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Abstract

Given a qualitative constraint network (QCN), a singleton-style consistency is
a local consistency that focuses on each base relation (atom) of a constraint
separately, rather than the entire constraint altogether. More technically, such
a consistency verifies if each base relation of each constraint of a QCN can serve
as a support with respect to the closure of that network under a (naturally)
weaker local consistency. This consistency is essential for tackling fundamental
reasoning problems associated with QCNs, such as the satisfiability checking or
the minimal labeling problem, but can suffer from redundant constraint checks,
especially when those checks occur far from where the pruning usually takes
place. In this paper, we propose singleton-style consistencies that are applied
just on the neighbourhood of a singleton-checked constraint instead of the whole
network. We make a theoretical comparison with existing consistencies and
consequently prove some properties of the new ones. In addition, we propose
algorithms to enforce our consistencies, as well as parsimonious variants thereof,
that are more efficient in practice than the state of the art. We make an experi-
mental evaluation with random and structured QCNs of Allen’s Interval Algebra
in the phase transition region to demonstrate the potential of our approach.

Keywords: Qualitative constraints, spatial and temporal reasoning,
singleton-style consistencies; neighbourhood; minimal labeling problem

1. Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a Symbolic AI ap-
proach that deals with the fundamental cognitive concepts of space and time
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in a qualitative, human-like, manner [1, 2]. For instance, in natural language
one uses expressions such as inside, before, and north of to spatially or tem-5

porally relate one object with another object or oneself, without resorting to
providing quantitative information about these entities. More formally, QSTR
restricts the vocabulary of rich mathematical theories that deal with spatial
and temporal entities to simple qualitative constraint languages. Thus, QSTR
provides a concise framework that allows for rather inexpensive reasoning about10

entities located in space and time and, hence, further boosts research and appli-
cations to a plethora of areas and domains that include, but are not limited to,
dynamic GIS [3], cognitive robotics [4], deep learning [5], spatio-temporal de-
sign [6], qualitative model generation from video [7], ambient intelligence [8, 9],
visual explanation [10] and sensemaking [11], semantic question-answering [12],15

qualitative simulation [13], spatio-temporal data mining [14, 15, 16], and modal
logic [17, 18, 19]. The interested reader may look into a more comprehensive re-
view of the emerging applications, the trends, and the future directions of QSTR
in [20, 21]. In addition, a detailed survey of qualitative spatial and temporal
calculi appears in [2].20

Qualitative spatial or temporal information can be modeled as a qualitative
constraint network (QCN), which is defined as a network where the vertices
correspond to spatial or temporal entities, and the arcs are labelled with qual-
itative spatial or temporal relations respectively. For instance x ≤ y can be a
temporal QCN over Z. Two fundamental reasoning problems associated with a25

given QCN N are the problems of satisfiability checking and minimal labeling
(or deductive closure) [22]. In particular, the satisfiability checking problem is
about deciding if there exists a valuation of the variables of N that satisfies
its constraints, such a valuation being called a solution of N , and the minimal
labeling problem concerns finding the strongest implied constraints and con-30

sequently obtaining its minimal sub-network. For instance, x = 0 ∧ y = 1 is
one of the (infinitely many) solutions of the aforementioned QCN, and x ≤ y is
already the strongest implied constraint as it is possible to have both solutions
that satisfy x < y, e.g., x = 0 ∧ y = 1, and solutions that satisfy x = y, e.g.,
x = 0∧ y = 0; so, in fact, the QCN is minimal. In general, for many well known35

spatio-temporal calculi the satisfiability checking problem is NP-hard [23]. Fur-
ther, the minimal labeling problem is polynomial-time Turing reducible to the
satisfiability checking problem [24].

Motivation

In this paper, we focus mostly on the minimal labeling problem, which, since40

its introduction in 1974 by Montanari [25], has been studied in the domains of
both CSPs [26, 27] and QCNs [28, 29]. A trivial example of how minimality
applies to QCNs was presented earlier, and a more detailed one follows. As
noted in [26], a minimal network is a quite useful knowledge compilation, since
it allows one to answer a number of queries in polynomial time that would oth-45

erwise be NP-hard. Indeed, in the context of QSTR, for instance, one could
exploit minimality of a QCN to immediately deduce whether a task A should be
scheduled before a task C, or whether an object X could be placed on top of an
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Figure 1: A QCN in simplified form

object Z. A visualization of the former example is provided in Figure 1; the ini-
tial QCN is not minimal, but becomes such by removing the base relation after50

from the constraint involving Tasks A and C, as that base relation is impossible
to be satisfied by any solution. Difficult problems such as the minimal labeling
problem and alike are, in general, either approximated by the use of local con-
sistencies [27] or even solved by the aid of such consistencies [30]. In fact, in
time-critical applications approximation may be the sole possibility, as solving55

the problem often takes significantly more time (it is NP-hard after all) and may
only guarantee a marginally better result (if at all) in terms of minimal labeling
(see the performance of Minimizer in Tables 1 and 2). Among the local con-
sistencies introduced in the literature, we study singleton-style consistencies in
the aforementioned context, which are consistencies that entail support for each60

base relation (atom) of the constraints of a QCN with respect to the closure of
that network under a weaker local consistency (typically �G-consistency [31, 32]).
Specifically, we investigate how these consistencies behave when the underlying
weaker local consistency that they build upon is restricted to the neighbourhood
of a singleton-checked constraint. As noted in [33], neighbourhood-based restric-65

tions can hit the sweet spot between effectiveness and efficiency in singleton-style
consistencies for CSPs; therefore, it is imperative that we introduce and study
such restrictions in the context of QCNs as well, and consequently provide a
foundation for further work in understanding these kinds of network structures,
which have received much attention over the past years [2].70

Contributions

Our contributions are fivefold and described as follows:

i) we enrich the family of consistencies for QCNs by proposing singleton-style
consistencies that are applied just on the neighbourhood of the singleton-
checked constraint instead of the entire network;75

ii) we theoretically obtain a strength-based hierarchy among existing consis-
tencies for QCNs and the novel ones;

iii) we present algorithms to enforce the proposed consistencies for QCNs, as
well as parsimonious variants thereof;
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iv) we make an experimental evaluation with random and structured QCNs80

of Interval Algebra to measure and compare the performance of all con-
sidered algorithms, especially in terms of how fast and how well they can
independently approximate the minimal sub-network of a QCN;

v) we review the latest related work that exists in the area of traditional
constraint programming, discuss similarities and differences with respect85

to our approach, and give some directions for future work.

