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Background and Objective: This study focuses on Multi-Channel Transcranial Electrical Stimulation, a non- 

invasive brain method for stimulating neuronal activity under the influence of low-intensity currents. 

We introduce a mathematical formulation for finding a current pattern that optimizes an L1-norm fit 

between a given focal target distribution and volumetric current density inside the brain. L1-norm is 

well-known to favor well-localized or sparse distributions compared to L2-norm (least-squares) fitted 

estimates. 

Methods: We present a linear programming approach that performs L1-norm fitting and penalization of 

the current pattern (L1L1) to control the number of non-zero currents. The optimizer filters a large set of 

candidate solutions using a two-stage metaheuristic search from a pre-filtered set of candidates. 

Results: The numerical simulation results obtained with both 8- and 20-channel electrode montages sug- 

gest that our hypothesis on the benefits of L1-norm data fitting is valid. Compared to an L1-norm regular- 

ized L2-norm fitting (L1L2) via semidefinite programming and weighted Tikhonov least-squares method 

(TLS), the L1L1 results were overall preferable for maximizing the focused current density at the target 

position, and the ratio between focused and nuisance current magnitudes. 

Conclusions: We propose the metaheuristic L1L1 optimization approach as a potential technique to obtain 

a well-localized stimulus with a controllable magnitude at a given target position. L1L1 finds a current 

pattern with a steep contrast between the anodal and cathodal electrodes while suppressing the nuisance 

currents in the brain, hence, providing a potential alternative to modulate the effects of the stimulation, 

e.g., the sensation experienced by the subject. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In this numerical simulation study, we consider the task of op- 

imizing stimulation currents in the multi-channel version of Tran- 

cranial Electrical Stimulation (tES) [1,2] which is non-invasively 

pplied for stimulating neuronal activity, treating psychiatric dis- 

rders and studying neuronal behavior. In tES, a current pattern is 

njected throughout a set of electrode patches attached to the sub- 

ect’s head. Part of the generated diffusive current field penetrates 

hrough the skull into the brain, modulating cortical excitability 

3] . The procedure for adjusting the electrode montage delivering 

he stimulus varies from one method to another, considering var- 

ous properties such as the number of active electrodes, physical 
∗ Corresponding author at: Sähkötalo building, Korkeakoulunkatu 3, Tampere, 

3720, FI. 
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escription (e.g., positioning, shape, permittivity, and impedance 

alues), applied stimulus waveform (e.g., amplitude, pulse shape, 

ulse width, and polarity), the number of stimulation sessions, and 

ime interval [4] . 

This study focuses on Transcranial direct current stimulation 

tDCS), one of the non-invasive brain stimulation techniques from 

he tES family. This method relies on delivering constant, low- 

ntensity currents injections typically ranging from 0.5 to 4.0 mA 

5,6] over a pair of large saline-soaked 20–35 cm 

2 electrode 

atches [7] , with one patch adhered on the scalp, whereas the 

econd patch can be either cephalic or extra-cephalic [8,9] . The 

rawback, however, is the limitation of delivering target-specific 

requencies and the lack of focality. tDCS is a well-known treat- 

ent of neuropsychiatric disorders and brain illnesses, for instance, 

troke conditions [5,10] , epilepsy syndromes [11] , Parkinson’s dis- 

ase [12–15] , major depression disorder [16–18] , tinnitus [19] , mi- 

raine [20] , and alcoholism [21] . 
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Multi-channel tES generally constitutes a task of selecting a 

ulti-component current pattern to create a sought field in a given 

arget location. Advanced optimization methods often operate with 

egularized data fitting strategies to maximize this current [2,22–

5] . Determining such a pattern poses an ill-posed inverse problem 

26,27] , i.e., it does not have a unique solution, and a slight change

an significantly change the resulting current density in the brain 

nd can be considered as an over-determined case since the three- 

imensional current field is likely to have more degrees of freedom 

han the current pattern. 

This study aims at finding current patterns that would optimize 

n L1-norm fit between a given focal (well-localized) target cur- 

ent distribution and minimize the dose injected to the subject. 

o achieve this, we introduce an L1-norm fitted and regularized 

L1L1) linear programming approach for finding a focal current dis- 

ribution since L1-norm based solutions are generally known to 

e well-localized compared to regularized least squares estimation 

n inverse modeling [26,27] . We compare the performance of the 

roposed method against the L1-norm regularized L2-norm fitted 

L1L2) semidefinite programming method and the Tikhonov regu- 

arized Least Squares (TLS) method [23] . While L1-norm was pre- 

iously applied to penalize an objective function [24] , and linear 

rogramming as a strategy to maximize current density at a given 

ocation [22] , our present method is one of the first to optimize a 

lobal L1-norm fit for the tES application. 

We consider the present optimization problem as a meta- 

euristic task of computational intelligence. The goal is to find 

he best fitting solution which maximizes both ratio between fo- 

used and nuisance current intensity and the amplitude of the fo- 

used current density at the targeted stimulus location. The com- 

arison was performed by coupling the CVX optimization tool- 

ox [28] with MATLAB-based Zeffiro Interface (ZI) code package 1 

29–31] , which allows creating a lead field matrix [9] for a multi- 

ompartment volume head model ( Appendix A.3 ) using the Finite 

lement Method (FEM) together with Complete Electrode Model 

CEM) [32,33] boundary conditions ( Appendix A ). As a test domain, 

e used a realistic head model obtained from an openly available 

RI data set (2.5) . We hypothesize that our method can be advan- 

ageous for a configuration where the focal current distribution is 

ought using a limited number of electrodes to deliver the stimu- 

us. 

This article is structured as follows: The methodological details, 

ncluding optimization techniques, two-stage metaheuristic search, 

est domain, and target placement, are described in Section 2 . The 

esults can be found in Section 3 and discussion in Section 4 . 

he mathematical grounds and principles of tES forward modeling 

nd weighted least squares are explained in Appendices A.1 and 

ppendix B . 

