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We study the expressive power of logics whose truth is defined over sets of 
assignments, called teams, instead of single assignments. Given a team X, any k-
tuple of variables in the domain of X defines a corresponding k-ary team relation. 
Thus the expressive power of a logic L with team semantics amounts to the set of 
properties of team relations which L-formulas can define. We introduce a concept 
of k-invariance which is a natural semantic restriction on any atomic formulae with 
team semantics. Then we develop a novel proof method to show that, if L is an 
extension of FO with any k-invariant atoms, then there are such properties of (k+1)-
ary team relations which cannot be defined in L. This method can be applied e.g. 
for arity fragments of various logics with team semantics to prove undefinability 
results. In particular, we make some interesting observations on the definability of 
binary team relations with unary inclusion-exclusion logic.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The origin of team semantics goes back to the work of Hodges [15] who presented it to give a compositional 
semantics as an alternative to game-theoretic semantics of IF-logic by Hintikka and Sandu ([13,14]). In the 
compositional approach it was not sufficient to consider single assignments; instead there was a need to 
use sets of assignments which are nowadays called teams. Väänänen [23] developed this approach further 
by introducing dependence atoms and adding them to first order logic with team semantics. Later various 
other natural atoms from database theory have been added to this framework – such as independence atoms
([8]), inclusion atoms and exclusion atoms ([4]).

In this paper we present a notion of k-invariance of atoms, which is closely related to the study of 
arity fragments of logics with team semantics. We list here some of the most relevant works related to 
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the expressive power of arity fragments.1 In [2] and [7] it is shown that the arity fragments of dependence 
and independence logic correspond to the functional arity fragments of existential second order logic, ESO. 
In [22] it is shown that similarly the arity fragments of exclusion logic correspond to the relational arity 
fragments of ESO. Moreover, in [9] it is shown that inclusion logic has a strict arity hierarchy over graphs. 
All the results listed here are proven on the level of sentences.

When the expressive power of logics with team semantics is studied on the level of all formulas (not 
just sentences), the problem is to examine which properties of team relations are definable. Galliani [4]
has shown that with inclusion-exclusion logic one can define exactly those team relations which are ESO-
definable. In [20] we show that the relationship between these two logics becomes more delicate when we 
consider k-ary inclusion-exclusion logic (INEX[k]) and k-ary relational fragment of ESO (ESO[k]). Then all 
INEX[k]-definable properties are ESO[k]-definable, and conversely all ESO[k]-definable properties of at most 
k-ary team relations are INEX[k]-definable. However, this leaves open what happens to INEX[k]-definability 
of team relations of higher arity. This question is settled in the current paper as we show, in particular, that 
the (k + 1)-totality of a team relation cannot be defined in INEX[k].

This undefinability result for INEX[k] can be generalized for quite a rich class L[k] of logics with team 
semantics. The logics in L[k] extend FO with any atomic formulas which are either k-invariant or closed 
downwards. Being k-invariant intuitively means that such an atom “cannot see” any difference between 
teams that have the same k-ary team relations; and being closed downwards means that such atoms cannot 
see when assignments are removed from a team. Our Theorem 7.15 can be used for showing that various 
properties of certain kind of (k+1)-ary team relations are undefinable in L[k]. In order to prove this theorem 
we introduce several new definitions and proof techniques which we believe to be useful for the study of 
team semantics in general. (Indeed, they have already been proven useful for modal inclusion logic; see 
Remark 7.19.)

One particularly interesting case covered by this paper is the expressive power of unary inclusion exclusion 
logic, INEX[1]. This is a rather versatile logic which corresponds to existential monadic second order logic 
ESO[1] on the level of sentences. We show that on one hand various highly nontrivial properties of binary 
team relations, such 3-colorability of the corresponding graph, are definable INEX[1] – but on the other 
hand some very simple properties, such as symmetry, are undefinable in INEX[1].

This paper has the following structure. After some preliminaries in Section 2 we define the notion of 
k-invariance and the class L[k] in Section 3. In Section 4 we present various useful INEX[1]-definable atoms 
and operators which will be used later in the paper. In Section 5 we discuss the definability of team 
relations with logics with team semantics in general. In Section 6 we show how certain nontrivial properties 
of (k + 1)-ary team relations can be defined in L[k] by focusing on the particularly interesting case k = 1. 
The main contributions of this paper are in Section 7 where we develop a novel proof method for showing 
that various properties of (k + 1)-ary team relations are undefinable with logics in the class L[k]. We make 
some concluding remarks in Section 8.

All the results in this paper are based on PhD Thesis [21] by the author.

2. Preliminaries

In this paper only consider relational vocabularies L for simplification, but nothing essential would change 
if we let L also contain function and constant symbols. Let M = (M, I) be an L-model. A team X for M
is any set of assignments s for M with a common domain – denoted by dom(X). For any {y1, . . . , yk} ⊆
dom(X) we write

1 We point out that, in addition to arity fragments, there has also been research on the expressive power of other kinds of 
fragments of various logics with team semantics. For example, some interesting hierarchy results have been established in [2] and 
[10] by bounding the number of universal quantifiers.
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X(y1 . . . yk) := {s(y1 . . . yk) | s ∈ X}.

Hence every k-tuple �y of variables in dom(X) naturally defines a corresponding k-ary team relation X(�y )
in the model M. Classes P of team relations are called properties of team relations.

Let X be a team for an L-model M = (M, I) such that x ∈ dom(X). Let A ⊆ M and F : X → P∗(M), 
where P∗(M) denotes the set of all nonempty subsets of M . We use the following notations:

X[A/x] := {s[a/x] | a ∈ A} and X[F/x] := {s[a/x] | a ∈ F (s)}.

The semantics of first order logic (FO) can naturally be generalized from single assignments to sets of 
assignments. This leads to team semantics ([23]) which is defined as follows:

• M �X x1 = x2 iff s(x1) = s(x2) for all s ∈ X.
• M �X ¬x1 = x2 iff s(x1) �= s(x2) for all s ∈ X.
• M �X P �x iff s(�x ) ∈ PM for all s ∈ X.
• M �X ¬P �x iff s(�x ) /∈ PM for all s ∈ X.
• M �X ψ ∧ θ iff M �X ψ and M �X θ.
• M �X ψ ∨ θ iff there are Y, Y ′ ⊆ X s.t. Y ∪ Y ′ = X, M �Y ψ and M �Y ′ θ.
• M �X ∃x ψ iff there is F : X → P∗(M) such that M �X[F/x] ψ.
• M �X ∀x ψ iff M �X[M/x] ψ.

(We may write x1 �= x2 as a shorthand for ¬x1 = x2.)
Team semantics is a natural generalization the standard Tarski semantics (�T ) for FO as we have

M�X ϕ iff M�T
s ϕ for all s ∈ X,

for any formula ϕ of first order logic.
When FO is extended with new logical atoms (or operators) we obtain more expressive logics with 

team semantics. Some of the most common atoms that have been studied are dependence atoms ([23]), 
independence atoms ([8]), inclusion atoms and exclusion atoms ([4]). The addition of these atoms leads to 
corresponding logics – for example FO extended with dependence atoms is called dependence logic.

In most natural extensions of FO the so-called locality property is preserved. This means that the truth 
of a formula ϕ is determined by only the values of those variables which occur in ϕ as free variables. That 
is, a team X satisfies ϕ if and only if the team {s � Fr(ϕ) | s ∈ X} satisfies ϕ. As observed e.g. in [17], when 
FO is extended with new atomic formulas whose semantics local, then it follows that the resulting logic 
is local as well.2 Moreover, most of the common extensions of FO also have so-called empty team property
(ETP), i.e. every formula is true in the empty team X = ∅. Also this property is preserved when FO is 
extended with atoms that are true in the empty team.

Remark 2.1. See Section 5.4 of [21] for discussion on ETP and arguments on why we find it natural to require 
this property for logics with team semantics. We also note that any atom A (resp. operator O) violating ETP 
has a natural variant that respects ETP but is otherwise essentially equivalent to A (resp. O). Moreover, 
in [21] we show how to translate a formula ϕ not having ETP into ϕ′ that has ETP, so that ϕ and ϕ′ are 
equivalent in all nonempty teams.

2 This requires the use of so-called “lax semantics” for existential quantifier and disjunction – as in the current paper. An 
alternative, so called “strict semantics” may violate locality when new atomic formulae are added – even if their semantics is local. 
(See e.g. [5].)
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Most of the logics analyzed in the current paper have empty team property. However, note that the 
assumption of ETP is not made in Section 7 since it is not needed for proving the undefinability results 
which we present there.

