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ABSTRACT

Samaneh Ammari: Neural Network Accelerator Design for System on Chip
Master of Science Thesis
Tampere University
Master’s degree
October 2022

ML is vastly utilized in a variety of applications such as voice recognition, computer vision,
image classification, object detection, and plenty of other use cases. Protecting data privacy and
the importance of preventing latency in different applications and saving the network bandwidth
to process data locally without the need to transfer it to the cloud. The approach is called edge
computing. It is challenging to design a deep learning accelerator suitable for edge devices. Two
main factors affect the chip design. On-chip memory is the first and the most power and area-
consuming unit. The second one is multipliers. In this thesis, we are focusing on the latter.

Most machine learning algorithms use convolution, which is calculated by multiplying and accu-
mulating input feature maps and weights. Most of the deep learning accelerators use the precision
scalable Multiply and Accumulate (MAC) architecture and an array of MAC units. Most of the chip’s
area is taken up by the array of MAC units, especially multipliers, which also use a lot of power.

This master’s thesis consists of two parts. First, a new deep learning accelerator architecture
is proposed. Second, different multiplier algorithms are explored. These algorithms were imple-
mented in the SystemVerilog language and synthesized via Cadence tools. The aim was to find
a smaller area and lower power consumption multiplier with higher performance. In this work, the
Braun multiplier, the Booth multiplier, the Baugh-Wooley array multiplier, the Wallace multiplier,
the Parallel prefix Vedic multiplier, and the Modified-Booth multiplier are implemented. The power
consumption, chip area usage, and performance of the multipliers at different clock frequencies
are measured and considered to select the optimal multiplier. Then the precision flexibility feature
is added to the selected multiplier algorithms to perform one 8-bit*8-bit, two 4-bit*4-bit, or four
2-bit*2-bit multiplication. It is worth mentioning that both data (multiplicand) and weight (multiplier)
can be in different bit width ranges, such as 1,2,4,8. In the proposed deep learning accelerator, the
area and power of the systolic array are measured and reported. Among all other multipliers, the
signed flexible Modified Booth multiplier which can calculate 2,4, and 8-bits is selected. It occupies
866.461 um2, and consumes 0.653 mW power at 1 GHz. The area and power of the systolic array
with bit precision flexible are 283,564 mm2 and 223,156 mW power at 1 GHz, respectively.

Keywords: System on Chip, Embedded Systems, FPGA, ASIC, Machine Learning, Deep learning,
Neural Network, Hardware accelerator, Deep learning accelerator

The originality of this thesis has been checked using the Turnitin Originality Check service.
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1. INTRODUCTION

Recent studies indicate that Machine Learning (ML) algorithms provide considerable

benefits, especially in the internet of things (IoT) and edge devices (low-power mobile

applications). Edge devices have sensors or actuators that gather data, and instead of

transmitting data to the data center for processing and analysis, all the computation could

be conducted at the edge. The power and memory capacity of edge devices are limited.

Thus, it is challenging to use ML algorithms on edge devices. However, due to data

privacy and latency concerns, the demand on using Deep Learning (DL) algorithms on

edge devices is increasing.

Several studies have been conducted on designing efficient hardware accelerators.

As in ML, especially DL, there is a set of repetitive computations. A collection of special-

ized hardware is used to do these computations faster and more energy efficient. This

set of hardware is generally called a Deep Learning Accelerator (DLA), Neural Process-

ing Unit (NPU), or AI Processing Unit (APU). They are optimized for performing a specific

task. There are three aspects to DLA: data reuse ability, fixed computational patterns,

and fast memory access. For these reasons, the DL Accelerator designs are moving to-

wards non-von Neuman architectures. It enables the increase of parallelism with the high

number of Processing Elements (PEs) utilization.

The goal of this master’s thesis is to study and propose the most effective Very

Large-Scale Integration (VLSI)-based DL accelerator. The suggested DL accelerator is

one of the subsystems in a larger System on Chip (SoC) named Ballast [1]. The proposed

DL accelerator will replace the Ballast chip’s current DL accelerator. The objective is to

introduce a novel DL accelerator that consumes less area footprint and reduces power

consumption, while improving performance. Our design strives to be suited for edge de-

vices. The aim of this master’s thesis is to investigate the design principles of the DL

accelerator and improve every aspect of the design that can be optimized. The focus is

on the arithmetic part of the DL subsystem, as it is the bottleneck of the main process.