. Methods 

The inverse problem of tES is to find a current pattern y = 

y 1 , y 2 , . . . , y � ) that can generate a given current field which in 

he discretized form can be expressed as a coordinate vector ˆ x = 

 ̂ x 1 , ̂  x 2 , . . . , ̂  x N ) . The fitting between vectors y and 

ˆ x is enabled by

he matrix equation 

ˆ 
 y = 

ˆ x , (1) 

here ˆ L is a linear mapping following discretized Maxwell’s equa- 

ions ( Appendix A.1 ). We consider finding an optimized current 

attern which, when this is applied to the head model � through a 

iven number of active electrodes attached to the scalp, generates 

 focused volume current distribution matching a synthetic dipolar 
1 https://github.com/sampsapursiainen/zeffiro _ interface . 

s  

u

2 
urrent at a given orientation and location while the nuisance field 

omponent remains suppressed. 

The sought current pattern is required to meet Kirchhoff’s cur- 

ent conservation conditions, i.e., the total sum of injected currents 

ust be equal to zero, 
∑ L 

� =1 y � = 0 . Such conditions can be rewrit-

en as 1 T y = 0 with 1 = (1 , 1 , . . . , 1) T to yield both a total dose

 y ‖ 1 = 

∑ L 
� =1 | y � | less or equal to a given safety current limit μ,

nd an entry-wise upper limit of less or equal to γ , i.e., y � γ 1 .

he maximum absolute total dose can be achieved with a montage 

f at least a minimum set of two electrodes (one bearing positive 

olarity and the other one negative) [5,6] . For an even compari- 

on between different optimized current patterns, the total dose of 

ach pattern is equaled to μ = 4.0 mA. We can assume that the 

ighest current an electrode can bear is γ = 2.0 mA [6] . 

.1. Optimization 

We consider a weighted optimization scheme [23] to solve 

y = x , (2) 

where L = 

(
L 1 
L 2 

)
= 

(
P ̂

 L 1 
ˆ L 2 

)
, x = 

(
x 1 

0 

)
= 

(
P ̂

 x 1 

0 

)
. 

ere, ˆ L 1 , ˆ L 2 , and 

ˆ x 1 are obtained by splitting ˆ L and 

ˆ x into two dif- 

erent components 

ˆ 
 = 

(
ˆ L 1 
ˆ L 2 

)
and 

ˆ x = 

(
ˆ x 1 

0 

)
(3) 

nd P represents a matrix that projects a vector into the direc- 

ion of ˆ x 1 . Because this field has a single direction, the projection 

an be considered sufficient to measure the match between the fo- 

used and the target fields. 

We call the first solution component, L 1 y , the focused field , i.e., 

he part that contains the given stimulus target field x 1 , and the 

econd one, L 2 y , the nuisance field , i.e., the remaining part of the

eld which we aim to suppress. The amplitude ‖ x 1 ‖ 2 of the target

efers to the value 3.85 A/m 

2 (Ampere per square meter), which 

epresents a rough approximate threshold for the excitation of 

erve fibers. According to Kowalski et al. [34] , the threshold values 

or the upper limb area of the motor cortex range between 6 and 

.5 A/m 

2 at 2.44 kHz (kilohertz) and 50 Hz (hertz). This value is 

btained by dividing the average density activity of 0.77 nAm/mm 

2 

nano ampere per square millimeter) [35] by the length of a pyra- 

idal cell approximately of 0.2 mm (millimeter) [36] from the api- 

al to the basal dendrites. It is roughly one magnitude greater than 

he achievable focused current density in the brain [9] given the 

afety limitations of tES. Here, it is considered a reference ampli- 

ude to normalize the present optimization framework. 

The magnitude difference between L 1 y and L 2 y can be con- 

rolled by varying the weight of the nuisance field explicitly given 

or L1L1 and L1L2, and as a penalty parameter embedded in the 

bjective function for TLS, where explicit constraints are not appli- 

able. To limit the number of non-zero currents in y , the objective 

unction of the optimization task is regularized (penalized) by the 

orm of the current pattern. 

.1.1. L1-norm regularized L1-norm fitting 

The following L1-norm regularized L1-norm fitting problem 

L1L1) is defined as 

in 

y 

{
‖ 

(
L 1 y − x 1 

�ε 

[
ν−1 L 2 y 

])‖ 1 + αζ‖ y ‖ 1 

}
, (4) 

ubject to y � γ 1 , ‖ y ‖ 1 ≤ μ, and 

∑ L 
� =1 y � = 0 . Here, α is the reg-

larization parameter, the scaling factors are ζ = ‖ L ‖ and ν = 
1 

https://github.com/sampsapursiainen/zeffiro_interface
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, and the m th component of the vector-valued threshold 

unction �ε has the following form 

ε [ w ] m 

= max { | w m 

| , ε } for m = 1 , 2 , . . . , M, (5)

here w = (w 1 , w 2 , . . . , w M 

) and 0 ≤ ε ≤ 1 are the threshold

eights. Entries (L 2 y ) m 

with an absolute value below εν do not 

ctively contribute to the minimization process due to the thresh- 

ld. We refer the set { m : | (L 2 y ) m 

| ≥ εν } as the constraint support ,

.e., the index set contributing to the value of the objective func- 

ion. 

The choice ε = 1 is equivalent to replacing the minimization as- 

ect from (4) with only ‖ L 1 y − x 1 ‖ 1 + αζ‖ y ‖ 1 . We consider a pos-

tive threshold essential from the numerical point of view. With- 

ut it, should ε = 0 , the objective function in (4) is equal to ‖ x 1 ‖ 1 ,
onstituting x = 0 a potential global minimizer i.e., a solution that 

anishes everywhere. 

