 85, no. 1, pp. 132–151, Jan. 2012.

[3] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for conducting
systematic mapping studies in software engineering: An update,’’ Inf.
Softw. Technol., vol. 64, pp. 1–18, Aug. 2015.

[4] D. R. F. Apolinário and B. B. N. de França, ‘‘A method for monitoring
the coupling evolution of microservice-based architectures,’’ J. Brazilian
Comput. Soc., vol. 27, no. 1, p. 17, Dec. 2021.

[5] D. Guamán, J. Pérez, J. Diaz, and C. E. Cuesta, ‘‘Towards a reference
process for software architecture reconstruction,’’ IET Softw., vol. 14, no. 6,
pp. 592–606, Dec. 2020.

[6] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi,
‘‘Microservice architecture reconstruction and visualization techniques:
A review,’’ in Proc. IEEE Int. Conf. Service-Oriented Syst. Eng. (SOSE),
Aug. 2022, pp. 39–48.

[7] A.-L. Mattila, P. Ihantola, T. Kilamo, A. Luoto, M. Nurminen,
and H. Väätäjä, ‘‘Software visualization today: Systematic litera-
ture review,’’ in Proc. 20th Int. Academic Mindtrek Conf. (Aca-
demicMindtrek). New York, NY, USA: Association for Comput-
ing Machinery, 2016, pp. 262–271. [Online]. Available: https://doi-
org.ezproxy.baylor.edu/10.1145/2994310.2994327

[8] H. B. Salameh, A. Ahmad, and A. Aljammal, ‘‘Software evolution visual-
ization techniques and methods—A systematic review,’’ in Proc. 7th Int.
Conf. Comput. Sci. Inf. Technol. (CSIT), Jul. 2016, pp. 1–6.

[9] M. A. Javed and U. Zdun, ‘‘A systematic literature review of trace-
ability approaches between software architecture and source code,’’ in
Proc. 18th Int. Conf. Eval. Assessment Softw. Eng. (EASE). New York,
NY, USA: Association for Computing Machinery, 2014, pp. 1–10.
[Online]. Available: https://doi-org.ezproxy.baylor.edu/10.1145/2601248.
2601278

[10] T. W. W. Aung, H. Huo, and Y. Sui, ‘‘A literature review of automatic
traceability links recovery for software change impact analysis,’’ in Proc.
28th Int. Conf. Program Comprehension (ICPC). New York, NY, USA:
Association for Computing Machinery, Jul. 2020, pp. 14–24. [Online].
Available: https://doi-org.ezproxy.baylor.edu/10.1145/3387904.3389251

[11] A. S. Abdelfattah, ‘‘Microservices-based systems visualization: Student
research abstract,’’ in Proc. 37th ACM/SIGAPP Symp. Appl. Comput.
(SAC). New York, NY, USA: Association for Computing Machinery,
Apr. 2022, pp. 1460–1464.

[12] A. Bento, J. Correia, R. Filipe, F. Araujo, and J. Cardoso, ‘‘Automated
analysis of distributed tracing: Challenges and research directions,’’ J. Grid
Comput., vol. 19, no. 1, p. 9, Feb. 2021.

[13] Á. Brandón, M. Solé, A. Huélamo, D. Solans, M. S. Pérez, and
V. Muntés-Mulero, ‘‘Graph-based root cause analysis for service-oriented
and microservice architectures,’’ J. Syst. Softw., vol. 159, Jan. 2020,
Art. no. 110432.

[14] D. Ernst and S. Tai, ‘‘Offline trace generation for microservice observabil-
ity,’’ in Proc. IEEE 25th Int. Enterprise Distrib. Object Comput. Workshop
(EDOCW), Oct. 2021, pp. 308–317.

[15] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino,
and A. Di Salle, ‘‘MicroART: A software architecture recovery tool for
maintaining microservice-based systems,’’ in Proc. IEEE Int. Conf. Softw.
Archit. Workshops (ICSAW), Apr. 2017, pp. 298–302.

[16] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino,
and A. Di Salle, ‘‘Towards recovering the software architecture of
microservice-based systems,’’ inProc. IEEE Int. Conf. Softw. Archit. Work-
shops (ICSAW), Apr. 2017, pp. 46–53.