Organization

The rest of the paper is organized as follows. In Section 2 we give some
preliminaries on qualitative spatial and temporal reasoning. Next, in Section 3
we overview some known state-of-the-art local consistencies for QCNs. Then,90

in Section 4 we introduce, formally define, and thoroughly study the proposed
neighbourhood-based consistencies for QCNs, and present the algorithms for en-
forcing these consistencies, as well as parsimonious variants thereof. In Section 5
we evaluate our approach with random and structured QCNs of Interval Alge-
bra and comment on the outcome; one finding is that neighbourhood-focused95

singleton-style algorithms are around 30% faster in the phase transition region
than the standard algorithms, and another one is that they exhibit an improved
efficiency to effectiveness ratio of up to around 25%. Next, in Section 6 we
review the latest related work that exists in the discussed direction. Finally, in
Section 7 we draw some conclusive remarks and give directions for future work.100

2. Preliminaries

A binary qualitative spatial or temporal constraint language, is based on
a finite set B of jointly exhaustive and pairwise disjoint relations, called the
set of base relations [34], that is defined over an infinite domain D. The base
relations of a particular qualitative constraint language can be used to represent105

the definite knowledge between any two of its entities with respect to the level of
granularity provided by the domain D. The set B contains the identity relation
Id, and is closed under the converse operation (−1). Indefinite knowledge can
be specified by a union of possible base relations, and is represented by the set
containing them. Hence, 2B represents the total set of relations. The set 2B is110

equipped with the usual set-theoretic operations of union and intersection, the
converse operation, and the weak composition operation denoted by the symbol
� [34]. For all r ∈ 2B, we have that r−1 =

⋃
{b−1 | b ∈ r}. The weak composition

(�) of two base relations b, b′ ∈ B is defined as the smallest (i.e., strongest)
relation r ∈ 2B that includes b◦ b′, or, formally, b� b′={b′′ ∈ B | b′′∩(b◦ b′) 6= ∅},115

where b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈ b and (z, y) ∈ b′} is
the (true) composition of b and b′. For all r, r′ ∈ 2B, we have that r � r′ =⋃
{b � b′ | b ∈ r, b′ ∈ r′}.

As an illustration, consider the well known qualitative temporal constraint
language of Interval Algebra (IA), introduced by Allen [35]. Its domain is defined120

to be the set of intervals on Q, i.e., D = {x = (x−, x+) ∈ Q × Q : x− < x+}.
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Figure 2: The base relations of IA; ·i denotes the converse of ·

Then, IA considers such time intervals as its temporal entities, and the set of
base relations B = {eq, p, pi, m, mi, o, oi, s, si, d, di, f , fi} as a means to
encode knowledge about the temporal relations between the entities, as depicted
in Figure 2. Specifically, each base relation represents a particular ordering of125

the four endpoints of two intervals on the timeline. For example, d, viz., during,
is defined as d = {(x, y) ∈ D× D | x− > y− and x+ < y+}. Of those base rela-
tions, eq is the identity relation Id, for which it holds that eq−1 = eq. Typical
applications of Interval Algebra involve—in addition to those listed for QSTR in
the introduction—planning and scheduling [36, 37, 38, 39, 40], natural language130

processing [41, 42], temporal databases [43, 44], multimedia databases [45],
molecular biology [24] (e.g., arrangement of DNA segments/intervals along a
linear chain involves particular temporal-like problems [46]), workflow [47], and
temporal diagnosis [48].

Notably, many (if not most) of the well known and well studied qualitative135

constraint languages, such as Interval Algebra [35] and RCC8 [49], are in fact
relation algebras [23]. In what follows, we restrict ourselves to such calculi
in order to facilitate discussion of the consistencies and of the algorithms for
enforcing them.

Qualitative spatial or temporal information can be modeled as a qualitative140

constraint network, defined in the following manner:
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Figure 3: Figurative examples of QCN terminology using IA

Definition 1. A qualitative constraint network (QCN) is a tuple (V,C) where:

• V = {v1, . . . , vn} is a non-empty finite set of variables;

• and C is a mapping C : V ×V → 2B such that C(v, v) = {Id} for all v ∈ V
and C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V .145

An example of a QCN of IA is shown in Figure 3a; for clarity, converse
relations as well as Id loops are not mentioned nor shown in the figure.

Definition 2. Let N = (V,C) be a QCN, then:

• a solution of N is a mapping σ : V → D such that ∀(u, v) ∈ V × V ,
∃b ∈ C(u, v) such that (σ(u), σ(v)) ∈ b (see Figure 3b);150

• N is satisfiable if and only if it admits a solution;

• a sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN (V,C ′) such that
C ′(u, v) ⊆ C(u, v) ∀u, v ∈ V ; if in addition ∃u, v ∈ V such that C ′(u, v) ⊂
C(u, v), then N ′ ⊂ N ;

• a base relation b ∈ C(v, v′) with v, v′ ∈ V is feasible (resp. unfeasible)155

in N if and only if there exists (resp. there does not exist) a solution
σ : V → D of N such that (σ(v), σ(v′)) ∈ b;

• N is minimal if and only if ∀v, v′ ∈ V and ∀b ∈ C(v, v′), b is a feasible
base relation in N ;

• the constraint graph of N , denoted by G(N ), is the graph (V,E) where160

{u, v} ∈ E if and only if C(u, v) 6= B and u 6= v;

• N is the empty QCN on V , denoted by ⊥V , if and only if C(u, v) = ∅ for
all u, v ∈ V with u 6= v.

Let us further introduce the following operation that substitutes C(v, v′)
with r ∈ 2B in a given QCN:165

• given a QCN N = (V,C) and v, v′ ∈ V , we define that N[v,v′]/r with r ∈ 2B

yields the QCN N ′ = (V,C ′) defined by C ′(v, v′) = r, C ′(v′, v) = r−1, and
∀(u, u′) ∈ (V × V ) \ {(v, v′), (v′, v)}, C ′(u, u′) = C(u, u′).
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3. State-of-the-art Consistencies

We view a consistency φ
G, where φ is some operation (such as the weak170

composition operation) and G a graph, as a predicate on QCNs, i.e., a function

that receives an input QCN and returns true or false depending on whether φ
G

holds on that QCN or not respectively. In what follows, given some operation φ
(such as the weak composition operation) and a graph G, the unique ⊆-maximal
φ
G-consistent sub-QCN of N is called the closure of N under the consistency φ

G175

and is denoted by φ
G(N ).