Problem (4) constitutes the following linear programming task 

37, 294] 

min 

 , t (1) , t (2) , t (3) 

( 

N ∑ 

k =1 

t (1) 
k 

+ 

M ∑ 

m =1 

t (2) 
m 

+ αζ
L ∑ 

� =1 

t (3) 
� 

) 

(6) 

ubject to ( 

t ( 1 ) 

t ( 2 ) 

αζ t ( 3 ) 

) 

�
( 

L 1 
L 2 
I 

) 

y −
( 

x 1 

0 

0 

) 

�
( 

t ( 1 ) 

t ( 2 ) 

αζ t ( 3 ) 

) 

, 

(
0 

εν1 

)
�

(
t ( 1 ) 

t ( 2 ) 

)
(

0 

0 

)
�

(
t ( 3 ) 

1 

T t ( 3 ) 

)
�

(
γ 1 

μ

)
1 

T y = 0 . (7) 

ere, t (1) , t (2) and t (3) constitute auxiliary N-by-1, M-by-1 and L - 

y-1 vectors, respectively. A numerically implementable form of 

7) with one inequality and equality constraint can be expressed 

s follows: 

min 

 , t (1) , t (2) , t (3) 

⎛ 

⎜ ⎝ 

0 

1 

1 

1 

⎞ 

⎟ ⎠ 

T ⎛ 

⎜ ⎝ 

y 

t (1) 

t (2) 

t (3) 

⎞ 

⎟ ⎠ 

(8) 

ubject to 
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0 0 0 −I 
0 0 0 I 

0 0 0 1 

T 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎝ 

y 

t ( 1 ) 

t ( 2 ) 

t ( 3 ) 

⎞ 

⎟ ⎠ 

�

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

x 1 

0 

0 

−x 1 

0 

0 

0 

−εν1 

0 

γ 1 

μ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(9) 

1 

T y = 0 . (9) 

he solution is found via primal-dual interior-point algorithm 

37,38] of the SDPT3 package, accessible via the open CVX toolbox 2 

28] . 
2 http://cvxr.com/cvx/ . 

p

l

1

3 
.1.2. L1-norm regularized L2-norm fitting 

The L1-norm regularized L2-norm fitting method (L1L2) is of 

he form 

in 

y 

{
‖ 

(
L 1 y − x 1 

�ε 

[
ν−1 L 2 y 

])‖ 2 + αζ‖ y ‖ 1 

}
, (10) 

here the L1-norm fitting in (4) is substituted with L2-norm. No- 

ice that if ε = 1 , i.e., nuisance field is unconstrained, and a single

arget is being used, as in this study, then the objective function 

f both L1L1 and L1L2 is reduced to min y {| L 1 y − x 1 | + αζ‖ y ‖ 1 } . In
VX, the solutions are obtained through semidefinite programming 

ncorporating linear and quadratic constraints. The latter follows 

he L2-norm fitting straightforwardly [38] . 

.1.3. Tikhonov regularized least squares 

In Tikhonov regularized least squares (TLS) estimation [22,23] , 

he optimization problem is 

in 

y 
{‖ L 1 y − x 1 ‖ 

2 
2 + α2 δ2 ‖ L 2 y ‖ 

2 
2 + α2 ς 

2 ‖ y ‖ 

2 
2 } , (11)

here ς = ‖ L ‖ 2 . To enforce focality, the nuisance field weight δ ≥
 is considered as a variable parameter, and the solution of (11) is 

iven by the linear system 

L T 1 L 1 + α2 δ2 L T 2 L 2 + α2 ς 

2 I 
)
y = L T 1 x 1 , (12) 

hich in Matlab can be solved using the backslash operator ( \ ) in 

 straightforward manner. The weight can be shown ( Appendix B ) 

o affect the focused current density � (A/m 

2 ) which is defined as 

= 

x 

T 
1 L 1 y 

‖ x 1 ‖ 2 

, (13) 

nd the current ratio � (unitless) which is obtained by 

= 

�

‖ L 2 y ‖ 2 / 
√ 

M 

. (14) 

While the equations above are dependent on the regularization 

arameter and the nuisance field weight, the latter is treated dif- 

erently in each method: as an explicit threshold in the L1L1 and 

1L2 methods and as a weighted form for the TLS method leading 

owards a different solution dependence. When δ > 0 , the mini- 

ization problem (11) can be re-written as 

in 

y 
{ κ‖ L 1 y − x 1 ‖ 

2 
2 + ‖ L 2 y ‖ 

2 
2 + 

ς 

2 

δ2 
‖ y ‖ 

2 
2 } (15)

ith κ = 1 / (α2 δ2 ) . Thus, either focused or nuisance fields can be 

eighted. 

.2. Candidate solution set 

Determining optimal case-wise parameter combinations is done 

y analyzing a two-dimensional 15 × 15 lattice resolution of feasi- 

le solutions covering a wide dynamical range with good numeri- 

al performance while ensuring a reasonable computation time. In 

1L1 and L1L2, α varies between -100 and -30 dB and ε between 

160 and 0 dB. In TLS, α is between -200 and -110 dB and δ be-

ween -50 and 40 dB. 