For that reason, different types of multipliers are implemented and compared. The aim

is to select the multipliers that are as fast as the critical path of the whole chip. The final

hardware architecture should be able to do both standard convolutions and depth-wise

separable convolutions.
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Figure 1.1 demonstrates a general overview of the Ballast SoC. Besides that, it il-

lustrates the structure of the proposed DL architecture. It consists of Direct Memory

Access (DMA), a global buffer, a control unit, a systolic array, and an aggregation core.

Other members of the team implement certain components of the DLA. This thesis work

focuses on selecting the needed components for the DL accelerator and discussing the

reasons behind the selection of different features. Furthermore, it discusses the arithmetic

part of DL and how to do the convolution. Finally, it evaluates the different multipliers to

determine a fast, energy-efficient, and area-efficient way to do these computations.

Figure 1.1. Ballast SoC with proposed deep learning accelerator design

The thesis work comprises nine chapters. The second Chapter 2 explains the ba-

sic concepts that readers with different backgrounds might need. The third Chapter 3

evaluates related works. This thesis consists of two main parts. First, Chapter 4 defines

the deep learning design principle, followed by Chapter 5, which proposes a hardware

accelerator for edge computing use cases, enabling specific deep learning algorithms.

It explains the different parts of the proposed deep learning accelerators and the rea-

son for implementation. Second, Chapter 6 and 7 describe the procedure, techniques,

and implementation of different multipliers and adders, respectively. Chapter 8 compares

and evaluates different multipliers in terms of the area and power consumption of the DL

subsystem. In the last Chapter, 9 the conclusion is discussed.
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2. BACKGROUND AND MOTIVATION

This chapter provides a concise explanation of the fundamental principles neces-

sary to comprehend the context. The first segment focuses on machine learning. The

second part briefly introduces SoC and embedded systems, followed by a discussion of

the significance of the link between ML and SoC in the third section.

2.1 Machine learning

Neural Network (NN) refers to the approach used to design a computer to function

similarly to human brains. The name of the NN was inspired by neurons in the human

brain. ML is a branch of AI focused on building models and training them with sample

data for specific tasks without being explicitly programmed. Supervised and unsupervised

learning are the two main types of machine learning. In a nutshell, supervised learning

is suitable when the data source is structured, and the model is known. Regression and

classification are techniques for supervised learning. Classification can predict a label,

whereas regression can predict a quantity.

It is important to specify the following usage cases. The examples of regression

would be the agricultural industry for predicting the effect of fertilizers and water on plants,

house pricing prediction, and medicine to predict the relationship between blood pressure

and drug dosage. In addition, examples of classification applications include the catego-

rization of spam and non-spam emails and the classification of soil and crops. In contrast,

unsupervised learning is used for unstructured source of data to discover hidden struc-

tures in the data. Products or customer segmentation, and similarity detection are some

of the common use cases [2].

Deep learning is one of the most effective machine learning techniques. It uses a

neural network to execute complex calculations on big data. Figure 2.1 illustrates the

hierarchy between AI, ML, and DL. It is part of ML while it is a subset of AI. Having sev-

eral layers of neural networks has a significant improvement in ML. There are various

types of DL methods, such as Deep Neural Networks (DNNs), Convolutional Neural net-

works (CNN), Recurrent Neural networks (RNN), Multi-Layer Perceptron (MLP), Linear

Threshold Unit (LTU), Generative Adversarial Networks (GAN), Autoencoder, Distributed

Learning, Transformer, Deep Feedforward Network, Training Feedforward Network, etc.
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Figure 2.1. Taxonomy of Artificial intelligence (AI)

Brief descriptions of the three most prevalent neural networks are provided below.

CNN is among the most prominent NN models. It is derived from the mathematical

idea of convolution, which is the process of computing the integral of two functions while

the shape of one of them is modified and shifted. CNN can extract specific features

or patterns. Briefly, in each convolution, the filter slides over the input to detect special

patterns such as corners, edges, lines, objects, texture, shape, etc. For instance, a filter

that can identify objects is known as an object detector. A CNN comprises of three main

layers: an input layer, hidden layers, and an output layer. All layers between an input layer

and output layer are called hidden layers. Typically, it also has a Fully Connected (FC)

layer and a pooling layer. Each layer contains a set of neurons that have specific weights

and biases. The convolution layer applies the filter to an input. As a result, a feature map

is produced. If the same filter is applied repeatedly to the input, it will produce the feature

map. The ability to learn many filters in parallel is the most important innovation of CNN.