We recall the definition of �G-consistency, which is a basic and widely used
local consistency for reasoning with QCNs.

Definition 3. Given a QCN N = (V,C) and a graph G = (V ′, E), where V ′ ⊆
V , N is said to be �G-consistent if and only if ∀{vi, vj}, {vi, vk}, {vk, vj} ∈ E we180

have that C(vi, vj) ⊆ C(vi, vk) � C(vk, vj).

Intuitively, �G-consistency entails consistency for all triples of variables of a
QCN that correspond to triangles of a given graph G. If G is the complete
graph on the variables of a given QCN, then �G-consistency becomes identical
to �-consistency [32], and, hence, �-consistency can be seen as a special case of185

�
G-consistency.

In [50] the authors build upon �G-consistency and propose a local consistency
in the context of qualitative constraint-based reasoning that serves as the coun-
terpart of directional path consistency in traditional constraint programming [51]
or quantitative temporal reasoning [52], and is mainly distinguished by the fact190

that the involved consistency notions are tailored to handle infinite domains
and qualitative relations. This local consistency is called

←−�
G -consistency and, in

particular, it entails consistency for all ordered triples of variables of a QCN that
correspond to triangles of a given graph G; this ordering can be specified by a
bijection between the set of the variables of a QCN and a set of integers, and195

can be chosen randomly or via an algorithm or heuristic. We recall the formal
definition of that consistency as follows:

Definition 4. Given a QCN N = (V,C), an ordering (α−1(0),α−1(1),. . .,
α−1(n−1)) of V defined by a bijection α : V → {0, 1, . . . , n−1}, and a graph G =

(V ′, E), where V ′ ⊆ V , N is said to be
←−�
G -consistent if and only if ∀vi, vj , vk ∈ V200

such that {vi, vj}, {vi, vk}, {vk, vj} ∈ E and α(vi), α(vj) < α(vk) we have that
C(vi, vj) ⊆ C(vi, vk) � C(vk, vj).

Since
←−�
G -consistency is basically �G-consistency restricted to some ordering of

the triples of variables of a given QCN, it is expected that it will perform worse
than �G-consistency in terms of tackling the satisfiability checking or the minimal205

labeling problem of that QCN, in the general case. However, that behaviour
of
←−�
G -consistency in the context of the aforementioned reasoning problems for

arbitrary QCNs has yet to be investigated (cf. [53]), and we shall use this work
as an opportunity to do so (see Section 5).
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We continue with the presentation of some state-of-the-art singleton-style210

consistencies. Given a graph G = (V ′, E), where V ′ ⊆ V , a QCN N = (V,C) is
◆

G-consistent if and only if for every pair of variables {v, v′} ∈ E and every base
relation b ∈ C(v, v′), after instantiating C(v, v′) with {b} as the singleton and
applying �G-consistency onN , the revised constraint C(v, v′) is always supported
by {b}. Formally, ◆G-consistency of a QCN is defined as follows:215

Definition 5. Given a QCN N = (V,C) and a graph G = (V ′, E), where V ′ ⊆
V , N is said to be ◆G-consistent if and only if N is �G-consistent and ∀{v, v′} ∈ E
and ∀b ∈ C(v, v′) we have that C ′(v, v′) = {b}, where (V,C ′) = �G(N[v,v′]/{b}).

If G is the complete graph on the variables of a given QCN, we can eas-
ily verify that ◆G-consistency corresponds to �B-consistency of the family of �f -220

consistencies studied in [54]. Interestingly, ◆G-consistency for QCNs can also be
seen as a counterpart of Singleton Arc Consistency (SAC) [55] for CSPs.

Finally, in [56] the authors define a local consistency that is more restrictive
than any of the practical1 local consistencies known to date for QCNs, called
collective ◆G-consistency, or ◆

∪

G -consistency for short. This singleton-style con-225

sistency is inspired by k-partitioning consistency for CSPs [58]. We recall the
formal definition of that consistency as follows:

Definition 6. Given a QCN N = (V,C) and a graph G = (V ′, E), where
V ′ ⊆ V , N is said to be ◆

∪

G -consistent if and only if N is ◆G-consistent and
∀{v, v′} ∈ E, ∀b ∈ C(v, v′), and ∀{u, u′} ∈ E we have that ∃b′ ∈ C(u, u′) such230

that b ∈ C ′(v, v′), where (V,C ′) = �G(N[u,u′]/{b′}).

This underlying filtering condition of ◆
∪

G -consistency is based on relation
partitioning combined with �G-consistency, and allows for improved pruning ca-
pability over ◆G-consistency [56].

4. Neighbourhood Singleton-style Consistencies235

In this section we propose and study a variety of singleton-style consistencies
that are applied just on the neighbourhood of the singleton-checked constraint
instead of the whole network.

Before doing so, let us first formally introduce a preorder in order to compare
the pruning (or inference) capability of different consistencies. Let φ

G and ψ
G be240

two consistencies defined by some operations φ and ψ respectively and a graph
G. Then, φG is stronger than ψ

G if and only if whenever φG holds on a QCN N with

respect to a graph G, ψG also holds on N with respect to G, and φ
G is strictly

stronger than ψ
G if and only if φG is stronger than ψ

G and there exists at least one

QCN N and a graph G such that ψ
G holds on N with respect to G, but φ

G does245

1Clearly, in special cases notions like k-consistency can be defined and exploited theoret-
ically [57], but these can be hardly implemented efficiently and are therefore not suitable for
applications.
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not hold on N with respect to G. (The terms weaker and strictly weaker can

be defined likewise.) Finally, φG and ψ
G are incomparable if and only if there exist

QCNs N and N ′ such that φG is strictly stronger than ψ
G with respect to N and

some graph G, and φ
G is strictly weaker than ψ

G with respect to N ′ and some
graph G (we note that the graph G can be different in the two cases). Finally,250

φ
G and ψ

G are equivalent if and only if we have that φG is both stronger and weaker

than ψ
G, and vice versa.