We computed the solutions on a Dell 5820 workstation with an 

ntel Core i9-10900X processor and 256GB RAM. The total comput- 

ng time required to evaluate the entire lattice of candidate solu- 

ions was approximately 378, 456, and 20 s with L1L1, L1L2, and 

LS, respectively. The L1L1 and L1L2 solutions were parallelized 

hrough ten processor threads, while the TLS solutions were sim- 

lified by leveraging Matlab’s interpreter in a simple iteration uti- 

izing a full system matrix. We used a relative solver tolerance of 

E-12 as a stopping criterion for L1L1 and L1L2. 

http://cvxr.com/cvx/
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Fig. 1. (a) : Left-posterior view of the gray matter compartment of the volume con- 

ductor model highlighting the somatosensory (red), auditory (cyan) and visual (blue) 

region of interest (postcentral gyrus, superior temporal gyrus and occipital lobe in 

the 36-label Desikan-Killiany atlas). Each region is presented with its own point-like 

dipolar target current (sphere) and orientation (line). (b) : An example of a simple 

five-channel electrode montage creating a volume current distribution in the left- 

hemisphere of the occipital lobe. The positive (anodal) electrode channels injecting 

the current into the domain are illustrated with red spheres, the negative (cathodal) 

ones with blue, and the disabled/inactive ones with dark gray. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
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.3. Two-stage metaheuristic search 

We apply a two-stage metaheuristic lattice search algorithm 

39] which finds a set of candidate solutions to optimize the cur- 

ent distribution, given a focal vector field where focused current 

ensity � and current ratio � as metacriteria. Of the following two 

ases, (A) utilizes both criteria while (B) constitutes a reference for 

aximizing �. In other tES publications, such as [2,3,6,22] , � and 

are referred to as intensity and focality , respectively. 

.3.1. Case (A) 

The first stage sets a threshold condition for �, and the second 

tage maximizes the threshold set of candidates concerning �. Us- 

ng these two criteria, the selected candidate will have an adequate 

urrent amplitude [25] in the targeted position and a suitably sup- 

ressed nuisance field component. To evaluate the overall numer- 

cal solver performance, we use the threshold condition 0.11 A/m 

2 

nd, in addition, show how the optimum behaves as a function of 

he threshold condition. 

.3.2. Case (B) 

For comparison, Case B is a simpler scheme. It considers max- 

mizing only the focused current density � over the entire set of 

andidates, i.e., only a single criterion and stage. 

.3.3. Post-optimization with non-fixed vs. fixed montage 

During the first stage of the lattice search, we apply a mon- 

age of 128 electrodes, while the second run uses a limited set. 

he optimizer initially permits all channels during the first stage; 

owever, it only allows those electrodes that contribute the most 

o the total maximum current value to carry non-zero amplitudes. 

he rest of the electrodes are then opt-out (set to zero) from fur- 

her calculations. Thus, only 20 or 8 active channels are available 

n the montage. The montages are inspired by commercial state- 

f-the-art tES systems [40,41] . 

In TLS, the second-stage solution needs to be scaled to match 

he maximum possible total dose since the least squares optimiza- 

ion process does not automatically yield such scaling, unlike the 

1L1 and L1L2 convex optimization techniques. 

.4. Synthetic sources and placement 

A total of three dipoles are placed in the following three left 

emispheric Brodmann’s areas [42] : postcentral gyrus (red), supe- 

ior temporal gyrus (cyan), and occipital lobe (blue) ( Fig. 1 a). Each 

f these dipoles is oriented regarding the surface of the gray mat- 

er tissue to satisfy the normal constraint of the brain activity in 

he cerebral cortex [43] . The amplitude of the dipolar target cur- 

ent is related to the corresponding local current density in the 

rain. Each current pattern obtained is a solution to the optimiza- 

ion problem corresponding to each one of these areas. The results 

re categorized as Somatosensory for postcentral gyrus, Auditory for 

uperior temporal gyrus, and Visual for occipital lobe. 

.5. Test domain 

As a test domain for the numerical experiments, we used 

 multi-compartment volume conductor head model based on 

penly available anatomical T1-weighted Magnetic Resonance 

maging (MRI) data 3 obtained from a real subject. The data were 

egmented using FreeSurfer Software Suite 4 which distinguishes 

ifferent head and brain tissue compartments including the scalp, 
3 https://brain- development.org/ixi- dataset/ . 
4 https://surfer.nmr.mgh.harvard.edu/ . 

m

m

t

o

4 
kull, cerebrospinal fluid, gray and white matter, subcortical struc- 

ures such as brain stem, thalamus, amygdala, and ventricles with 

heir complex geometrical properties [44] . 

By using Zeffiro Interface (ZI) Finite Element (FE) mesh gen- 

rator [29] , volume segmentation is obtained by identifying the 

btained compartments from the surface segmentation and creat- 

ng smoothed and optimized FE meshes of these compartments. 

o discretize the head model, we use a FE mesh resolution of 

 mm to obtain physiologically accurate results [45] . The conduc- 

ivity distribution, which influences the accuracy of the forward 

olution [46] , is constant in each tissue compartment with the val- 

es corresponding to the set proposed in [47] . The 128 electrodes 

re set ( Fig. 1 b) following International 10-10 electroencephalo- 

raphic (EEG) hardware system [48] with electrode impedance of 2 

Ohm (Kiloohms) uniformly. Impedance modeling was enabled by 

ncorporating CEM into the forward simulation ( Appendix A.1 ). The 

ES lead field matrix L generation is explained in ( Appendix A.3 ) 

or 10 0 0 uniformly distributed spatial sets of points contained by 

he gray matter compartment, including three Cartesian degrees of 

reedom per point. 

.5.1. Performance analysis 

The optimization outcome was examined by evaluating focused 

urrent density �, current ratio �, maximum injected current pat- 

ern ‖ y ‖ ∞ 

, and the Angle Difference (AD) as 

D ( � j 1 , � j 2 ) = arccos 

( 〈
�
 j 1 , � j 2 

〉∥∥�
 j 1 
∥∥∥∥�

 j 2 
∥∥
) 

, (16) 

etween the focused and the targeted fields. Here, � j 1 represents 

olume current distribution at the target location generated by the 

njected pattern and 

�
 j 2 the dipolar target current. 