Definition 2.2. Let ϕ be a formula with team semantics. We say that ϕ is closed downwards if the following 
holds for all models M and teams X:

If M�X ϕ and Y ⊆ X, then M�Y ϕ.

If every formula of a logic L with team semantics is closed downwards, then we say that the logic L is 
closed downwards. Moreover, we say that a property P of team relations is closed downwards if it holds 
that: whenever a team relation X(v1 . . . vk) satisfies P, also Y (v1 . . . vk) satisfies P for any subteam Y ⊆ X.

If a logic L is an extension of FO with only downwards closed atoms, then it is easy to show that L
is closed downwards.3 In particular, FO, dependence logic and exclusion logic are the known to be closed 
downwards. From the definition above it immediately follows that logics which are closed downwards can 
only define such properties of teams which are closed downwards.

Example 2.3. Let M = (M, I) be a model with M = {a, b}. We consider properties of binary team relations 
X(y1y2). The property of irreflexivity of X(y1y2) is closed downwards as subsets of an irreflexive relation 
are also irreflexive. However, the properties of reflexivity, symmetry and seriality are not closed downwards 
since e.g. the team relation X(y1y2) = M2 has all of these properties, but Y (y1y2) = {(a, a), (a, b)} has 
none of these properties even though Y ⊆ X. We will get back to this example in Section 4.

Finally we present some additional terminology and abbreviations which will be used in the current 
paper.

Definition 2.4. Let L be any logic with team semantics. We say that an L-formula ϕ is atomic if it is either 
a (FO) literal or some (non-FO) atom in L. We also use the following notations for ϕ:

Sf(ϕ) := the set of subformulas of ϕ;

Atom(ϕ) := {ψ ∈ Sf(ϕ) | ψ is atomic};
Oper#(ϕ) := the total number of operators ∧, ∨, ∃x and ∀x in ϕ.

The notations γ=k, γ≤k and γ≥k (for k ∈ Z+) denote FO-sentences defining that |M | = k, |M | ≤ k or 
|M | ≥ k, respectively.

Remark 2.5. As typically done in this framework, when talking about subformulae of a formula ϕ, we actually 
mean different occurrences (instances) of the subformulae (note that ψ has two different occurrences in ψ∨ψ). 
So the elements in Sf(ϕ) can naturally be considered as nodes in the syntax tree of ϕ.

3. k-ary fragments and k-invariant atoms

A natural way to restrict the expressive power of logics with team semantics is to put restrictions on 
the complexity of atoms that can be used. By restricting the arity of atoms, shorter tuples of variables are 

3 Also other natural closure properties such as closure under unions ([4]) and closure upwards ([6]) have been studied. Also 
closure under unions is preserved when FO is extended with union closed atoms. However, note that the same does not hold for 
upwards closure since FO itself is not closed upwards (consider e.g. a literal x = y).
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allowed to be used and thus (typically) it suffices to check team relations of lower arity when evaluating 
atoms. For example, the truth condition of k-ary inclusion atoms is defined as follows with respect to k-ary 
team relations:

M�X x1 . . . xk ⊆ y1 . . . yk iff X(x1 . . . xk) ⊆ X(y1 . . . yk).

Similarly, the truth condition of k-ary exclusion atoms is defined with respect to k-ary team relations:

M�X x1 . . . xk | y1 . . . yk iff X(x1 . . . xk) ∩X(y1 . . . yk) = ∅.

The logic extending FO-with both k-ary inclusion and exclusion atoms is called k-ary inclusion-exclusion 
logic and will be denoted by INEX[k].

Most of the atoms introduced for team semantics (such as dependence and independence atoms) have a 
similar notion of arity which can be related to team relations of the corresponding arity. We next present 
a natural semantic constraint – so called k-invariance – which bounds the expressive power of arbitrary 
atoms with team semantics.

Definition 3.1. Let X, Y be teams for an L-model M such that X, Y have a shared domain D. We say that 
X and Y are k-equivalent if the following holds for all {y1, . . . , yk} ⊆ D:

X(y1 . . . yk) = Y (y1 . . . yk).

An atom A (with team semantics) is k-invariant if we have

M�X A iff M�Y A

for all models M and k-equivalent teams X and Y for M.

The notion of k-invariance intuitively states that atoms with this property can only “see up to k-ary 
relations” in a given team. Hence this property could also be called “k-dimensionality”. Also note that the 
definition of k-invariance is very liberal as it allows e.g. atoms which are not local or even invariant under 
isomorphisms. However, the undefinability results in Section 7 can be proven without any further restrictions 
on this definition.

Remark 3.2. We say a few words about the notion of arity of an atom A with team semantics. There are 
syntactical ways to define arity, such as simply by counting how many different variables (or terms) are 
allowed to occur in A (whence e.g. the inclusion atom x ⊆ y would be binary). However, we think that the 
arity of A should instead be considered as a semantical property. Under this assumption we argue that 
k-invariance is a necessary condition for the atom A to be k-ary, as otherwise the truth condition of A
would require evaluating it with respect team relations that have arity higher than k. See Section 3.3.3 
in [21] for a more restricted natural subclass of k-invariant atoms, so called “Qs FO-definable k-ary atoms”, 
which nevertheless cover all the common k-ary atoms with team semantics.

Next we define quite a general class of logics with team semantics by setting the k-invariance restriction 
on certain atoms.
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Definition 3.3. A logic L belongs to the class L[k] if (i) L is an extension of FO with new atomic formulas 
satisfying locality4; and (ii) all atomic formulas in L belong to either (or both) of the following two classes:

(a) downwards closed atoms;
(b) k-invariant atoms.

Note that, in particular, all downward closed logics and all k-ary fragments5 of logics with team semantics 
(studied so far) belong to the class L[k].

4. Useful atoms and operators for team semantics

In this section we will present various natural atoms and operators for logics with team semantics. Their 
semantics are quite simple, but they turn out to be rather useful for this framework; we will also use them 
later in Section 6. Semantics for all of the atoms and operators below are defined in such a way that empty 
team property is preserved when they are added to logics with team semantics. This allows us to express 
them in logics that have the empty team property (in particular, we want to be able to express them in 
INEX[1]).

We first present semantics for constancy atom =(y), inconstancy atom �=(y) and totality atom T (y1 ∪
· · · ∪ yn).

• M �X =(y) iff X = ∅ or |X(y)| = 1.
• M �X �=(y) iff X = ∅ or |X(y)| > 2.
• M �X T (y1 ∪ · · · ∪ yn) iff X = ∅ or 

⋃
i≤n X(yi) = M .

Constancy atoms are actually unary dependence atoms while inconstancy atoms are unary nondependence 
atoms which were introduced by Galliani in [5]. Väänänen ([24]) has called the latter ones anonymity atoms
and their properties have also been studied by the author in [21]. Totality atoms (for variable tuples, without 
ETP) were presented in [5].6

Next we present semantics for constant quantifier C(c1, . . . , cn), uniform disjunction7 �, relevant dis-
junctions ��∨, �∨, �∨, and possibility operator �.

• M �X C(c1, . . . , cn) ϕ iff there are distinct elements a1, . . . , an in M
s.t. M �X[{a1}/c1,...,{an}/cn] ϕ. (Note that ci here are variable symbols.)

• M �X ϕ � ψ iff M �X ϕ or M �X ϕ.
• M �X ϕ 

��∨ ψ iff X = ∅ or there are Y, Y ′ ⊆ X s.t. Y, Y ′ �= ∅, Y ∪ Y ′ = X, M �Y ϕ and M �Y ′ ψ.
• M �X ϕ 

�∨ ψ iff X = ∅ or there are Y, Y ′ ⊆ X s.t. Y �= ∅, Y ∪ Y ′ = X, M �Y ϕ and M �Y ′ ψ.
• M �X ϕ 

�∨ ψ iff X = ∅ or there are Y, Y ′ ⊆ X s.t. Y ′ �= ∅, Y ∪ Y ′ = X, M �Y ϕ and M �Y ′ ψ.
• M �X �ϕ iff X = ∅ or there is Y ⊆ X s.t. Y �= ∅ and M �Y ϕ.