LeNet [3], AlexNet [4], VGGNet [5], GoogLeNet [6], ResNet [7], and ZFNet [8] are famous

variation of CNN models. These kinds of models are mostly applied to computer vision

applications.

Remembering the past states is a unique feature of RNN. These memories are

stored in special nodes. Each node gets the data and the previous state as inputs. In

addition, the output relies on the input and the previous computation. One of the most

well-known RNNs is Long Short-Term Memory (LSTM). This kind of network is efficient

when historical characteristics are crucial for making a choice. It dominates predictive
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Figure 2.2. Deep CNN Example of classification application

applications like as the stock market, speech recognition, and language modeling.

DNNs have more than one layer between input and output. It extracts features from

the huge amounts of data available without human interaction. Collective layers are cas-

caded to extract the feature. The most common NN layers are convolution, FC, activation

function, and pooling. Figure 2.2 demonstrates the general process of DL neural networks

as an example in image classification. Usually, the input is an image with a dimension of

256*256 pixels, 128*128 pixels, or sometimes a reduced size to save some calculations.

The ML model trains with the available datasets to produce weights or kernels. In other

words, a filter is created during the training. Filters can be programmed to detect features

like straight edges, simple colors, and curves. The kernel convolves over the entire area

of input image features to extract the features.

Each of these techniques is suitable for specific applications. Generally, ML uti-

lization shows considerable improvement in computer vision tasks, speech recognition,

robotics, self-driving cars, detecting cancer, playing complex games, and so on. NN algo-

rithms may be suitable for more than one application. In these cases, insightful evaluation

of NN algorithms determines which of them would be most suitable and provides the high-

est accuracy for a given application. Some of the applications for different NNs are shown
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CNN-DNN RNN-LSTM

Image segmentation Trend Forecasting

Image classification Detecting Anomalies

Medical image analysis Generating Image Descriptions

Image and video recognition Language Modelling and Generating Text

Natural Language processing Speech Recognition

Search engine Video Tagging

Table 2.1. Neural Networks (NN) and some of their common use cases

in the table 2.1 below. The focus of this master’s thesis is mostly on supporting the DNN.

The main reason is that it can widely support so many applications.

Table 2.2 demonstrates the comparison of the different NN models in terms of the

number of parameters and top-1 accuracy based on the ImageNet dataset [9]. The top-1

accuracy rate is a factor for the ground truth against the first predicted class. Another good

factor for comparison is the top-5 error rate, which compares the ground truth against the

first five predicted classes. According to the table 2.2, the MobileNet model gives high ac-

curacy, despite the low number of parameters. MobileNet is suitable for computer vision

tasks and requires less computation.

Model Number of parameters Top-1 Acc ImageNet (%) Year

AlexNet [10] 60M 63.3 2012

VGG16 [5] 138M 74.4 2014

GoogLeNet [6] [11] 4M 68.3 2015

ResNeXt-101(64x4) [12] 83.6M 80.9 2017

Xception [13] 23M 79 2017

MobileNetV3 [14] 5.4M 75.2 2019

InceptionV3 [15] 24M 78.95 2020

Table 2.2. Summary of popular NN models in ImageNet-1k only

2.1.1 Convolution

Convolution is the heart of CNN and DNN; It extracts features by convolving the

trained filters on input feature maps. There are different types of convolutions, for ex-

ample, direct convolution, 1D convolution, and depth-wise separable convolution. To il-

lustrate the mathematical complexity of convolution, let’s examine the definition of direct

convolution. As the equation 2.1 standard convolution demonstrates, there is very much

multiplication. The input feature map (i) has height (H), width (W), and the filter (f) is
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represented with height (R), width (S). The number of input channels as parameters (C)

is the same in both input activation and filter. The output feature map (o) has height (P),

width (Q), and biases (b), batch size (n) and given stride size (U) are the parameters used

to show the convolution. Standard convolution [9]:

O[p][q][m][n] = (
C−1∑︂
c=0

R−1∑︂
r=0

S=0∑︂
s=0

i[n][c][Up + r][Uq + s] ∗ f [m][c][r][s]) + b[m] (2.1)