The limits for the lattice-induced deviation of �, �, AD, and 

 y ‖ ∞ 

were estimated by forming a second order Taylor’s polyno- 

ial approximation over a 3-by-3 subset of the optimization lat- 

ice centered at the selected candidate solution using the three- 

oint difference formula [49] to approximate the derivatives and 

aximizing the deviation in a co-centered square with edge-length 

atching the lattice size. With this strategy, the deviation is ob- 

ained with respect to an hypothetical lattice with double the res- 

lution compared to the actual one. 

https://brain-development.org/ixi-dataset/
https://surfer.nmr.mgh.harvard.edu/
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Fig. 2. � (A/m 

2 ) and � (relative) for each point of the search lattice in the first run of the two-stage metaheuristic optimization process. Horizontal axis corresponds to the 

regularization parameter α and the vertical axis to the nuisance field weight which is given by ε for L1L1 and L1L2 and δ for TLS. The first-stage optimal solution for the 

cases (A) and (B) are represented by a purple and yellow star, respectively. The axes are scaled in decibel (dB) units. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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. Results 

Figure 2 illustrates the metaheuristic lattice search outcome. 

he performance of the optimization methods, including their 

aximal estimated lattice-induced deviations, are visualized in 

igs. 3 and 4 . Optimized current patterns (as well as their projec- 

ions in the brain) for both 20 and 8 channel montage are shown 

n Figs. 5 and 6 , respectively. 

.1. Lattice search interpretation 

For each optimization method, the range of the metaheuristic 

attice search was sufficient to cover the regions in which � was 

aturated close to its maximum. These regions were surrounded 

y comparably smooth transition zones, from high to low � and 

ith elevated �-values. The solutions for cases (A) and (B) were 

enerally found from these saturated and transition regions, re- 

pectively. Figure 2 a–c show the first-stage optimizers found in 

he case (A), where � is maximized using the threshold � ≥ 0 . 11 

/m 

2 (purple star), and in case (B), which finds the global maxi- 

izer of � (yellow star). The lattice search was found to perform 

nalogously for the 20 and 8 channel montages, which can be ob- 

erved from the overall small mutual differences between the star 

oints. 

Considering L1L1 ( Fig. 2 a) and L1L2 ( Fig. 2 b), with regulariza-

ion parameter α range below -70 dB, � is close to its maximum 

n a region where the nuisance field weight ε is close to 0 dB, i.e.,

hen the optimizer is almost completely determined by the fo- 

used field component. In this α-range, the transition towards a 

reater ratio � takes place when ε decreases from -30 to -40 dB 

between 0.04 and 0.12 A/m 

2 ), while � vanishes with a slightly 

maller ε. The α-range between -70 and -40 dB constitutes a ‘sweet 

pot’ (a combination of factors resulting in a maximum response), 

here � is saturated for ε-values down to −150 dB (1E-07 A/m 

2 ). 

he greatest �-values are found near the lower end of this range 

elow which � decays to zero. Both � and � begin to diminish 

hen α reaches a value greater than -40 dB. For TLS ( Fig. 2 c),

hen α ≥ −180 dB, the maximum � can be obtained close to 0 dB 

ith � growing along with ε. While the value of α can be ob- 
5 
erved to affect the best obtainable �, there is no special range 

here the dependence of � on the ε-value would change signifi- 

antly. 

.2. Optimizer characteristics 

In comparison to L1L2 and TLS ( Fig. 3 ), L1L1 yielded greater or 

qual values of � and � in cases (A) and (B), respectively. L1L1 

ended towards a higher maximum current ‖ y ‖ ∞ 

and AD than in 

he cases of L1L2 and TLS. The observed extra gain provided by 

1L1, compared to L1L2, was systematic and most pronounced in 

ase (A), and the optimized �-value of L1L1 was approximately 1.4 

imes greater than L1L2 at the first stage of search threshold with 

set at 0.11 A/m 

2 , agreeing with our initial hypothesis. Higher 

hreshold levels, exemplified in Fig. 4 , can further emphasize this 

ain up to a factor of 2. 

In case (B), the greatest difference between the L1L1- and TLS- 

ptimized focal current density � was obtained for the auditory 

arget current with both 8- and 20-channel montages (0.027 and 

.022 A/m 

2 , respectively). Comparing the results obtained with the 

- and 20-electrode montage, the former one was observed to 

esult in smaller overall differences between the methods and a 

arginally greater focused current density in case (B). 

.3. Current pattern and volume density 

Based on the results, the dependence of the optimization ac- 

uracy on the spatial position and orientation of the target dipole 

ecomes evident, while the current patterns obtained via each ap- 

lied method maintain their general characteristics regardless of 

he positioning of the target dipole. 

L1L1 and L1L2 tend to find a pattern with a greater maximum 

urrent of ‖ y ‖ ∞ 

where the amplitudes have smoother transitions 

etween the electrodes than TLS. However, they also include multi- 

le low-amplitude currents with close-to-equal amplitudes, which 

istributes the nuisance current over a large area, decreasing its 

mplitude. This effect can be observed on the 20-channel montage 

n Fig. 5 and less pronounced in the 8-channel montage 6 . Further- 

ore, the distance between anodal and cathodal electrodes tend to 
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Fig. 3. A graphical illustration optimized values of � (A/m 

2 ), � (relative), AD (deg), 

and ‖ y ‖ ∞ (mA) and their maximal estimated lattice-induced deviations. In each 

case, the dot on the stem shows the optimizer while the whiskers illustrate the 

estimated limits for the deviation. L1L1 correspond to red while the L1L2 and TLS 

results in black and blue stems, respectively. The optimization cases (A) and (B) are 

highlighted with cyan and magenta background color, respectively. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

b

m

e

c

w

t

g

Fig. 4. Current ratio � as a function of the threshold condition setting the criterion 

� ≥ threshold in the first stage of the metaheuristic search. When threshold ≥ 0 . 11 , 

L1L1 (solid red curve) yields a greater or equal current ratio � compared to L1L2 

(dash-dotted black curve) and TLS (dashed blue curve). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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e further apart in L1L1 and L1L2 than in TLS, where distance was 

inimal, especially in the pattern obtained via optimization strat- 

gy (B). 