4 Locality is assumed here mainly because the study of the expressive power via definability of team relations does not make 
so much sense when a logic is not local (cf. Remark 5.1). However, most of the results in Section 7 can be proven also without 
assuming locality.
5 However, notions of arity may differ in the literature. For example, the dependence atom =(y, z) states that X(yz) is a unary 

function. As this is a property of a binary team relation, it is natural to define that =(y, z) is a binary atom which is indeed 
2-invariant. However, as such binary team relations are unary functions, the atom =(y, z) is sometimes called unary.
6 The atom All(y1 . . . yn) presented by Galliani states that X(y1 . . . yn) = Mn. The totality atom of the current paper is denoted 

by T (y1, . . . , yn) in [21] but we have modified the notation here to avoid confusion with All(y1 . . . yn).
7 This operator has usually been called intuitionistic disjunction (or sometimes classic disjunction) in the literature. However, 

we promote the name “uniform disjunction” by using a perspective from game theoretic semantics. Unlike the standard disjunction 
∨ – which allows the verifier to choose a disjunct based on the values of the variables in a team – uniform disjunction � forces the 
verifier to make a uniform choice independently of those values.
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Constant quantifier was presented in [16] and a slightly different version of possibility operator was 
presented in [6].8 Relevant disjunctions were introduced by the author and they have also been studied in 
[11] and [25].

Note that the semantics of ��∨ is otherwise identical to the semantics of the standard disjunction, but it 
states that both of the disjuncts must be “relevant” for the truth of the disjunctive formula as the disjuncts 
must be satisfied by some nonempty subteams (�∨ and 

�∨ do the same by setting this requirement to only 
one of the disjuncts). Thus for example ∀x(P1x 

��∨ P2) holds if and only if every element satisfies either P1
or P2 and there are indeed some elements which satisfy P1 and some elements which satisfy P2. This is 
conceptually related to the study of relevance logics (see e.g. [1]).9

The atoms and the operators presented above do not provide much expressive power when they are 
added to FO (see [5] and [21] for analysis). However, as we will demonstrate in Section 6, they are often 
quite useful for expressing properties of teams (or models) in the framework of team semantics. See also the 
example below.

Example 4.1. Recall the properties of binary team relations from Example 2.3. We first note that the 
property of irreflexivity of X(y1y2) can be defined by the simple FO-formula y1 �= y2. As reflexivity and 
seriality do not hold for empty relations, these properties cannot be defined with any formulas which have 
the empty team property. Thus below we will consider the definability of these properties for nonempty 
team relations X(y1y2) (i.e. for teams X �= ∅).

The seriality of X(y1y2) is not definable with any FO-formula as it is not closed downwards. However, 
seriality can be defined with the totality atom T (y1) as it states that for every a ∈ M there is some 
assignment sa ∈ X such that sa(y1) = a, and thus (a, sa(y2)) ∈ X(y1y2) for all a ∈ M .

Reflexivity of X(y1y2) can be defined with the formula �(y1 = y2 ∧ T (y1)). We sketch a proof for this 
claim: X(y1y2) is reflexive if and only if there is Y ⊆ X for which Y (y1y2) is the identity relation of M . It 
is easy to see that Y (y1y2) is the identity relation of M if and only if M �Y y1 = y2 ∧ T (y1). Thus X(y1y2)
is reflexive if and only if M �X �(y1 = y2 ∧ T (y1)).

The definability of symmetry will be discussed in Sections 6 and 7.

Next we show how all of the atoms and operators presented above can be expressed by using only unary 
inclusion and exclusion atoms. This will also be useful for our analysis of the expressive power of INEX[1]
in Section 6.

• M �X =(y) iff M �X ∀x (x = y ∨ x | y).
• M �X �=(y) iff M �X ∃x (x �= y ∧ x ⊆ y).
• M �X T (y1 ∪ · · · ∪ yn) iff M �X ∀x 

(∨
i<n x ⊆ yi

)
.

• M �X C(c1, . . . , cn) ϕ iff M �X ∃c1 . . .∃cn
(∧n

i=1 =(ci) ∧
∧

i�=j ci �= cj ∧ ϕ
)
.

• M �X ϕ � ψ iff M �X(γ=1 ∧ (ϕ ∨ ψ)) ∨ C(c1) C(c2) 
(
(c1 = c2 ∧ ϕ) ∨ (c1 �= c2 ∧ ψ)

)
.

• M �X ϕ 
�∨ ψ iff M �X(γ=1 ∧ ϕ) ∨ C(c) ∃y

(
(ϕ ∨ (y = c ∧ ψ)) ∧ �=(y)

)
.

• M �X �ϕ iff M �X ϕ 
�∨ ∀x (x = x).

• M �X ϕ 
�∨ ψ iff M �X ψ

�∨ ϕ (or M �X(ϕ ∨ ψ) ∧ �ψ).
• M �X ϕ 

��∨ ψ iff M �X(ϕ 
�∨ ψ) ∧ (ϕ 

�∨ ψ) (or M �X �ϕ ∧ (ϕ ∨ ψ) ∧ �ψ).

Translations for constancy atoms, inconstancy atoms and uniform disjunction have been given and proven 
in [5]. Complete proofs for all other translations above are given in [21].

8 Constant quantifier (for a single variable x) is denoted by ∃!x in [16] and possibility operator (not having ETP) is denoted by � in [6].
9 Also note that (assuming empty team property) ��∨ and � can be seen as dual operators as � states that a team must split into 

subteams Y, Y ′ in a trivial way where other side is left empty, while ��∨ allows any other way of splitting the team.
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It is worth noting that all of the operators above can be expressed by adding just constancy and in-
constancy atoms to FO (this results in a logic which is expressively weaker than INEX[1] and collapses to 
FO on the level of sentences). We also point out that the translation for =(y), �=(y) and T (y1 ∪ · · · ∪ yn)
can be generalized for tuples �y of variables. Finally, related to the topic of new atoms and operators for 
team semantics, we mention that Kuusisto ([18]) has introduced the concepts of generalized atoms and 
generalized quantifiers for team semantics.

5. Definability of team relations

In this section we first make a couple of notes on the definability of team relations with a given logic 
L with team semantics. Then we review the known results on the definability of team relations in k-ary 
inclusion exclusion logic; concentrating on the case k = 1 which we argue to be particularly interesting.

5.1. On definability of team relations and expressive power of logics

By saying that a property P of k-ary team relations is definable in a logic L with team semantics, we mean 
that by fixing a tuple y1 . . . yk of distinct variables – in the given order – there is an L-formula ϕ(y1 . . . yk)
such that

M�X ϕ iff X(y1 . . . yk) ∈ P.

Hence the expressive power of any logic L can essentially be reduced to the definability of team relations 
with L. However, two remarks are important to make here.

Remark 5.1. Reducing the expressive power of a formula ϕ(y1 . . . yn) to definability of team relations 
X(y1 . . . yn), as done above, requires that ϕ is local. If ϕ was not local, we should also consider team 
relations X(y1 . . . yn�x) of higher arity, where the variables in �x do not occur in ϕ. This would make the 
definition much more involved and problematic. We will not discuss this issue further, as all the logics 
studied in the current paper are assumed to be local (which we argue to be a very natural property for 
logics in general).

Remark 5.2. In the general case, the expressive power an L-formula ϕ(y1 . . . yk) is associated with the class 
of model-relation pairs (M, X(y1 . . . yk)) such that ϕ satisfies X in M. However, for most of our analysis in 
the current paper, we interested in such properties of team relations which are independent of the structure 
of the model (such as the property of X(y1y2) being symmetric). Also note that the analysis here is on 
the level of all L-formulas – if we would consider only sentences, then the expressive power would simply 
amount to the class of models with satisfy the given sentence (completely ignoring team relations).

If L has the empty team property, then we cannot define classes of relations that do not contain the empty 
relation. Because we are mainly interested in logics which have the empty team property, for simplicity we 
assume hereafter by default that ∅ ∈ P for all classes P of team relations that we study. For example, if we 
say that “the relation X(y1y2) is reflexive”, we actually mean that “X(y1y2) is either reflexive or the empty 
relation”.

It is very important to note the difference between defining relations in a model and relations in a team. 
Consider e.g. the property of symmetry of binary relations which is clearly FO-definable as a property of 
a relation in a model. However, as observed in Example 2.3, the symmetry of team relations is not closed 
downwards and therefore it is not definable in FO – nor in any other downwards closed logic.