[17] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie, and L. Su,
‘‘Graph-based trace analysis for microservice architecture understanding
and problem diagnosis,’’ in Proc. 28th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng. (ESEC/FSE). New York, NY, USA:
Association for Computing Machinery, Nov. 2020, pp. 1387–1397.

[18] R. Heinrich, ‘‘Architectural runtime models for integrating runtime obser-
vations and component-based models,’’ J. Syst. Softw., vol. 169, Nov. 2020,
Art. no. 110722.

[19] R. Heinrich, ‘‘Architectural run-time models for performance and privacy
analysis in dynamic cloud applications,’’ ACM SIGMETRICS Perform.
Eval. Rev., vol. 43, no. 4, pp. 13–22, Feb. 2016.

[20] M. R. Islam, A. Al Maruf, and T. Cerny, ‘‘Code smell prioritization
with business process mining and static code analysis: A case study,’’
Electronics, vol. 11, no. 12, p. 1880, Jun. 2022.

[21] B. Li, X. Peng, Q. Xiang, H. Wang, T. Xie, J. Sun, and X. Liu, ‘‘Enjoy your
observability: An industrial survey of microservice tracing and analysis,’’
Empirical Softw. Eng., vol. 27, no. 1, p. 25, Nov. 2021.

[22] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He, and C. Xu,
‘‘Characterizing microservice dependency and performance: Alibaba trace
analysis,’’ in Proc. ACM Symp. Cloud Comput. (SoCC). New York, NY,
USA: Association for Computing Machinery, 2021, pp. 412–426.

[23] S.-P. Ma, C.-Y. Fan, Y. Chuang, I.-H. Liu, and C.-W. Lan, ‘‘Graph-based
and scenario-driven microservice analysis, retrieval, and testing,’’ Future
Gener. Comput. Syst., vol. 100, pp. 724–735, Nov. 2019.

[24] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh,
‘‘Using service dependency graph to analyze and test microservices,’’
in Proc. IEEE 42nd Annu. Comput. Softw. Appl. Conf. (COMPSAC),
Jul. 2018, pp. 81–86.

[25] A. Mazak, M. Wimmer, and P. Patsuk-Bösch, ‘‘Execution-based model
profiling,’’ in Data-Driven Process Discovery and Analysis, P. Ceravolo,
C. Guetl, and S. Rinderle-Ma, Eds. Cham, Switzerland: Springer, 2018,
pp. 37–52.

[26] A. R. Sampaio, H. Kadiyala, B. Hu, J. Steinbacher, T. Erwin, N. Rosa,
I. Beschastnikh, and J. Rubin, ‘‘Supporting microservice evolution,’’ in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2017,
pp. 539–543.

[27] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, ‘‘Dapper, a large-scale
distributed systems tracing infrastructure,’’ Google, Mountain View,
CA, USA, Tech. Rep. dapper-2010-1, 2010. [Online]. Available:
https://research.google.com/archive/papers/dapper-2010-1.pdf

[28] S. Silva, J. Correia, A. Bento, F. Araujo, and R. Barbosa, ‘‘µViz: Visual-
ization of microservices,’’ in Proc. 25th Int. Conf. Inf. Vis. (IV), Jul. 2021,
pp. 120–128.

[29] Y. Zuo, X. Zhu, J. Qin, and W. Yao, ‘‘Temporal relations extraction and
analysis of log events for micro-service framework,’’ in Proc. 40th Chin.
Control Conf. (CCC), Jul. 2021, pp. 3391–3396.

[30] A. Walker, I. Laird, and T. Cerny, ‘‘On automatic software architecture
reconstruction of microservice applications,’’ in Information Science and
Applications, H. Kim, K. J. Kim, and S. Park, Eds. Singapore: Springer,
2021, pp. 223–234.

VOLUME 10, 2022 120011



M. E. Gortney et al.: Visualizing Microservice Architecture in the Dynamic Perspective

[31] W. Hasselbring, A. Krause, and C. Zirkelbach, ‘‘ExplorViz: Research on
software visualization, comprehension and collaboration,’’ Softw. Impacts,
vol. 6, Nov. 2020, Art. no. 100034.