L1L1 seems to find the greatest focal current density with a 

omparably larger threshold for �, allowing for a focal stimulus 

ith a relatively high current density, reflected by the results ob- 

ained via optimization strategy (A), where the current ratio � was 

reater for L1L1 than for L1L2 or TLS. 
6 
. Discussion 

This study considered L1-norm data fitting via L1-norm regu- 

arized convex optimization (L1L1) as a potential alternative strat- 

gy for finding a current pattern in a multi-channel Transcranial 

lectrical Stimulation (tES) stimulation. L1-norm is a well-known 

easurement procedure to yield sparse solutions compared to L2- 

orm [24,25] . In tES, this means greater focused current density 

riven in the targeted region of interest. Earlier strategies resorted 

o this approach for maximizing injected current pattern supplied 

y a limited number of electrodes patches attached to the scalp of 

he subject [2,22] . 

In this study, we applied the L1-norm in both fitting and regu- 

arization aspects, i.e., penalization of non-zero entries in the cur- 

ent pattern, hypothesizing that both the resulting volume current 

istribution and current pattern are sparse. Additionally, our re- 

ults are compared with L1-regularized L2-norm data fitting (L1L2) 

24] , and the weighted Tikhonov regularized Least Squares method 

TLS) [23] . 

We consider our data fitting approach advantageous for convex 

ptimization to obtain the best possible fit for a given, user-defined 

umber of active electrodes, from a montage with a minimal set 

f two channel setting [5,6] to an extended hardware featuring 64, 

28 or 256 channels [2] . Here, we applied montages of 20 and 8 

ctive channels inspired by commercial clinically-applied tES sys- 

ems [40,41] . 

Our approach can approximate the best regularized and con- 

trained L1/L2-norm fit. A widely adopted approach is to maxi- 

ize the focused current density with different constraints, e.g., a 

ocality-enforcing upper limit [2,24] for the amplitude of the nui- 

ance current. However, focality not only follows a constraint, but 

lso an objective function. For this reason, L1-norm data fitting 

eems a potential alternative for finding current patterns, absent 

n the earlier studies. 

The application of metaheuristics conditions allowed selecting 

roblem parameters in such regard that the expected outcome was 

lose-to-optimal concerning a given metacriterion. One can provide 
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Fig. 5. The 20-channel electrode montage and current pattern (mA) together with corresponding volume current density A/m 

2 were obtained through two consecutive runs 

of the two-stage metaheuristic optimization process concerning non-fixed and fixed montage of 20 active electrodes, respectively. Average amplitude in the direction of 

the target dipole is shown as a function of distance (mm) from the dipole position. The current pattern colorbar shows a color gradient interval from -0.25 to 0.25 mA to 

enhance the visibility of small variations in the pattern. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

a

t

t

t

p

o

n

r

t

q

r

n explicit means to approximate the best possible constraint for 

he nuisance field. We defined the threshold constraint ε to set 

he minimum nuisance current amplitude affecting the optimiza- 

ion process in L1L1 and L1L2, whereas in TLS, a weight is incor- 

orated instead as a multiplier of the corresponding term in the 

bjective function. 
7 
In the search case (A), which aimed at maximizing focused vs. 

uisance field current ratio �, the method produced a focal cur- 

ent pattern and a well-localized stimulus current density during 

he first-stage with optimization threshold � ≥ 0 . 11 A/m 

2 , ade- 

uate enough for an injecting current pattern of 4 mA [5,6] . This 

esult is in accordance with our initial hypothesis on the potential 
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Fig. 6. The 8-channel electrode montage and current pattern (mA) together with corresponding volume current density A/m 

2 were obtained through two consecutive runs 

of the two-stage metaheuristic optimization process concerning non-fixed and fixed montage of 8 active electrodes, respectively. Average amplitude in the direction of the 

target dipole is shown as a function of distance (mm) from the dipole position. The current pattern colorbar shows a color gradient interval from -0.25 to 0.25 mA to 

enhance the visibility of small variations in the pattern. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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enefit in localizing the stimulus current and the general knowl- 

dge that L1-norm optimization is advantageous to enhance con- 

rasts between different solution components [26,27] . 

In the search case (B), which concentrated on maximizing fo- 

used current density �, the L1L1 method produced the greatest 

ompared to the L1L2 and TLS methods which is in agreement 

ith earlier observations [22] . Maximizing � with an L1-norm data 

t led to a two-patch montage following the extended reciprocity 
8 
rinciple [2] . Such a montage could effectively be found around 

he somatosensory area. However, the results for the auditory and 

isual areas were asymmetric, one polarity could be sharply distin- 

uished by a single channel, while the opposite matches a cluster 

f channels instead, suggesting a potential numerical performance 

imitation of the applied solver algorithm. 

Optimization performance are expected to behave differently 

ase-wise by the applied lattice resolution into finding the thresh- 
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ld weight ε. Namely, we found a focal solution within a regular- 

zation parameter α range approximately between -70 and -40 dB, 

here ε could be set down to -110 dB smaller than its surround- 

ngs without collapsing the amplitude of the candidate solution, 

elated to the numerical accuracy of spatial discretization. For this 

eason, an enhanced lattice can improve the search accuracy with 

 slightly improved nuisance field suppression while maintaining 

n increasing amplitude in its vicinity. Achieving such an enhance- 

ent might be challenging if a hard upper-bound (e.g., [2,24] ) sup- 

ressing the amplitude is applied instead of a threshold weight. 

or this reason, the constraint support ( Section 2.1.1 ) is to be deter-

ined a priori , while in the present model is obtained a posteriori 

s a result of the optimization process. 