Most of the logics with team semantics that have been studied can only define such properties of P of 
team relations which are definable in existential second order logic, ESO. For such team relations there exists 
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an ESO-formula Φ(R), with the free relation variable R, such that Φ(R) is true under those interpretations 
for R which belong to P. It also makes sense to say that an L-formula ϕ(y1 . . . yn) is equivalent10 to Φ(R)
if the following holds for all admissible models M and teams X:

M�X ϕ iff M[X(y1 . . . yk)] � Φ(R).

In k-ary ESO, denoted by ESO[k], we only allow existential quantification of at most k-ary relation variables, 
but free relation variables R may have any arity.

Remark 5.3. Because such ESO[0]-formulas which do not contain first order variables are essentially first 
order sentences, ESO[0]-definable properties of team relations have often been called FO-definable in the 
literature. However, we have decided to avoid this terminology because it is somewhat ambiguous; by 
FO-definable properties of team relations one can also mean such properties which are definable by an FO-
formula (with team semantics). For example, as observed in Example 4.1 the irreflexivity of a team relation 
X(y1y2) can be defined with an FO-formula, but the reflexivity of X(y1y2) cannot be defined with any 
FO-formula. However, the reflexivity of X(y1y2) is easily defined with the ESO[0]-formula ∀xRxx (when 
the free relation variable R is interpreted as the team relation X(y1y2)).

Note that when a property of a team relation is ESO[0]-definable, then the corresponding property 
of a relation in a model is definable by an FO-sentence. By interpreting team relations with free relation 
variables R, then an ESO[0]-formula Φ(R) can get a “direct access” to the complete team, while FO-formulas 
can only check conditions for assignments one at a time (as an FO-formula is satisfied by a team X if and 
only if it is satisfied by all assignments in X).

5.2. Expressive power of INEX[k] on the level of all formulas

Next we focus our attention to the expressive power of k-ary inclusion-exclusion logic INEX[k]. In [20]
we showed that all ESO[k]-definable properties of at most k-ary team relations can be defined in INEX[k]. 
Let us inspect the special cases when k = 1 and when k = 2.

1. ESO[1]-definable properties of unary team relations are definable in INEX[1].
2. ESO[2]-definable properties of binary team relations are definable in INEX[2].

We first note that, by these results, the expressive power of INEX[2] is rather strong. Indeed, it is hard to 
think of natural properties of relations which cannot be “simulated” with the properties of binary relations 
or which are not definable in ESO[2]. Hence we argue that the study of the expressive power of INEX[k], 
on the level of all formulas, is not so interesting when k ≥ 2.

Let us then focus on the case of INEX[1]. It is well-known that, for unary relations, ESO[1]-definable 
properties simply amount to FO-definable properties.11 Hence, by the result on the upper bound of the 
expressive power of INEX[1], we only know that INEX[1] can express all ESO[0]-definable properties of 
unary team relations.12 Thus our focus is to study which properties of binary (or of higher arity) team 
relations can be defined in INEX[1].

10 Note that this equivalence is not completely direct as ϕ is defined with team semantics, while Φ has the standard Tarski 
semantics. However, this is the standard way in the literature to form a link between ESO and formulae (with free variables) that 
have team semantics.
11 To our best knowledge this is a “folklore result”. One way to prove this result is to use an EF-game in a similar manner as e.g. 
in the proof Proposition 7.2 in [19].
12 Note, however, that on the level of sentences INEX[1] captures exactly the expressive power of ESO[1]. Moreover, as we show 
in [22], on the level of sentences inclusion atoms can be removed from INEX[1] without lowering the expressive power, but on the 
level of formulas inclusion atoms are essential in INEX[1] for defining properties that are not closed downwards.
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By the results in [20] we also know that all INEX[k]-definable properties of team relations must be 
ESO[k]-definable. However, these earlier results leave open whether INEX[1] can define some natural ESO[1]-
definable properties of binary team relations, such as the following two:

(a) X(y1y2) is symmetric.
(b) X(y1y2) is k-colorable for a given k ∈ Z+.

We will see that the rather complex property (b) is indeed definable in INEX[1], for any k ∈ Z+. However, 
interestingly it will turn out that the much more simple looking property (a) cannot be defined in INEX[1].

Example 5.4. Even though symmetry is a very natural property of binary relations in general, it might not 
be so clear to see “what do the symmetric teams look like” when we interpret teams as e.g. databases. For 
an example, consider a team X – with yd, ya ∈ dom(X) – in which assignments record information about 
flights between different cities. The departure city of a given flight is recorded to the variable yd and arrival 
city is recorded to ya. Suppose e.g. that X contains information on every flight operated weekly by the 
airline company Finnair. Now, if the team relation X(ydya) is symmetric, it means that whenever one takes 
a direct flight using Finnair, it is possible to get a two-way direct flight (which returns within one week 
after the arrival to the destination).

6. Defining various nontrivial (k + 1)-ary team relations in L[k]

Recall that L[k] denotes the class of (local) logics extending FO with any k-invariant and downwards 
closed atoms. In this section we will analyze some particular cases where logics in L[k] can define properties 
of team relations, whose arity is higher than k. It is important to remember here that even if all the atoms 
in a logic L are k-invariant, it may still be possible to define highly nontrivial properties of team relations 
of higher arity as in L we also have access to all the logical operators of FO. Our main focus in this section 
is on which binary team relations can be defined in unary inclusion-exclusion logic (which belongs to L[1]).

6.1. ESO[0]-definable binary relations that can be defined in INEX[1]

In this subsection we consider some elementary ESO[0]-definable properties of binary team relations. For 
INEX[1], some of these properties turn out be definable while others will be proven undefinable in Section 7.

Let X be a team for which y1, y2 ∈ dom(X). The table in Fig. 1 contains elementary properties for 
the team relation X(y1y2). We first note that by applying our translation from ESO[k] to INEX[k] in [20]
(or [21]), we can express all ESO[2]-definable properties of binary team relations in INEX[2]. Moreover, 
as this translation is very straightforward, we can find INEX[2]-formulas ϕ′(y1y2) which are syntactically 
almost identical to the (canonical) ESO[0]-formulas ϕ(R) which define these properties for a relation R. 
The formula ϕ(R) is translated into ϕ′(y1y2) simply as follows.13

ϕ′ = ϕ for FO-literals (not containing R);

(Rx1x2)′ := x1x2 ⊆ y1y2, (¬Rx1x2)′ := x1x2 | y1y2;

(ψ ∧ θ)′ := ψ′ ∧ θ′, (ψ ∨ θ) := ψ′ ∨
y1y2

θ′;

(∃xψ)′ := ∃xψ′, (∀xψ)′ := ∀xψ′.

13 It is worth noting that this translation stays very simple also when ϕ contains k-ary second order quantifications ∃P – such 
quantifiers are simply replaced with repeated quantifications ∃w1 . . . ∃wk of first order variables wi, literals with P are translated 
as: (P�x)′ := �x⊆w1 . . . wk and (¬P�x)′ := �x |w1 . . . wk and all disjunctions are additionally required to preserve the values for 
w1 . . . wk. See [20] or [21] for details.
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Property of the Canonical INEX[2]-formula An INEX[1]-formula
relation X(y1y2) defining the property defining the property
Irreflexivity ∀x (xx | y1y2) y1 �= y2

Non-irreflexivity ∃x (xx⊆ y1y2) �(y1 = y2)
Reflexivity ∀x (xx⊆ y1y2) �(y1 = y2 ∧ T (y1))
Non-reflexivity ∃x (xx | y1y2) C(x)(x �= y1 ∨ x �= y2)
Seriality ∀x1∃x2 (x1x2 ⊆ y1y2) T (y1)
Non-seriality ∃x1∀x2 (x1x2 | y1y2) C(x)(x �= y1)
Symmetry ∀x1∀x2 (x1x2 | y1y2 Undefinable in INEX[1]

∨
y1y2

x2x1 ⊆ y1y2)
Non-symmetry ∃x1∃x2 (x1x2 ⊆ y1y2 C(x1, x2)

(
(x1 = y1 ∧ x2 = y2)

∧ x2x1 | y1y2)
�∨ (x1 �= y2 ∨ x2 �= y1)

)
2-totality ∀x1∀x2 (x1x2 ⊆ y1y2) Undefinable in INEX[1]
Non-2-totality ∃x1∃x2 (x1x2 | y1y2) C(x1) C(x2)(x1 �= y1 ∨ x2 �= y2)

Fig. 1. Definability/undefinability in INEX[1] and INEX[2] for certain elementary ESO[0]-definable binary team relations and the 
formulae defining these properties. (2-totality means the property of X(y1y2) being the full binary relation M2.)