In general, standard singleton-style consistencies can make a lot of redundant
checks, which consequently can slow down their efficacy. It has been observed
in the domain of CSPs that the majority of constraint revisions occur close to255

the relation that is being singleton checked, and rarely too far from it [33].
For that purpose, constraint programming researchers have proposed weaker
singleton-style consistencies that localize propagation to the neighbourhood of
the variable at hand [33, 59]. Neighbourhood singleton-style consistencies for
CSPs, despite being strictly weaker than SAC [55] in general, can produce al-260

most as much filtering as SAC with substantially less computational cost on
many problems [59]. In what follows, we define two neighbourhood singleton-
style consistencies for QCNs, and then we proceed to present algorithms and
parsimonious variants thereof for applying these consistencies efficiently.

In order to define the new consistencies, we first need to define what exactly265

is meant by “neighbourhood of a relation” in the context of QCNs. Informally,
given a QCN N and a graph G, the neighbourhood of a relation in N comprises
all the triangles that involve the corresponding edge in G, and all the edges
among the vertices of those triangles as well. Noting that in a given graph G =
(V,E), for each u ∈ V the set of adjacent vertices of u, denoted by adj(u), is the270

set {w | {u,w} ∈ E}, we can formally define the neighbourhood of a relation of
a QCN as follows:

Definition 7. Given a QCN N = (V,C), a graph G = (V ′, E), where V ′ ⊆ V ,
and two variables v, v′ ∈ V such that {v, v′} ∈ E, the neighbourhood of C(v, v′),
denoted by GN(vv′), is the induced subgraph G[S], where S = (adj(v)∩adj(v′))∪275

{v, v′}.

As an example, consider the QCN N and an accompanying graph as de-
scribed in Figure 4. The neighbourhood of C(x1, x3) is the induced subgraph
of the set of vertices {x1, x2, x3, x4}.

With the aforementioned definition in mind, we can define the notion of280

neighbourhood ◆G-consistency as follows:

Definition 8. Given a QCN N = (V,C) and a graph G = (V ′, E), where V ′

⊆ V , N is said to be neighbourhood ◆G-consistent, or N◆G-consistent for short, if
and only if N is �G-consistent and ∀{v, v′} ∈ E and ∀b ∈ C(v, v′) we have that
C ′(v, v′) = {b}, where (V,C ′) = �GN(vv′)

(N[v,v′]/{b}).285

Similarly, we can define the notion of neighbourhood ◆
∪

G -consistency as fol-
lows:
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Figure 4: Given the QCN N = (V,C) above and the graph G that results by removing the

edge {x1, x5} from the complete graph on V , we have that N is neighbourhood ◆
∪

G -consistent

(and neighbourhood ◆G-consistent), but not ◆G-consistent (or ◆
∪

G -consistent)

Definition 9. Given a QCN N = (V,C) and a graph G = (V ′, E), where
V ′ ⊆ V , N is said to be neighbourhood ◆

∪

G -consistent, or N◆
∪

G -consistent for
short, if and only if N is N◆G-consistent and ∀{v, v′} ∈ E, ∀b ∈ C(v, v′), and290

∀{u, u′} ∈ E we have that ∃b′ ∈ C(u, u′) such that b ∈ C ′(v, v′), where (V,C ′) =
�
GN(vv′)

(N[u,u′]/{b′}).

The reader can note that Definitions 8 and 9 mirror Definitions 5 and 6 re-
spectively, the difference being that the closure under �G-consistency is restricted
to the neighbourhood of the constraint at hand.295

We recall the following result from [56] in our effort here to build a strength-
based hierarchy among all discussed consistencies:

Proposition 1 ([56]). ◆
∪

G -consistency is strictly stronger than ◆G-consistency.

In the sequel, Figure 4 will be crucial in proving some results that follow.

Proposition 2. ◆
∪

G -consistency is strictly stronger than N◆
∪

G -consistency.300

Proof. Consider the QCN along with its accompanying graph depicted in Fig-
ure 4. As noted in the caption of the figure, the QCN is N◆

∪

G -consistent and

N◆G-consistent, but not ◆G-consistent or ◆
∪

G -consistent. Specifically, in order for

the QCN to become ◆
∪

G -consistent and ◆G-consistent, the base relation mi needs

to be removed from C(x2, x5). In addition, by the definitions of ◆
∪

G -consistency305

and N◆
∪

G -consistency, we have that every ◆
∪

G -consistent QCN is N◆
∪

G -consistent.
Specifically, given a QCN N and two graphs G and G′ such that G′ ⊆ G, it
holds that if N is �G-consistent then N is �G′ -consistent.

Following the same line of reasoning as that of the proof of Proposition 2,
we assert the next result:310
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x1 x2

x3x4

{p, d,mi}

{p, pi}
{s, f} {oi, fi}
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Figure 5: Given the QCN N = (V,C) above and the complete graph on V , we have that N
is ◆G-consistent (and neighbourhood ◆G-consistent), but not neighbourhood ◆

∪
G -consistent (or

◆
∪

G -consistent)

Proposition 3. ◆G-consistency is strictly stronger than N◆G-consistency.

We proceed with presenting the next result:

Proposition 4. N◆
∪

G -consistency is strictly stronger than N◆G-consistency.

Proof. Consider the QCN along with its accompanying graph depicted in Fig-
ure 5. It is the case that the QCN is N◆G-consistent, but not N◆

∪

G -consistent.315

Specifically, in order for the QCN to become N◆
∪

G -consistent, the base rela-
tion d needs to be removed from C(x1, x2). Additionally, by definition of
N◆

∪

G -consistency, we have that every N◆
∪

G -consistent QCN is N◆G-consistent.

We continue with another result as follows:

Proposition 5. N◆
∪

G -consistency is incomparable to ◆G-consistency.320

Proof. Consider again the QCN along with its accompanying graph depicted in
Figure 5. For the same reason remarked in the proof of Proposition 4, it is the
case that the QCN is ◆G-consistent, but not N◆

∪

G -consistent. On the other hand,

as noted in the proof of Proposition 2, the QCN of Figure 4 is N◆
∪

G -consistent,
but not ◆G-consistent, with respect to its accompanying graph.325

From Propositions 2 and 4 (or 1 and 3) we obtain the following result:

Corollary 1. ◆
∪

G -consistency is strictly stronger than N◆G-consistency.

To complete our strength-based hierarchy we close off with some results that
involve the non-singleton-style consistencies �G-consistency and

←−�
G -consistency.