The differences between the L1L1 and L1L2 methods were sys- 

ematical, attributed to the mutual discrepancies in numerical per- 

ormance as the formulations of these methods were similar when 

he nuisance field is not suppressed, i.e., when ε = 1 ( Section 2.1.2 ).

he parameters applied in the lattice search includes the neigh- 

orhoods of the global maximizers for � and �, and a 15 × 15 

attice grid which allowed finding a set of feasible solutions in 

 relatively short computing time (378, 456, and 20 s with L1L1, 

1L2, and TLS, respectively). The former method implementation 

an faster than the latter as it did not include additional quadratic 

onstraints, which are necessary for a semi-definite formulation of 

 linearly constrained problem [38] . Furthermore, in addition to 

eing a simple method, the TLS method was automatically par- 

llelized by Matlab’s interpreter, as it includes only full matrices 

nd relatively simple linear algebraic operations, which explains 

he computing time differences compared to L1L1 and L1L2 op- 

imization. 

Potential future work would be to compare the present meta- 

euristic CVX/SDPT3-based L1L1 and L1L2 implementations with 

lternative interior-point techniques, simplex methods, or other 

onvex strategies, e.g., the Alternating Direction Method of Multi- 

liers (ADMM) [24,25] . Our optimizers, available in ZI [29] , can be 

otentially expanded to include other brain stimulation modalities, 

or instance, Deep Brain Stimulation applications [50] . Further in- 

estigations of the relationship between the nuisance field thresh- 

ld weight ε (tolerance) and modeling of other uncertainties is an 

mportant topic, as the latter aspect may be expected to limit max- 

mal obtainable accuracy for this field. Finally, experimental work 

ill be needed to learn more about other than mathematical or 

omputational aspects of L1L1-optimized current patterns in prac- 

ice. 

eclaration of Competing Interest 

The authors certify that this study is a result of purely aca- 

emic, open, and independent research. They have no affiliations 

ith or involvement in any organization or entity with a financial 

nterest or non-financial interest such as personal or professional 

elationships, affiliations, knowledge, or beliefs in the subject mat- 

er or materials discussed in this manuscript. 

cknowledgments 

FGP, AR, MS, and SP were supported by the Academy of Finland 

enter of Excellence in Inverse Modelling and Imaging 2018–2025, 

AAD project (334465) and by the ERA PerMed project PerEpi 

344712). AR was supported by the Alfred Kordelini Foundation. 

ppendix A. Forward model 

The governing partial differential equation for the electric po- 

ential in the head model � is of the form 

 · (σ∇u ) = 0 . (17) 
9 
The head model � is stimulated through an electrodes montage 

e � ) 
L 
� =1 of size | e � | . We denote the current applied on the � th elec-

rode by I � , electrode potential U � , and impedance Z � . The bound- 

ry conditions for the Complete Electrode Model (CEM) are the fol- 

owing: 

 = σ
∂u 

∂n 

( � r ) , for � r ∈ ∂�\ ∪ 

L 
� =1 e � , (18) 

 � = 

∫ 
e � 

σ
∂u 

∂n 

( � r ) dS , for � = 1 , . . . , L, (19) 

 � = u ( � r ) + ̃

 Z � σ
∂u 

∂n 

( � r ) , for � r ∈ e � , � = 1 , . . . , L. (20) 

he boundary condition 18 describes that no current is flowing in- 

ide nor outside of head; 19 describes that the total current flux 

hrough the � th electrode equals to the applied current I � ; 20 de-

cribes the relationship between the ungrounded electrode poten- 

ial U � and the potential u underneath the electrode; By assuming 

hat the effective contact impedance is ˜ Z � = Z � | e � | , we can rewrite

0 as 

 � = 

∫ 
e � 

u dS 

| e � | + Z � I � . (21) 

1. Weak form 

A general weak form for electric potential field u ∈ H 

1 (�) can 

e obtained integrating by parts. Here, H 

1 (�) denotes a Sobolev 

pace of square integrable ( 
∫ 
� | u | 2 dV < ∞ ) functions with square

ntegrable partial derivatives. By multiplying 17 with a smooth 

nough test function v ∈ S, where S is a subspace of H 

1 (�) , it fol-

ows that 

 = −
∫ 
�

∇ · (σ∇u ) v dV, 

= 

∫ 
�

σ∇u · ∇v dV −
∫ 
∂�

σ
∂u 

∂n 

v dS, 

= 

∫ 
�

σ∇u · ∇v dV −
L ∑ 

� =1 

∫ 
e � 

σ
∂u 

∂n 

v dS. (22) 

n addition, we have the following equations: 

L ∑ 

� =1 

∫ 
e � 

σ
∂u 

∂n 

v dS = −
L ∑ 

� =1 

U � 

Z � | e � | 
∫ 

e � 

v dS 

+ 

L ∑ 

� =1 

1 

Z � | e � | 
∫ 

e � 

u v dS. (23) 

s a result, we may rewrite the formula (A. 6) as follows: 

 = 

∫ 
�

σ∇u · ∇v dV −
L ∑ 

� =1 

I � 

| e � | 
∫ 

e � 

v dS 

−
L ∑ 

� =1 

1 

Z � | e � | 2 
∫ 

e � 

u dS 

∫ 
e � 

v dS 

+ 

L ∑ 

� =1 

1 

Z � | e � | 
∫ 

e � 

u v dS, (24) 

or all v ∈ S. The left-side of 24 defines a diffusion operator . On the

ight-side, the first term corresponds to neural activity , the second 

erm to the targeted stimulus , the third and fourth terms describe 

he shunting effects . 
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2. Resistivity matrix 

Given the scalar valued functions ψ 1 , ψ 2 , . . . , ψ N ∈ S , the po-

ential u can be approximated as the finite sum u = 

∑ N 
i =1 z i ψ i .