The only slightly more complex detail in the translation above is that standard disjunctions are translated 
into term value preserving disjunctions ∨

y1y2
. This operator has otherwise the same semantics as the standard 

disjunction, but it additionally requires that the team relation for the tuple y1y2 is preserved when the team 
is split – that is, X(y1y2) = Y (y1y2) = Y ′(y1y2) when X is split into Y and Y ′. Term value preserving 
disjunction ∨

�y
for k-tuples �y of variables can be expressed in INEX[k]; see [20] or [21] for details.

For example, reflexivity is canonically defined by the formula ∀x Rxx which is translated into 
∀x (xx ⊆ y1y2). Note however, that ESO[0]-formula defining the property must also be translated in negation 
normal form and operators → and ↔ are assumed to be expressed with other operators (thus e.g. symmetry 
is defined by ∀x1∀x2(¬Rx1x2 ∨Rx2x1)).

Several of the properties in Fig. 1 can also be defined in INEX[1], but it is often nontrivial to write a 
formula that defines them, and there seems to be no systematic and simple method for finding them like 
in the case of INEX[2]. Formulas defining the properties often become shorter when we apply INEX[1]
definable operators like constant quantification and possibility operator (recall Section 4). The formulas 
defining irreflexivity, reflexivity and seriality have already been discussed in Example 4.1 – we sketch proofs 
for all the remaining cases below. (Recall that in all of the cases here we assume that X �= ∅.)

• Non-irreflexivity: X(y1y2) is not irreflexive if and only if there is s ∈ X such that s(y1) = s(y2). This 
clearly holds if and only if M �X �(y1 = y2).

• Non-reflexivity: X(y1y2) is not reflexive if and only if there is a ∈ M s.t. for all s ∈ X: s(y1) �= a or 
s(y2) �= a. It is easy to see that this is true if and only if M �X C(x)(x �= y1 ∨ x �= y2).

• Non-seriality: X(y1y2) is not serial if and only if there is a ∈ M such that s(y1) �= a for all s ∈ X. This 
clearly holds if and only if M �X C(x)(x �= y1).

• Non-symmetry: X(y1y2) is not symmetric if and only if there are a, b ∈ M s.t. a �= b and the following 
conditions hold:

{
there is s ∈ X for which s(y1) = a and s(y2) = b

for all r ∈ X : r(y1) �= b or r(y2) �= a.

This is true iff M �X C(x1, x2)
(
(x1 = y1 ∧ x2 = y2) 

�∨ (x1 �= y2 ∨ x2 �= y1)
)
.

• Non-2-totality: X(y1y2) is not the full relation M2 if and only if there are a, b ∈ M s.t. for all s ∈ X: 
s(y1) �= a or s(y2) �= b. Clearly this is true if and only if M �X C(x1) C(x2)(x1 �= y1 ∨ x2 �= y2).

• Symmetry and 2-totality are both undefinable in INEX[1] – as will be shown by Corollaries 7.17 and 
7.16, respectively.



12 R. Rönnholm / Annals of Pure and Applied Logic 173 (2022) 103136
6.2. ESO[1]-definable binary relations that can be defined in INEX[1]

Above we saw that many natural ESO[0]-definable properties of binary team relations can be defined in 
INEX[1]. Here we show that there are also some interesting INEX[1]-definable properties of team relations 
which are beyond ESO[0]-definability. See the following example.

Example 6.1. Let M = (M, I) be a model and X be a team for M such that dom(X) = {y1, y2}. We define 
the undirected graph GX = (M, EX), where the relation EX ⊆ M2 is the symmetric closure of X(y1y2)
(that is, EX := {(a, b) | (a, b) ∈ X(y1y2) or (b, a) ∈ X(y1y2)}.) Now it holds that:

(1) GX is disconnected iff

M�X γ≥2 ∧∃x1∃x2
(
x1 |x2 ∧

(
(y1 ⊆x1 ∧ y2 ⊆x1) ∨ (y1 ⊆x2 ∧ y2 ⊆x2)

))
.

(2) GX is k-colorable iff

M�X γ≤k ∨ ∃x1 . . .∃xk

(∧
i�=j

xi |xj ∧ T (x1 ∪ · · · ∪ xk) ∧
∨

x1,...,xk

{
y1 ⊆xi ∧ y2 |xi | i ≤ k

})
.

In the latter formula ∨
x1,...,xk

is term value preserving disjunction which requires that the team is split 
into subteams in such a way that the values of the variable xi, for each i ≤ k, in each subteam are the 
same as in the initial team before the split. This operator is indeed definable in INEX[1]; see [20] or [21] for 
details.14

We explain briefly why the equivalences (1)–(2) above hold. Supposing that |M | ≥ 2, the graph GX is 
disconnected if and only if there are nonempty disjoint A, B ⊆ M such that for each assignment s ∈ X we 
have either s(y1), s(y2) ∈ A or s(y1), s(y2) ∈ B. Moreover, A and B satisfy these conditions with respect to 
X(y1y2) if and only if the quantifier free part of the formula in (1) is true in a team Y that is obtained by 
extending X in such a way that Y (x1) = A and Y (x2) = B. It thus follows that the equivalence in (1) holds.

For the equivalence in (2), we first note that GX is trivially k-colorable if |M | ≤ k. When |M | > k, the 
graph GX is k-colorable if and only if we can split M into nonempty disjoint subsets A1, . . . , Ak (covering M) 
such that for each s ∈ X we have s(y1) ∈ Ai and s(y2) ∈ Aj for some i �= j. The sets A1, . . . , Ak satisfy these 
conditions if and only if the quantifier free part of the formula in (2) is true in a team Y that is obtained by 
extending X in such a way that Y (xi) = Ai for each i ≤ k. It thus follows that the equivalence in (2) holds.

It is worth noting that the also properties above would have been easy to define in INEX[2] simply by 
using the canonical ESO[1]-formulas and applying our translation to them. However, it was again much 
harder to find INEX[1]-formulas defining these properties.

Note that in the example above we were “forcing symmetry” by considering an undirected graph obtained 
from the symmetric closure of X(y1y2). We cannot simply express that (M, X(y1y2)) forms an undirected 
graph since the symmetry of X(y1y2) is not definable in INEX[1]. This follows from a more general result 
which we present in the next section.

14 Note that the operator ∨
x1,...,xk

here only preserves the values for (single) variables xi and not necessarily preserves the value of 
the tuple x1 . . . xk as ∨

x1...xk

(without commas) which we discussed earlier. In order to preserve values for k-tuples we would need 
to use INEX[k].
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7. L[k]-undefinable (k + 1)-ary team relations

In this Section we will develop a proof method for showing that for any logic L in L[k] (recall Defini-
tion 3.3), there exist such properties of (k+1)-ary team relations which are not definable in L. In particular, 
this method can be used to show that the property of X(y1 . . . yk+1) being the full (k+1)-ary team relation 
Mk+1 cannot be defined with any logic in L[k].

Our proof method is intuitively based on analyzing the cardinality of sets of such assignments whose 
removal alters some k-ary team relations during the “evaluation process” of formulas. We give several 
auxiliary definitions and lemmas in the following subsections and finally in Subsection 7.4 we present 
Theorem 7.15 which can be used as a tool for proving various undefinability results for any logics in the 
class L[k].

Unless specified differently, throughout this section L denotes any logic that is an extension of FO with 
any atomic formulas which are local (note that we do not assume any closure properties or empty team 
property).

7.1. Satisfying evaluations

In this section we define functions called evaluations which assign teams to nodes in a syntax tree of 
a formula. These teams are assigned in the way corresponding to the truth conditions of the operators in 
FO (with team semantics). Satisfying evaluations intuitively correspond to “correct semantic reasoning” for 
showing that a formula ϕ is true in a given team X. Similar concepts have been defined and used earlier in 
the context of boolean dependence logic in [3].15

In the definition below, remember that by Sf(ϕ) we mean the set of occurrences of the subformulae of 
ϕ (cf. Remark 2.5). This is essential here as different occurrences of formulae may need to be mapped to 
different teams.