Proposition 6. N◆G-consistency is strictly stronger than �G-consistency.330

Proof. Consider the QCN depicted in Figure 6. As noted in the caption of the
figure, the QCN is �G-consistent, but not N◆G-consistent. Specifically, in order for
the QCN to become N◆G-consistent, the base relation eq needs to be removed from
C(x2, x3). Notably, applying N◆G-consistency on that QCN makes it minimal.
Additionally, by definition of N◆G-consistency, we have that every N◆G-consistent335

QCN is �G-consistent.
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x1 x2

x3x4

{pi, eq}

{p, eq}
{p, pi} {p, eq}

{p, eq}

{pi, eq}

Figure 6: Given the QCN N = (V,C) above and the complete graph on V , we have that N is
�
G-consistent, but not neighbourhood ◆G-consistent

From Propositions 1, 2, 3, 4, and 6 we obtain the following result:

Corollary 2. Each of the consistencies of ◆
∪

G -consistency, N◆
∪

G -consistency,
◆

G-consistency, and N◆G-consistency is strictly stronger than �G-consistency.

From [53] we have the following result:340

Proposition 7 ([53]). �G-consistency is strictly stronger than
←−�
G -consistency.

From Corollary 2 and Proposition 7 we obtain the following last result with
regard to our strength-based hierarchy:

Corollary 3. Each of the consistencies of ◆
∪

G -consistency, N◆
∪

G -consistency,
◆

G-consistency, N◆G-consistency, and �G-consistency is strictly stronger than
←−�
G -345

consistency.

A visual representation of the established strength-based hierarchy of con-
sistencies is shown in Figure 7.

◆
∪

G

N◆
∪

G

◆

G

N◆G
�
G

←−�
G

Figure 7: A strength-based hierarchy of consistencies for QCNs; an arrow denotes the (transi-
tive) strictly stronger relationship and a dotted line the (symmetric) incomparable relationship

Finally, let the complete graph on a set of variables V be denoted by KV ,
we have the following remark:350

Remark. N◆
∪

KV
-consistency and ◆

∪

KV
-consistency, respectively N◆KV

-consistency
and ◆KV

-consistency, are equivalent.

The above remark can facilitate the implementation of algorithms for apply-
ing the discussed neighbourhood singleton-style consistencies in the case where
a complete graph is known to be used, as data structures and operations per-355

taining to neighbourhoods of relations need not be accounted for.
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Algorithm 1: PSWC∪N(N , G)

in : A QCN N = (V,C), and a graph G = (V ′ ⊆ V,E).
out : A sub-QCN of N .

1 begin
2 N ← �

G(N );
3 Q ← list(E);
4 while Q 6= ∅ do
5 {v, v′} ← Q.pop();

6 (V,C ′) ← ⊥V ;
7 foreach b ∈ C(v, v′) do
8 (V,C ′) ← (V,C ′) ∪ �GN(vv′)

(N[v,v′]/{b});

9 if (V,C ′) ⊂ N then
10 flag ← False;
11 foreach {u, u′} ∈ E do
12 if C ′(u, u′) ⊂ C(u, u′) then
13 C(u, u′)← C ′(u, u′);
14 C(u′, u)← C ′(u′, u);
15 flag ← True;

16 if flag then
17 Q ← list(E)

18 return N ;

Algorithms and Complexities

For the sake of completeness, we present in this section algorithms PSWC∪N
and PSWCN, shown in Algorithms 1 and 2 respectively, which given a QCN
N and a graph G as input apply N◆

∪

G -consistency and N◆G-consistency on N360

respectively. By dropping the red underlined parts in the aforementioned al-
gorithms, the reader can verify that they fall back to algorithms PSWC∪ and
PSWC respectively, which were introduced in [56]. As the latter algorithms have
been proven to terminate and return ◆

∪

G (N ) and ◆G(N ) respectively given a QCN
N = (V,C) and a graph G = (V,E), we can assert the following result:365

Proposition 8. Given a QCN N = (V,C) and a graph G = (V ′, E), where
V ′ ⊆ V , we have that algorithms PSWC∪N and PSWCN terminate and return
N◆

∪

G (N ) and N◆G(N ) respectively.

Given a QCNN = (V,C) and a graph G = (V ′, E), where V ′ ⊆ V , the worst-

case time complexity for both PSWC∪N and PSWCN is O(α|B|2|E|2), where α is370

the worst-case time complexity for computing �G′(N ) with respect to the largest
graph G′ ⊆ G that is used in Line 8 of the algorithms (as each constraint defines
its own neighbourhood G′). For any given QCN N = (V,C) and a graph G =

13



Algorithm 2: PSWCN(N , G)

in : A QCN N = (V,C), and a graph G = (V ′ ⊆ V,E).
out : A sub-QCN of N .

1 begin
2 N ← �

G(N );
3 Q ← list(E);
4 while Q 6= ∅ do
5 {v, v′} ← Q.pop();

6 (V,C ′) ← ⊥V ;
7 foreach b ∈ C(v, v′) do
8 (V,C ′) ← (V,C ′) ∪ �GN(vv′)

(N[v,v′]/{b});

9 if C ′(v, v′) ⊂ C(v, v′) then
10 C(v, v′) ← C ′(v, v′);
11 C(v′, v) ← C ′(v′, v);
12 Q ← list(E);

13 return N ;

(V ′, E), where V ′ ⊆ V , we note that α is O(∆|B||E|), where ∆ is the maximum
vertex degree of G [31].375

Finally, given a QCN N and a graph G, a parsimonious variant for approx-
imating N◆

∪

G -consistency in N is algorithm `PSWC∪N, shown in Algorithm 3.
Again, by dropping the red underlined parts in the aforementioned algorithm,
the reader can verify that it falls back to a slight generalization of algorithm
`PSWC∪, which was introduced in [60]. Specifically, contrary to the algorithm380

as it appears in [60], in the input of Algorithm 3 we allow any subset S of the
set of edges of the input graph to be used; this subset serves as the seed of
constraints from which the singleton checks will start propagating themselves.
Algorithm `PSWC∪N is lazy in the sense that it relies upon previously revised
constraints to allow itself to continue propagation. Therefore, depending on the385

subset S to be used, and the order in which the constraints are processed, the
algorithm may produce different outputs for the same input (see [60]). How-
ever, we can still relate the output of `PSWC∪N to the strength-based hierarchy
of consistencies for QCNs presented earlier with the following result:

Proposition 9. Given a QCN N = (V,C), a graph G = (V ′, E), where V ′ ⊆390

V , and a set S, where S ⊆ E, we have that `PSWC∪N terminates and returns a
sub-QCN N ′ of N such that N◆

∪

G (N ) ⊆ N ′ ⊆ �G(N ) respectively.