[32] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi,
‘‘Microvision: Static analysis-based approach to visualizing microservices
in augmented reality,’’ in Proc. IEEE Int. Conf. Service-Oriented Syst. Eng.
(SOSE), Aug. 2022, pp. 49–58.

MIA E. GORTNEY is currently a Junior Student
in computer science from Baylor University. Since
Fall 2020, she has been featured on the Baylor Uni-
versity Dean’s List. Her research interests include
static and dynamic code analysis and visualization.
In addition, she received the Computer Science
Scholarship Award, in Spring 2022.

PATRICK E. HARRIS is currently pursuing the
bachelor’s degree in computer science with Bay-
lor University. He has been recognized on the
Baylor University Dean’s List and with scholar-
ship awards, including the Baylor Computer Sci-
ence Scholarship and the Baylor Association of
Computing Machinery Scholarship. His research
interests include the visualization of distributed
systems and the security of computer systems.

TOMAS CERNY received the master’s and Ph.D.
degrees from the Faculty of Electrical Engineer-
ing, Czech Technical University in Prague, and an
M.S. degree from Baylor University.

He is currently a Professor of computer sci-
ence with Baylor University. His research interests
include software engineering, cloud systems, and
code analysis. In 2009, he started his academic
career at the Czech Technical University, FEE,
from where he transferred to Baylor University,

in 2017. He served more than ten years as the lead developer of the Inter-
national Collegiate Programming Contest Management System. He authored
over 100 publications, mostly related to code analysis and enterprise systems.
Among his awards are best papers at Microservices 2022, IEEE SOSE
2022, Closer 2022, LXNLP 2022, the Outstanding Service Award ACM
SIGAPP, in 2015 and 2018; or the 2011 ICPC Joseph S. DeBlasi Outstanding
Contribution Award. He served on the committee of multiple conferences in
the past few years, including program or conference chairs at ACM SAC,
ACM RACS, and ICITCS.

ABDULLAH AL MARUF (Member, IEEE)
received the bachelor’s degree from the Depart-
ment of Computer Science and Engineering, Chit-
tagong University of Engineering and Technology,
Bangladesh. He is currently pursuing the degree in
computer science with Baylor University. He has
four years of professional experience as a software
developer and a DevOps engineer. He is an Open-
Source Enthusiast. His research interests include
software engineering, code analysis, and runtime
log analysis.

MIROSLAV BURES leads the System Testing
Intelligent Laboratory (STILL), Department of
Computer Science, Faculty of Electrical Engi-
neering, Czech Technical University in Prague.
In 2010, he was appointed at the Czech Techni-
cal University in Prague, where he is currently
an Associate Professor of computer science. His
research interests include quality assurance and
reliability methods, model-based testing, path-
based testing, combinatorial interaction testing,

and test automation for software, the Internet of Things, and mission-critical
systems. He leads several projects in the field of test automation for software
and Internet of Things systems, covering the topics of automated generation
of test scenarios as well as automated execution of the tests.

DAVIDE TAIBI is currently a Full Professor with
the University of Oulu, Finland, where he is the
Head of the M3S Cloud Research Group. His
research interests include empirical software engi-
neering applied to cloud-native systems, with a
special focus on the migration from monolithic to
cloud-native applications. He is investigating pro-
cesses and techniques for developing Cloud Native
applications and identifying cloud-native-specific
patterns and anti-patterns. He has been a member

of the International Software Engineering Network (ISERN), since 2018.
Before moving to Finland, he has been an Assistant Professor with the Free
University of Bozen/Bolzano (2015–2017), a Postdoctoral Research Fellow
at the Technical University of Kaiserslautern and Fraunhofer Institute for
Experimental Software Engineering—IESE (2013–2014), and a Research
Fellow at the University of Insubria (2007–2011).

PAVEL TISNOVSKY received the Ph.D. degree
from the Brno University of Technology,
Czech Republic. He was an Assistant Professor,
from 1999 to 2005. He is currently the Principal
Quality Engineer with Red Hat, Inc., with over ten
years of experience. He is a Programming Lan-
guage Enthusiast and the author of many articles
and series at Linux magazine ROOT.cz. He holds
one software patent on testing and currently works
on tools for OpenShift.io—open development ser-

vices for creating, building, and testing container applications.

120012 VOLUME 10, 2022