Definition 7.1. Let A be a set. We write EA for the class of functions, called evaluations, so that for each 
E ∈ EA we have:

E : Sf(ϕ) → {X | X is a team for A} for some ϕ ∈ L

and the following conditions hold for the (occurrences of) subformulas of ϕ:

• E(ψ ∧ θ) = E(ψ) = E(θ).
• E(ψ ∨ θ) = E(ψ) ∪E(θ).
• E(∃x ψ)[F/x] = E(ψ) for some F : E(∃xψ) → P∗(A).
• E(∀x ψ)[A/x] = E(ψ).

In the conditions above it is assumed that ψ is the occurrence following the quantifier Qx in Qx ψ for 
Q ∈ {∃, ∀}, and ψ, θ are the occurrences of the conjuncts/disjuncts in ψ ◦ θ for ◦ ∈ {∧, ∨}.

For each E ∈ EA we define the set of atomic teams for E, denoted by E(Atom) as follows.

E(Atom) := {E(ψ) | ψ ∈ dom(E) is atomic}.

Note that for each evaluation E, there is a unique formula ϕ and a unique team X such that dom(E) =
Sf(ϕ) and E(ϕ) = X. We then say that E is an evaluation for ϕ in X.

15 Related definitions here were developed independently by the author. We have adopted here some terminology and notations 
from [3] for uniformity.
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Consider a model M with universe M . If X is a team for M and E ∈ EM is an evaluation for ϕ in X, then 
E naturally corresponds to “an attempt of proof” for the claim that M �X ϕ. This attempt is successful if 
each subformula of ϕ is assigned to a team which satisfies it. This naturally leads to the following definition.

Definition 7.2. Let M = (M, I) be an L-model. We call E ∈ EM a satisfying evaluation in M it the 
following holds:

M�E(ψ) ψ for each ψ ∈ dom(E).

If E ∈ EM is an evaluation for ϕ in X and E is a satisfying evaluation in M, we say that E is a satisfying 
evaluation for ϕ in (M, X). We write

Sat(M, X, ϕ) := {E ∈ EM | E is a satisfying evaluation for ϕ in (M, X)}.

Remark 7.3. For E to be a satisfying evaluation in M, it suffices that M �E(ψ) ψ for each ψ ∈ E(Atom). 
This is easy to see by the definition of evaluations.

As one would expect, a formula is true if and only if there is at least one satisfying evaluation for it. This 
is stated in the following lemma which is easy to prove (see Lemma 5.6 in [21] for a complete proof).

Lemma 7.4. Let M be a L-model, X be a team and ϕ ∈ L. Then

M�X ϕ iff Sat(M, X, ϕ) �= ∅.

7.2. Removal of extension sets

In this subsection we define the extension set Ys≺ for an assignment s ∈ X in a given team Y for which 
dom(X) ⊆ dom(Y ). Then we show how the removal of s from X is related to the removal of Ys≺ from Y
(Lemma 7.8). This will be one of the key elements for proving our undefinability results later.

Definition 7.5. Let s be an assignment and Y a team s.t. dom(s) ⊆ dom(Y ). The extension set of s in Y , 
denoted by Ys≺, is defined as follows:

Ys≺ := {r ∈ Y | r � dom(s) = s}.

The next example shows how the extension sets in a team “evolve” when we modify the team in different 
ways related to the truth conditions of the operators in FO. This example also makes it easier to follow the 
proof for Lemma 7.8 which we present later.

Example 7.6. Let X be a team for a model M = (M, I) and let s ∈ X.

• We first observe that Xs≺ = {s}.
• Let Y ′ ∪ Y ′′ = Y . Then we have

Y ′
s≺ = {r ∈ Y ′ | r ∈ Ys≺} and Y ′′

s≺ = {r ∈ Y ′′ | r ∈ Ys≺}.

• Let F : Y → P∗(M) and x /∈ dom(X). Then

Y [F/x]s≺ = {r[a/x] ∈ Y [F/x] | r ∈ Ys≺, a ∈ F (r)}.
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• Let x /∈ dom(X). Then

Y [M/s]s≺ = {r[a/x] ∈ Y [M/x] | r ∈ Ys≺, a ∈ M}.

Lemma 7.7. Let X and Y be teams for which dom(X) ⊆ dom(Y ) and let s1, s2 ∈ X. Then it holds that:

If s1 �= s2, then Ys1≺ ∩ Ys2≺ = ∅.

Proof. If there is r ∈ Ys1≺ ∩ Ys2≺, then s1 = r � dom(X) = s2. �
Let Y and Z be teams for which dom(Z) ⊆ dom(Y ). We use the following abbreviation for the team 

that is obtained from Y by removing the extension set of s in Y for all s ∈ Z.

Y \≺ Z := Y \
⋃
s∈Z

Ys≺.

Suppose that M �X ϕ, for ϕ ∈ L, and let E be a satisfying evaluation for ϕ in (M, X). If ϕ contains 
atoms that are not closed downwards, then we do not generally have M �X\X′ ϕ for all X ′ ⊆ X, but for 
some X ′ this might be the case. In the following lemma we show that, in order to prove that M �X\X′ ϕ

holds, it suffices that we check that all the atomic formulas ψ, which are not closed downwards, remain true 
when the extension sets for all s ∈ X ′ are removed from E(ψ).

Lemma 7.8. Let M be a model and X a team for M. Let ϕ ∈ L such that none of the variables x ∈ dom(X)
is quantified in ϕ. Let E ∈ Sat(M, X, ϕ) and let X ′ be a subteam of X. Suppose that the following holds:

M�E(ψ)\≺X′ ψ for every ψ ∈ Atom(ϕ) which is not closed downwards.

Then we have M �X\X′ ϕ.

Proof. Since E(ϕ) = X and Xs≺ = {s} for each s ∈ X ′, we have

E(ϕ) \≺ X ′ = X \
⋃

s∈X′

{s} = X \X ′.

Thus, in order to show that M �X\X′ ϕ holds, it suffices that we prove the following claim by structural 
induction on ϕ:

M�E(μ)\≺X′ μ for all μ ∈ Sf(ϕ).

• If μ is an atom which is not closed downwards, then the claim follows from the assumptions. Suppose 
then that μ is a literal or downwards closed atom. Since E ∈ Sat(M, X, ϕ), we have M �E(μ) μ. Thus 
by downwards closure we have M �E(μ)\≺X′ μ.

• Let μ = ψ ∧ θ. Now E(ψ ∧ θ) = E(ψ) = E(θ) and thus by the inductive hypothesis M �E(ψ∧θ)\≺X′ ψ

and M �E(ψ∧θ)\≺X′ θ, i.e. M �E(ψ∧θ)\≺X′(ψ ∧ θ).
• Let μ = ψ ∨ θ. Let E(ψ ∨ θ) = Y , whence E(ψ) = Y ′ and E(θ) = Y ′′ for some Y ′, Y ′′ ⊆ Y for which 

Y ′ ∪ Y ′′ = Y . By the inductive hypothesis we have M �Y ′\≺X′ ψ and M �Y ′′\≺X′ θ. Now for all s ∈ X ′

we have

Ys≺ = Y ′
s≺ ∪ Y ′′

s≺, Y ′
s≺ = Ys≺ ∩ Y ′ and Y ′′

s≺ = Ys≺ ∩ Y ′′.
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Therefore

(Y ′) \≺ X ′ ∪ (Y ′′) \≺ X ′ = (Y ′ \
⋃

s∈X′

Y ′
s≺) ∪ (Y ′′ \

⋃
s∈X′

Y ′′
s≺)

= (Y ′ \
⋃

s∈X′

Ys≺) ∪ (Y ′′ \
⋃

s∈X′

Ys≺)

= (Y ′ ∪ Y ′′) \
⋃

s∈X′

Ys≺

= Y \
⋃

s∈X′

Ys≺ = Y \≺ X ′ = E(ψ ∨ θ) \≺ X ′.

Hence M �E(ψ∨θ)\≺X′(ψ ∨ θ).
• Let μ = ∃x ψ. Let E(∃x ψ) = Y , whence E(ψ) = Y [F/x] for some function F : Y → P∗(M). By the 

inductive hypothesis, M �Y [F/x]\≺X′ ψ. By our assumptions x /∈ dom(X) and therefore

Y [F/x]s≺ = Ys≺[(F � Ys≺)/x] for all s ∈ X ′.

We can define F ′ := F � (Y \≺ X ′). Now we have

(Y \≺ X ′)[F ′/x] = (Y \
⋃

s∈X′

Ys≺)[F ′/x] = Y [F/x] \
⋃

s∈X′

Ys≺[(F � Ys≺)/x]

= Y [F/x] \
⋃

s∈X′

Y [F/x]s≺ = Y [F/x] \≺ X ′.