Proof. In line 2 of the algorithm, the original QCN N is made �G-consistent.
First, we need to show that the rest of the refinement operations in the algorithm
entail �G-consistency as well. As �G-consistency is closed under union (see [61] for395

more details), the QCN
⋃
{�GN(vv′)

(N[v,v′]/{b}) | b ∈ C(v, v′)} that is constructed

in lines 7–8 of the algorithm for each pair of variables {v, v′} ∈Q, is �G-consistent.

14



Algorithm 3: `PSWC∪N(N , G, S)

in : A QCN N = (V,C), a graph G = (V ′ ⊆ V,E), and a set S ⊆
E.

out : A sub-QCN of N .
1 begin
2 N ← �

G(N );
3 Q ← list(S);
4 while Q 6= ∅ do
5 {v, v′} ← Q.pop();

6 (V,C ′) ← ⊥V ;
7 foreach b ∈ C(v, v′) do
8 (V,C ′) ← (V,C ′) ∪ �GN(vv′)

(N[v,v′]/{b});

9 C(v, v′) ← C ′(v, v′);
10 if (V,C ′) ⊂ N then
11 foreach {u, u′} ∈ E \ {v, v′} do
12 if C ′(u, u′) ⊂ C(u, u′) then
13 C(u, u′)← C ′(u, u′);
14 C(u′, u)← C ′(u′, u);
15 Q.push({u, u′});

16 return N ;

Further, since �G(N ) is the unique ⊆-maximal �G-consistent sub-QCN of N , it
follows that N ′ ⊆ �G(N ). Finally, the fact that `PSWC∪N terminates and returns

a sub-QCN N ′ of N such that N◆
∪

G (N ) ⊆ N ′ follows directly from the structure400

of algorithm `PSWC∪N, which considers a subset of the set of neighbourhood-
restricted collective singleton checks that is performed by PSWC∪N.

The worst-case time complexity of `PSWC∪N is the same as that of PSWC∪N
(and PSWCN), although we will see later on in Section 5 that it can be much
faster in practice.405

5. Experimental Evaluation

In this section we investigate the utility of the proposed neighbourhood
singleton-style consistency algorithms, as well as the discussed state-of-the-art
local consistency algorithms that appear in the literature, with respect to the
fundamental reasoning problems of satisfiability checking and minimal labeling410

that are associated with QCNs. Specifically, we explore their effectiveness and
efficiency in determining the satisfiability of a given network instance and in
discovering the unfeasible base relations of that network instance (in regard to
both CPU time and correctness of decision).
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Technical specifications. The evaluation was carried out on a computer with415

an Intel Core i5-4570 processor, 16 GB of RAM, and the Xenial Xerus x86 64
OS (Ubuntu Linux). All algorithms were coded in Python and run using the
PyPy interpreter under version 5.1.2, which implements Python 2.7.10. Only
one CPU core was used.

Dataset. We used the dataset employed in [61]. That dataset comprises 1 000420

random and structured QCNs of IA that were created using models A(n, l, d) [62]
and BA(n,m) [63] respectively. Pertaining to A(n, l, d), there are 100 QCNs of IA
of n = 70 variables and with l = 6.5 base relations per non-universal constraint
on average, for all values of the average constraint graph degree d from 7 to 12
with a step of 1. Pertaining to BA(n,m), there are 100 QCNs of IA of n = 150425

variables for all values of the constraint graph preferential attachment m [64]
from 2 to 5 with a step of 1. Finally, regarding the graphs that were given
as input to our algorithms, the maximum cardinality search algorithm [65] was
used to obtain triangulations of the constraint graphs of our QCNs. The choice
of such chordal graphs was not only reasonable but also crucial given their430

important theoretical and practical implications in qualitative constraint-based
spatial and temporal reasoning, as reviewed in [66]; the use of those graphs
itself was inspired by [67, 68, 69] among other works, where preliminary results
pertaining to tree decompositions were established.

Tools. In addition to our implementations of the algorithms that were presented435

in Section 4, we utilized the following four software tools:2

• Solver, the state-of-the-art reasoner for checking the satisfiability of QCNs
of Interval Algebra and RCC8 that was introduced in [63] (and in particular
the reasoner called Phalanx5 in that work);

• Minimizer, our own implementation of the approach for solving the mini-440

mal labeling problem of QCNs of Interval Algebra and RCC8 that was first
presented in [30];3

• PWC, the state-of-the-art algorithm for applying �G-consistency on QCNs
of Interval Algebra and RCC8 that was used in [63] (which is a module of
the Phalanx5 reasoner mentioned earlier);445

• DPWC, the state-of-the-art algorithm for applying
←−�
G -consistency on QCNs

of Interval Algebra and RCC8 that was introduced in [53] (and in particular
the reasoner called Pyrrhus in that work).

2These software tools are available at https://msioutis.gitlab.io/software.
3In particular, we ported the code to Python and included all recent advances that are

associated with the components that comprise that approach, such as improvements in its
underlying satisfiability checking module. It must also be noted that the strongest of the local

consistencies discussed here, viz., ◆
∪

G -consistency, was used as a preprocessing step to enhance
the performance of Minimizer.
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Results. The results of our experimental evaluation are detailed in Tables 1

and 2, where a fraction
x

y
for Solver denotes that it required x seconds of CPU450

time on average per dataset of network instances during its operation and de-

tected y such instances as being unsatisfiable in total, a fraction
x

z
for Minimizer

denotes that it determined z% of base relations to be unfeasible in total, and a

fraction
x

y|z
for the rest of the algorithms denotes all the previous information

combined together (from the viewpoint of the respective algorithm).455

The first thing to note is that Solver has no competition whatsoever in terms
of deciding the satisfiability of a network instance. This was expected, as this
type of reasoner is tailored to avoid “bad” branches in the search tree and to
reach a leaf (i.e., a solution) in the most efficient way possible. On the other
hand, when the entire search tree needs to be taken into account, as is the case460

with Minimizer, the computational task is much more time-consuming; therefore,
Minimizer has by far the worst performance among its competitors.