enoting by z = (z 1 , z 2 , . . . , z N ) the coordinate vector of the dis-

retized potential, by w = (w 1 , w 2 , . . . , w L ) the (ungrounded) elec-

rode voltages, and by y = (y 1 , y 2 , . . . , y L ) as the injected current

attern, the weak form 24 is given by 

A −B 

−B 

T C 

)(
z 
w 

)
= 

(
0 

y 

)
. (25) 

ere, A ( N -by- N ) is of the form 

 i, j = 

∫ 
�

σ∇ ψ i · ∇ ψ j dV + 

L ∑ 

� =1 

1 

Z � | e � | 
∫ 

e � 

ψ i ψ j dS, (26) 

nd the entries of B ( N-by- L ) and C ( L -by- L ) are given by 

 i,� = 

1 

Z � | e � | 
∫ 

e � 

ψ i dS, (27) 

 �,� = 

1 

Z � 
. (28) 

onsequently, the resistivity matrix R satisfying z = Ry can be ex- 

ressed as 

 = A 

−1 B (C − B 

T A 

−1 B ) −1 . (29) 

he ungrounded electrode voltages w can be obtained by referring 

o the bottom row of 25 , i.e., y = −B 

T z + Cw . 

3. Lead field matrix 

By F (k ) we denote a matrix which evaluates the k th Cartesian 

omponent of the volume current density −σ∇u when multiplied 

y the coordinate vector z of the discretized electrical potential 

istribution u . The entries of this matrix are given by 

f (k ) 
i,� 

= 

{
−(σi j (∇ψ � ) j ) 

k , if supp { ψ � } ∩ T i  = ∅ 
0 , otherwise , 

(30) 

or k = 1 , 2 , 3 and i, j, � = 1 , . . . , N where subsets T i , i = 1 , 2 , . . . , N

orm a partitioning of � for a user-defined dimension N. The 

 th Cartesian component of the discretized volume current distri- 

ution given the stimulating current pattern can be obtained as 

ollows F (k ) Ry , where F (k ) = ( f (k ) 
i,� 

) T , k = 1 , 2 , 3 . Further, we define

ead field matrix L as 

 = 

( 

F (1 ) 

F (2) 

F (3) 

) 

R = FR , (31) 

here F = (F (1) , F (2) , F (3) ) T and L = (L (1) , L (2) , L (3) ) T with compo-

ents L (k ) = (L (k ) 
1 

, L (k ) 
2 

) T , k = 1 , 2 , 3 . Formula (31) can be consid-

red as the forward mapping in the process of optimizing the cur- 

ent pattern. 

ppendix B. The effect of weighting in TLS 

Denoting W = (L T 1 L 1 +α2 σ 2 I ) −1 and by ˜ y = WL T 1 x 1 the special

olution of (12) with δ = 0 , the general solution of (12) can be

ritten as 

 = (I + δ2 α2 WL T 2 L 2 ) 
−1 ˜ y = 

˜ y − δ2 α2 WL T 2 L 2 ̃  y 

+ O (δ4 ) , (32) 

ollowing from the geometric series formula 

I + δ2 α2 WL T 2 L 2 ) 
−1 = I −δ2 α2 WL T 2 L 2 

+δ4 α4 W 

2 (L T 2 L 2 ) 
2 −· · · (33) 
10 
ith assumption that δ < 1 , so that δ2 α2 ‖ WL T 
2 

L 2 ‖ 2 2 
≤ 1 . When δ =

 , the special solution 

˜ y gives the most intense current distribu- 

ion to the direction of x at the targeted location, while the ratio 

etween the focused field and nuisance field increases along with 

he value of δ ≥ 0 . Namely, the inner product between the focused 

eld and the targeted stimulus is of the form 

 

T 
1 L 1 y = x 

T 
1 L 1 ̃  y − δ2 α2 x 

T 
1 L 1 WL T 2 L 2 ̃  y + O (δ4 ) 

= x 

T 
1 L 1 ̃  y − δ2 α2 ˜ y T L T 2 L 2 ̃  y + O (δ4 ) (34) 

hich can be further written as the following ratio between � de- 

ned in (13) and 

˜ � = 

x T 
1 

L 1 ̃ y 

‖ x 1 ‖ 2 , respectively: 

�

˜ �
= 

x 

T 
1 L 1 y 

x 

T 
1 

L 1 ̃  y 
= 1 − δ2 α2 ‖ L 2 ̃  y ‖ 

2 
2 

x 

T 
1 

L 1 ̃  y 
+ O (δ4 ) . (35) 

he squared norm of the nuisance field can be written as L 2 y =
 2 ̃  y −δ2 α2 L 2 WL T 2 L 2 ̃  y + O (δ4 ) , which yields the ratio 

‖ L 2 y ‖ 

2 
2 

‖ L 2 ̃  y ‖ 

2 
2 

= 1 − 2 δ2 α2 ‖ L T 2 L 2 ̃  y ‖ 

2 
W 

‖ L 2 ̃  y ‖ 

2 
2 

+ O (δ4 ) , (36) 

here for convenience we have used the following norm definition 

 z ‖ 2 W 

:= z T Wz . The square root of (36) is of the form 

‖ L 2 y ‖ 2 

‖ L 2 ̃  y ‖ 2 

= 1 − δα
‖ L T 2 L 2 ̃  y ‖ W 

‖ L 2 ̃  y ‖ 2 

+ O (δ2 ) , (37) 

ollowing from the Maclaurin series of the function h (τ ) = (1 + 

) 1 / 2 . Formulas (35) and (37) show that as 0 < δ < 1 increases, the

ocused field intensity decreases linearly, i.e., with a slower rate 

han the quadratically decreasing nuisance field norm. Hence the 

atio � defined in (14) increases. The validity of the total dose and 

aximum current constraint is taken care of by scaling the solu- 

ion after the minimization process in the respective order. 
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