Hence M �(E(∃xψ)\≺X′)[F ′/x] ψ, i.e. M �E(∃xψ)\≺X′ ∃x ψ.
• Let μ = ∀x ψ. Let E(∀x ψ) = Y . Now E(ψ) = Y [M/x] and by the inductive hypothesis 

M �Y [M/x]\≺X′ ψ. By our assumptions x /∈ dom(X) and therefore

Y [M/x]s≺ = Ys≺[M/x] for all s ∈ X ′.

Thus we have

(Y \≺ X ′)[M/x] = (Y \
⋃

s∈X′

Ys≺)[M/x] = Y [M/x] \
⋃

s∈X′

Ys≺[M/x]

= Y [M/x] \
⋃

s∈X′

Y [M/x]s≺ = Y [M/x] \≺ X ′.

Hence M �(E(∀xψ)\≺X′)[M/x] ψ, i.e. M �E(∀xψ)\≺X′ ∀x ψ. �
7.3. Estimates for the cardinality k-separating sets

In the previous subsection we showed that, under certain conditions, some assignments can be removed 
from a team X without violating the truth of a formula ϕ. In this section we will analyze when such 
assignments exist by giving estimates on the cardinality of so-called k-separating sets. We begin by defining 
so-called k-separators which are sets of assignments whose removal alters the values of some k-ary relations 
in a given team.

Definition 7.9. Let Y, Z be teams for M. We say that Z is a k-separator of Y , if the following holds:

there is �y ∈ (dom(Y ))k s.t. (Y \ Z)(�y ) ⊂ Y (�y ).
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(Note that we use ⊂ to denote the proper subset relation.)

Observation 7.10. Recall k-equivalence and k-invariant atoms in Definition 3.1. It is easy to see that if 
Z ⊆ Y is not a k-separator of Y , then Y is k-equivalent to (Y \ Z). Therefore, for any k-invariant atom A, 
the truth of M �Y A implies the truth of M �Y \Z A, when Z is not a k-separator of Y .

Next, for given teams X and Y , we define the k-separating set of X for Y . This set consists of all those 
assignments s ∈ X whose extension set in Y is a k-separator of Y .

Definition 7.11. Let X, Y be teams for which dom(X) ⊆ dom(Y ). We define the k-separating set of X for 
Y , denoted by Sepk

X(Y ), as follows:

Sepk
X(Y ) := {s ∈ X | Ys≺ is a k-separator of Y }.

For any evaluation E ∈ EA (for some ϕ) in X, we use the following abbreviation:

Sepk
X(E) :=

⋃
Y ∈E(Atom)

Sepk
X(Y ).

In the results later we want to show that, under certain assumptions for a given evaluation E, we have 
Sepk

X(E) �= X. That is, there are assignments s ∈ X whose extension sets are not k-separators in any 
Y ∈ E(Atom). For proving this, we need the next lemma which gives an estimate for the number of 
assignments in Sepk

X(Y ) – with respect to some evaluation E.

Lemma 7.12. Let ϕ ∈ L, let X be a team and let E ∈ EA be an evaluation for ϕ in X. Now for each 
Y ∈ E(Atom) we have

|Sepk
X(Y )| ≤ (Oper#(ϕ) + |dom(X)|)k · |A|k.

Proof. Let Y ∈ E(Atom). All variables in dom(Y ) are either in dom(X) or quantified in ϕ. Hence 
|dom(Y )| ≤ Oper#(ϕ) + |dom(X)| and thus

|(dom(Y ))k| = |dom(Y )|k ≤ (Oper#(ϕ) + |dom(X)|)k.

For every s ∈ Sepk
X(Y ) there is (at least one) tuple �y ∈ (dom(Y ))k such that

(Y \ Ys≺)(�y) ⊂ Y (�y). (�)

Since |(dom(Y ))k| ≤ (Oper#(ϕ) + |dom(X)|)k, in order prove the claim of this lemma, it suffices to show 
that for each �y ∈ (dom(Y ))k, there exist at most |A|k different assignments s for which the condition (�)
holds.

Let �y ∈ (dom(Y ))k. The condition (�) holds, with respect to �y and some s ∈ X, if and only if there exists 
some k-tuple �a ∈ Ak such that

�a ∈ Y (�y) but �a /∈ (Y \ Ys≺)(�y). (��)

Since |Ak| = |A|k, it thus suffices to show that for each �a ∈ Ak there exists at most one s ∈ X such that 
the condition (��) holds for the pair (�a, s).

Let �a ∈ Ak and s1, s2 ∈ X such that (��) holds for both (�a, s1) and (�a, s2). Now �a ∈ Ys1≺(�y) and thus 
there is r ∈ Ys1≺ for which r(�y) = �a. Since r ∈ Y , but r(�y) = �a /∈ (Y \ Ys2≺)(�y), we must have r ∈ Ys2≺. 
Hence r ∈ Ys1≺ ∩ Ys2≺ and thus by (the contraposition of) Lemma 7.7 it has to be that s1 = s2. �
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Hereafter we will focus our analysis on logics L belonging to the class L[k] of (local) logics extending 
FO with k-invariant and downward closed atoms (Definition 3.3). Observe that when we fix k ≥ 1, L-
formula ϕ and a size of the domain for X, then we can choose large enough set A so that |A| is larger 
than (Oper#(ϕ) + |dom(X)|)k. Then, by Lemma 7.12, we have |Sepk

X(Y )| < Ak+1 for each Y ∈ E(Atom), 
where E ∈ EA is an evaluation for ϕ in X. By using this observation with the result of Lemma 7.8, we 
can show that, for sufficiently large models M and teams X with | dom(X)| = k + 1, the following holds: 
if M �X ϕ and X is “of the size |M |k+1” (i.e. |M |k+1 divided by some constant), then there is s ∈ X such 
that M �X\{s} ϕ. This claim is presented more formally and generally in the next lemma.

Lemma 7.13. Suppose that L belongs to L[k]. Let m, k, c ≥ 1 and let M = (M, I) be an L-model for which 
M = {1, . . . , c · p3k}, where p = max(m + 1, k, 3). Let X and X∗ be teams for M such that X∗ ⊆ X, 
|dom(X)| = k + 1 and

|X∗| ≥ |M |k+1

c
.

Then for every L-formula ϕ, for which Oper#(ϕ) ≤ m, the following implication holds:

If M�X ϕ, then there exists s ∈ X∗ s.t. M�X\{s} ϕ.

Proof. Let ϕ ∈ L such that Oper#(ϕ) ≤ m. Without loss of generality, we may assume that none of 
x ∈ dom(X) is quantified in ϕ.16 Suppose that M �X ϕ, whence by Lemma 7.4 there is E ∈ Sat(M, X, ϕ). 
Since Oper#(ϕ) ≤ m and |dom(X)| = k + 1, by Lemma 7.12 we have

|Sepk
X(Y )| ≤ (m + (k + 1))k · |M |k for each Y ∈ E(Atom).

Let Ymax ∈ E(Atom) be a team with the largest k-separating set of X (|Sepk
X(Ymax)| ≥ |Sepk

X(Y )| for 
all Y ∈ E(Atom)). Now we have

|Sepk
X(E)| ≤ |E(Atom)| · |Sepk

X(Ymax)| ≤ |Atom(ϕ)| · |Sepk
X(Ymax)|.

The set Atom(ϕ) has one more element than the number of the connectives ∧ and ∨ in ϕ. Since 
Oper#(ϕ) ≤ m, we thus have |Atom(ϕ)| ≤ m + 1. Hence

|Sepk
X(E)| ≤ |Atom(ϕ)| · |Sepk

X(Ymax)| ≤ (m + 1)((m + 1) + k)k|M |k.

• Suppose first that p = m + 1. Now m + 1 ≥ k, 3 and thus

(m + 1)((m + 1) + k)k ≤ (m + 1)(2(m + 1))k = 2k(m + 1)k+1

< (m + 1)k(m + 1)k+1 ≤ (m + 1)3k = p3k.

• Suppose then that p = k. Now k ≥ m + 1, 3 and thus

(m + 1)((m + 1) + k)k ≤ k (2k)k = 2kkk+1 < kkkk+1 < k3k = p3k.