Regarding the singleton-style consistency algorithms, we can note that they
of course have an overhead compared to Solver, but they are much faster in gen-
eral than Minimizer and they can, in many cases, simulate its pruning capability465

in an almost exact manner. It is worth mentioning that the neighbourhood-
focused singleton-style algorithms PSWC∪N, PSWCN, and `PSWC∪N are around
30% faster in the phase transition region than the standard algorithms PSWC∪,
PSWC, and `PSWC∪ respectively, whilst retaining much of the good perfor-
mance characteristics (viz., unfeasible base relations elimination and satisfiabil-470

ity decision) of the latter respectively. The parsimonious variants `PSWC∪ and
`PSWC∪N are up to 6 times faster in the phase transition region than PSWC∪ and
PSWC∪N respectively, but detect in general slightly fewer unsatisfiable network
instances and eliminate slightly fewer unfeasible base relations respectively as
well. We should note that for a given QCN N = (V,C) and a graph G = (V ′, E),475

where V ′ ⊆ V , the subset S that was used as input for the parsimonious vari-
ants (see Algorithm 3) corresponds to the set of edges E(G(�G(N ))), i.e., the set
of edges of the constraint graph of �G(N ).

Finally, in order to better assess how the different singleton-style consis-
tency algorithms compare with one another, Figure 8 visualizes the efficiency480

to effectiveness ratios of those algorithms for the datasets considered here. In
particular, the efficiency to effectiveness ratio of a singleton-style algorithm is

the ratio
x

z
, where, as a reminder, x denotes the seconds of CPU time that were

required on average per dataset of network instances during the algorithm’s
operation, and z denotes the % of base relations in such instances that were485

detected as being unfeasible in total. Clearly, the smaller the efficiency to effec-
tiveness ratio is, the better it is, as ideally the CPU time should be kept small
and the number of unfeasible base relations high. The discussion here ties in
with the remark in the introduction about the sweet spot between effectiveness
and efficiency that can be uncovered using neighbourhood-based restrictions in490

singleton-style consistencies. It is critical to investigate whether such ratios
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Figure 8: Efficiency to effectiveness ratios of singleton-style consistency algorithms

are at all improved by such restrictions, and if so, by how much. As it can
be observed in the graphs of Figure 8, it appears to be well worth investing
in neighbourhood-based restrictions, since they improve the efficiency to effec-
tiveness ratios of the involved standard algorithms by up to around 25% with495

respect to both datasets. Taking additionally into account the fact that the effec-
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tiveness of neighbourhood-focused singleton-style algorithms can only decrease
with regard to the respective standard variants (but the same is not true for
their efficiency in general), viewing more closely the ratios in Figure 8 suggests
that neighbourhood-focused singleton-style algorithms consistently gain much500

more in efficiency than they lose in effectiveness with regard to the respective
standard variants.

Synopsis. In conclusion, and with respect to the datasets involved here, we ob-
serve that the considered singleton-style consistency algorithms are not good
options for just checking the satisfiability of a network instance, as they present505

an overhead when compared to a state-of-the-art reasoner that is tailored to this
specific task. However, we also point out that they are ideal candidates for effi-
ciently approximating and even determining in many cases the minimal labeling
of a network instance; this becomes even more prominent if one considers the
comparatively bad pruning capability of PWC, and the even worse one of DPWC510

for that matter. It should be noted that even if the state-of-the-art reasoner
Minimizer is provided with a minimal network instance (as it was usually the case
in our evaluation due to the preprocessing with ◆

∪

G -consistency, see again Foot-
note 3 about this), it is an NP-hard problem to decide the satisfiability of that
instance, and an NP-hard problem to verify its minimality as a consequence [29].515

We emphasize again the fact that the neighbourhood-focused singleton-style al-
gorithms PSWC∪N, PSWCN, and `PSWC∪N were found to be around 30% faster in
the phase transition region than the standard algorithms PSWC∪, PSWC, and
`PSWC∪ respectively, for both random and structured QCNs, whilst they were
able to retain much of the good performance characteristics in terms of unfeasi-520

ble base relations elimination and satisfiability decision of the latter respectively.
Regarding the parsimonious variants in particular, viz., `PSWC∪ and `PSWC∪N,
even though they exhibited arguably impressive performance characteristics, a
major disadvantage is that they do not yield unique closures for a same QCN
(see again the discussion in the previous section), which inhibits their theoret-525

ical study. Our efficiency to effectiveness ratio analysis revealed that it is well
worth investing in neighbourhood-based restrictions, since they were found to
improve the efficiency to effectiveness ratios of the involved standard algorithms
by up to around 25% with respect to both datasets.

6. Related Works and Discussion530

Singleton-based consistencies belong to the class of strong filtering tech-
niques for both qualitative and traditional constraint-based reasoning. They
have been shown to drastically reduce the search space and, thus, improve the
performance of solvers for many difficult instances. However, they can suffer
from a serious drawback; they are in general too expensive when applied ex-535

haustively during the whole search. For this reason, several researchers worked
on proposing either weaker variants of the classic Singleton Arc Consistency
(SAC) [55, 70] or approximation techniques (i.e., techniques that do not reach
a fixed point). Regarding the former, several weaker consistencies than SAC
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have been proposed, with Neighbourhood Singleton Arc Consistency (NSAC)540

being the main representative [71]. In NSAC, the AC-based singleton checks are
applied only on the sub-graph that corresponds to the neighbourhood of the
variable that is being considered, instead of the full graph. This restricted form
of SAC, is nearly as effective as SAC in terms of pruning, whilst requiring much
less time. NSAC can be seen as a family of consistencies, since it can be general-545

ized by a parameter k (k-NSAC) that fixes the distance from a singleton-checked
variable [33]. When k = 1, then 1-NSAC is simply referred to as NSAC, and
for k = n it is the case that NSAC becomes SAC. Both weaker and stronger
consistencies than NSAC have been proposed, for example, by restricting AC to
a one pass application on the neighbourhood of a considered variable during550

a singleton check [59], or by replacing AC with a stronger consistency [72]. In
this work, the presented consistencies of N◆

∪

G -consistency and N◆G-consistency
can be seen as adaptations of NSAC to handle infinite domains and qualitative
relations. Regarding N◆