16 If some of the variables in dom(X) were quantified in ϕ, we could instead consider a formula ϕ′ where all of these quantifications 
(and the variables in their scopes) are replaced with quantifications of fresh variables. (Assuming locality) it is easy to see that 
then M �X ϕ iff M �X ϕ′, and thus we may prove the claim of Lemma 7.13 for ϕ′ instead.
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• Finally suppose that p = 3. Now 3 ≥ m + 1, k and thus

(m + 1)((m + 1) + k)k ≤ 3 (2 · 3)k < 33k = p3k.

In all cases above (m + 1)((m + 1) + k)k < p3k. Hence we have

|Sepk
X(E)| ≤ (m + 1)((m + 1) + k)k|M |k

< p3k|M |k = (c · p3k)|M |k
c

= |M | · |M |k
c

= |M |k+1

c
≤ |X∗|.

Since |Sepk
X(E)| < |X∗| there is (at least one) s ∈ X∗ for which s /∈ Sepk

X(E). We select and fix one such 
s. Note that every ψ ∈ Atom(ϕ) which is not closed downwards, is a k-invariant atom. Hence, in order to 
prove that M �X\{s} ϕ, by using Lemma 7.8, it suffices that we prove the following:

M�E(ψ)\(E(ψ)s≺) ψ for every k-invariant atom ψ ∈ Atom(ϕ).

Let ψ ∈ Atom(ϕ) be a k-invariant atom. Because E ∈ Sat(M, X, ϕ), we have M �E(ψ) ψ. Since s /∈
Sepk

X(E), in particular s /∈ Sepk
X(E(ψ)) and thus E(ψ)s≺ is not a k-separator of E(ψ). Hence, recalling 

Observation 7.10, we have M �E(ψ)\(E(ψ)s≺) ψ. �
Remark 7.14. There are several ways for improving the estimates in Lemmas 7.12 and 7.13 – by e.g. sep-
arately considering the quantifier depth of ϕ and the number of connectives in ϕ instead of Oper#(ϕ). 
However, the optimization of these estimates is not necessary for proving our results in the next subsection.

7.4. Theorem for proving undefinability results for L[k]

By using Lemma 7.13, we can prove the following theorem which can be used for proving undefinability 
results for various logics in L[k] which extend FO with k-invariant atoms and downwards closed atoms. 
Thus, in particular, it can be applied for k-ary fragments of logics with team semantics, such as INEX[k].

Theorem 7.15. Let P be a property of (k + 1)-ary team relations. Assume that there is a constant c such 
that for any finite model M = (M, I), with at least c elements, there are teams X and X∗ for M such that 
the following conditions hold:

1. X∗ ⊆ X.
2. dom(X) = {y1, . . . , yk+1}.
3. X(y1 . . . yk+1) has the property P.
4. (X \ {s})(y1 . . . yk+1) does not have the property P for any s ∈ X∗.
5. |X∗| ≥ |M |k+1

c .

Now the property P cannot be defined with any logic in the class L[k].

Proof. For the sake of contradiction, suppose that P can be defined with a logic L in L[k]. Thus there 
is ϕ ∈ L which defines P; let m = Oper#(ϕ). Let M be a model, for which M = {1, . . . , c · p3k} where 
p = max(m, k, 3), and let X, X∗ be teams for M so that they satisfy the properties given in the assumptions. 
Since X(y1 . . . yk+1) has the property P, we have M �X ϕ. By Lemma 7.13 there is s ∈ X∗, such that 
M �X\{s} ϕ. This is a contradiction, because the team relation (X \ {s})(y1 . . . , yk+1) does not have the 
property P. �
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The assumptions of Theorem 7.15 may look quite technical, but the core idea is rather simple: those 
properties of teams that are very sensitive to removal of assignments cannot be defined in L[k]. By “sensitive” 
we mean that for any team X with the given property P, there are several assignments (namely those in 
X∗ ⊆ X) such that the removal of any single one of them makes X to lose the property P. By “several” we 
mean that the number of such assignments (namely |X∗|) is at least |Mk+1|/c, for some constant c.

By using Theorem 7.15, we can prove that several simple properties of team relations are undefinable in 
L[k]. The first of our undefinability results shows that, for any k ≥ 1, the (k + 1)-totality of X(y1 . . . yk+1)
– i.e. X(y1 . . . yk+1) being the total (k + 1)-ary relation Mk+1 – cannot be defined in L[k].

Corollary 7.16. For any k ≥ 1, (k + 1)-totality of X(y1 . . . yk+1) cannot be defined in L[k].

Proof. Let c = 1 and let M be any finite model. Let X be the team for M for which dom(X) =
{y1, . . . , yk+1} and X(y1 . . . yk+1) = Mk+1. Let X∗ = X; now X(y1 . . . yk+1) satisfies (k + 1)-totality, 
but (X \ {s})(y1 . . . yk+1) does not satisfy (k + 1)-totality for any s ∈ X∗. Moreover, we have

|X∗| = |X| = |M |k+1 = |M |k+1

c
.

Thus the claim follows from Theorem 7.15. �
The proof for the corollary above uses Theorem 7.15 in the most trivial form since there were |M |k+1

assignments in X∗ such that removal of any of them sufficed for violating the given property. In the proofs 
of the next corollaries we will apply Theorem 7.15 for smaller teams X∗.

Corollary 7.17. Symmetry of X(y1y2) cannot be defined in L[1].

Proof. Let c = 2 and let M be any finite model with at least 2 elements. Let X be the team for M s.t. 
dom(X) = {y1, y2} and X(y1y2) = M2. We define

X∗ := {s ∈ X | s(x1) �= s(x2)}.

Now X(y1y2) is clearly symmetric by being a total binary relation. However, (X\{s})(y1y2) is not symmetric 
for any s ∈ X∗ (removal of a single edge from any 2-cycle immediately violates the symmetry). We also 
have

|X∗| = |M |2 − |M | ≥ |M |2
2 = |M |2

c
.

Thus the claim follows from Theorem 7.15. �
Corollary 7.18. X(y1y2) being a linear order cannot be defined in L[1].

Proof. Let c = 2 and let M be any finite model with at least 2 elements. Let X be a team for M such that 
dom(X) = {y1, y2} and X(y1y2) is a linear order. Let X∗ = X; now (X \ {s})(y1y2) is not a linear order 
for any s ∈ X∗ (removal of any edge from a linear order violates the comparability property). Also

|X∗| = |X| = |M |2 − |M |
2 + |M | > |M |2

2 = |M |2
c

.

Thus the claim follows from Theorem 7.15. �
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Note that the properties of k-totality, symmetry and being a linear order are not closed downwards and 
thus not definable in any downwards closed logic.

Remark 7.19. Relevant disjunction 
��∨ and possibility operator � have been studied by Hella and Stumpf in 

[11] in the context of modal inclusion logic. They show that, in the modal case, all inclusion atoms can be 
expressed with ��∨ (or alternatively with �). However, in order to express a k-ary inclusion atom with �, we 
need a formula whose size is exponential with respect to k. This proof in [11] uses very similar methods as 
we use in this section.17

As shown in [12], a dual result holds for modal dependence logic: any dependence atom can be expressed 
with uniform disjunctions �, but in order to express a k-ary dependence atom with �, we need a formula of 
size exponential to k. However, this claim is proven by using very different kinds of methods than the ones 
used here and in [11].

8. Conclusion

On the level of all formulas, the study of the expressive power of logics with team semantics essentially 
amounts to the definability of team relations. In this paper we have developed various useful concepts 
and techniques for studying the definability of team relations. In particular, Theorem 7.15 can be used for 
proving various undefinability results for a rather rich family L[k] of logics extending FO with k-invariant 
and downwards closed atoms. We also believe that the lemmas and definitions leading to this result could 
be adjusted for other kind of expressivity analysis in the framework of team semantics.

We have also demonstrated that the expressive power of unary inclusion-exclusion logic, INEX[1], is 
quite interesting as with it one can define various nontrivial properties of binary team relations, such as k-
colorability of a corresponding graph. However, some simple properties such as symmetry of a team relation 
turned out to be undefinable. The full characterization of the expressive power of INEX[1] on the level of 
formulas remains still open.

As a final remark we note that, for using Theorem 7.15 to prove our undefinability results, it was essential 
to use finite models. It is thus natural to ask whether these undefinability results would hold if one only 
considered infinite models. However, in the infinite case we would need an essentially different proof method, 
and thus we leave this question open for future research.
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