∪

G -consistency in particular, it is an even closer adapta-
tion for QCNs of neighbourhood-focused 1-partitioning consistency (POAC) [58]555

for CSPs, with POAC being a stronger variant of SAC (cf. [73]). Indeed, as the
variables in QCNs contain infinite values, singleton checks involve the base rela-
tions that make up a (qualitative) constraint instead. Even though we currently
do not parameterize on the distance from a singleton-checked constraint, i.e.,
on how far its neighbourhood extends away from it, we do parameterize on the560

graph G that is used for enforcing a given consistency. As noted in Section 5,
the choice of G can have important theoretical and practical implications in
qualitative constraint-based spatial and temporal reasoning [66]. Furthermore,
AC always holds in a given QCN by the very definition of the latter (see also
the discussion about base relations in the beginning of Section 2), and hence we565

typically utilize a stronger base consistency, namely, �G-consistency.
Regarding the approximation techniques of singleton-based consistencies,

adaptive variants of POAC have been proposed recently [74]; in short, adaptive
POAC, referred to as APOAC, is not needed to run until having proved its
theoretical fixed point. Balafrej et al. in [74] propose to limit and adapt the570

number of times that variables are singleton checked, by measuring, during
search, the stagnation in the amount of pruned values. The experiments have
shown that APOAC can obtain significant speed-ups over SAC and (full) POAC.
The bulk of works alternate between two or several levels of consistency to avoid
the prohibitive cost of applying a strong consistency either on the entire network575

as a preprocessing step [75, 76, 77] or along search [78]. The parsimonious
approach that we presented here, namely, `PSWC∪N, is closer to the approach
of [75], where a strong consistency is applied only on the constraints that caused
a failure during search. Similarly, our method is based on observing where
fruitful pruning takes place (during one call of the algorithm), thus revising580

only constraints whose relations were previously reduced via the elimination of
unfeasible base relations.

Arguably, qualitative spatial and temporal reasoning is an area where similar
consistencies play a major role in both efficiently solving existing problems and
opening new directions by allowing harder problems to be defined and tackled.585
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7. Conclusion and Future Work

We proposed singleton-style consistencies for QCNs that are applied just on
the neighbourhood of a singleton-checked constraint instead of the whole net-
work, and attained a strength-based hierarchy among all discussed consistencies
here. Further, we proposed algorithms to enforce our consistencies, as well as590

parsimonious variants thereof, that were shown to be much more efficient in
practice than the state-of-the-art algorithms for a dataset comprising random
and structured QCNs of Interval Algebra. It should be noted that our approach
is generic and applies to other calculi as well, such as the spatial calculus RCC8.

Future work consists in obtaining structure-based tractability results focused595

on the neighbourhood of constraints, developing faster inference mechanisms
that will only partially singleton-check a constraint (i.e., only some of the base
relations of a constraint will be used for singleton checks), much like quick
shaving [79], establishing adaptive constraint propagators for QCNs (see [74] for
instance in the context of CSPs), and looking into prioritizing or even solely600

focusing on singleton checks for base relations that play a crucial role in the
computational properties of a given qualitative constraint language [80, 81].
Therefore, we argue that our approach can drive both theoretical and practical
future research and provide a foundation for further work in the study of QCNs,
which are pertinent in Symbolic AI [2].605
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Appendix A. Insight into Minimizer

In relation to Section 5, and Footnote 3 specifically, we provide insight into
how one of the minimal labeling approximation consistencies, ◆

∪

G -consistency,795

boosts the performance of Minimizer. We note that any of the singleton-style
consistencies discussed here yields virtually indistinguishable results with re-
spect to enhancing the performance of Minimizer, but we opt for ◆

∪

G -consistency
because it is the most effective one in characterizing unfeasible base relations,
and because efficiency is not a factor in this setting (Minimizer is much slower800

than any of the related algorithms, see Tables 1 and 2).
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Table A.3: Evaluation of Minimizer, where suffix ∗ suggests that ◆
∪

G -consistency was not used
as a preprocessing step and the input QCN was left untreated

(a) Evaluation with instances of Table 1

d Minimizer∗ Minimizer

7
45.02k

1.01

44.90k

1.00

8
41.96k

1.06

41.64k

1.05

9
202.27k

1.74

155.68k

1.67

10
1 096.83k

1.99

852.33k

1.98

11
1.94k

2.00

0.23k

2.01

12
0.05k

2.07

0.01k

2.57

(b) Evaluation with instances of Table 2

m Minimizer∗ Minimizer

2
143.65k

1.00

143.64k

1.00

3
196.70k

1.00

197.18k

1.00

4
92.13k

1.08

85.29k

1.02

5
0.00k

2.12

0.00k

3.23

The results of this evaluation are detailed in Table A.3, where a fraction
n

b
denotes that the reasoner visited n nodes and produced a search tree with a
branching factor of b on average, and in Figure A.9, where cactus plots on the
most difficult instances are presented. The average CPU time is analogous to n,805

i.e., x% of less (or more respectively) visited nodes translates to roughly x% of
less (or more respectively) CPU time. The results suggest that there is a boost
of about 22% and 7% in the phase transition for instances of Table 1 (d = 10)
and Table 2 (m = 4) respectively. These gains are maintained for the most
difficult instances too, as it is demonstrated in Figure A.9; specifically, there is810

a gain of about 22% and 6% for the 5th percentile of most difficult instances
of Table 1 and Table 2 respectively (the distribution is heavy-tailed for both
datasets). Finally, by viewing in particular the verification line in Figure A.9,
we can see that gains are maxed out for instances of Table 2 (with respect to
how Minimizer is in its current form), whereas there is still a lot of room for815

improvement for instances of Table 1. Such an improvement could be achieved
via a tighter integration between one or more singleton-style consistencies and
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Minimizer (e.g., during search), as the singleton-style consistency is currently
only used as a preprocessing step and as a verification subroutine for the special
case where it is complete for deciding minimality.820
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(a) Insight into the 5th percentile of most difficult instances of Table 1
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Figure A.9: Insight into the most difficult instances for Minimizer, where suffix ∗ suggests that
◆
∪

G -consistency was not used as a preprocessing step and the input QCN was left untreated,
and verification suggests that the input QCN was minimized beforehand (we remind the reader
that verifying the minimality of a minimal QCN is already NP-hard [29])
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