0 ≤ n < N, 0 ≤ m < M, 0 ≤ p < P, 0 ≤ q < Q,

P = (H −R + U)/U, Q = (W − S + U)/U

A simple pseudo code in Listing 2.1 depicts how standard convolution works.

for r = [ 0 :R ] :

for s = [ 0 :S ] :

for p = [ 0 :P ] :

for q = [ 0 :Q] :

for c = [ 0 :C ] :

for m = [ 0 :M] :

for n = [ 0 :N ] :

output [ p ] [ q ] [m] [ n ] += Weight [ r ] [ s ] [m] [ c ] * Inpu t [ p+ r ] [ q+s ] [ c ] [ n ] ;

Listing 2.1. Standard convolution

Corresponding for loops in listing 2.2 illustrate depth-wise separable convolution,

which consists of Depth-Wise Convolution (DWC) and Point-Wise Convolution (PWC), in

other words, the filtering stage and combination stage. It is the feature of the MobileNet

NN [16].

for n = [ 0 :N ] :

for c = [ 0 :C ] :

for r = [ 0 :R ] :

for s = [ 0 :S ] :

for p = [ 0 :P ] :

for q = [ 0 :Q] :

output [ p ] [ q ] [ c ] [ n ] += Weight [ r ] [ s ] [ 1 ] [ c ] * Inpu t [ p+ r ] [ q+s ] [ c ] [ n ] ;

Listing 2.2. Depth-wise convolution

for p = [ 0 :P ] :

for q = [ 0 :Q] :

for m = [ 0 :M] :

for c = [ 0 :C ] :

for n = [ 0 :N ] :

output [ p ] [ q ] [m] [ n ] += Weight [ 1 ] [ 1 ] [m] [ c ] * Inpu t [ p ] [ q ] [ c ] [ n ] ;

Listing 2.3. Point-wise convolution
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2.1.2 Training and inference

Training and inference are two fundamental concepts in ML. Training indicates the

process of producing the NN model. In this process, a DNN learns how to analyze a set of

data and make decisions. Inference, on the other hand, applies the generated ML model

to novel data to anticipate the outcomes [17].

It is noteworthy to mention some well-known datasets and DNN algorithms. Usu-

ally, these datasets are used to train a NN model. The three most available datasets

are MNIST, CIFAR-10, and ImageNet. Their complexities increase in the same order.

ALexNet [4], GoogLeNet [6], ResNet [7], are popular DNNs that won the Large-Scale

Visual Recognition Challenge (ILSVRC) in image classification in 2012, 2014, and 2015,

respectively.

There are some open source ML frameworks for training and inferences, such as

TensorFlow [18], Pytorch [19] , Keras [20], Caffe [21] and Microsoft Cognitive toolkit.

These mentioned frameworks are used to train the NN Model.

2.2 System on Chip and Embedded systems

Embedded systems play an essential role in our lives. There is a good chance we

are already using multiple embedded systems in our daily lives, and they can be found

in cars, home appliances, digital watches, etc. In general, an embedded system is a

term describing a computer system combining both hardware and software designed to

perform a dedicated function, which can be part of a larger system, hence embedded

in it. This system can utilize multiple embedded processors, such as a System on Chip

(SoC), Field Programmable Gate Array (FPGA), microcontrollers, and some electronic

components.

An SoC is an integrated circuit (IC) that combines many components of an electronic

system into one chip, such as the Central Processing Unit (CPU), Graphics Processing

Units (GPU), memory interfaces, input/output interfaces, and may contain digital, analog,

or mixed signals and often signal processing units. An SoC could be designed for special

use cases or functions such as fast data processing or edge computing and may include

special accelerator units such as Tensor processing units (TPU) [18].

An Application Specific Integrated Circuits (ASIC) and a FPGA are the ideal choices

when designing hardware for a particular task. The significant advantage of them is

customization for specific needs. In contrast to ASIC, FPGA allows clients or users to

change designs after manufacturing.

However, Custom ASIC has many advantages to mention compared to the CPU,

GPU, FPGA, and other types of computing systems. ASICs, on the other hand, have a
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few drawbacks, including a long time to market due to the lengthy design, research, and

development process, whereas FPGA is appropriate when time to market is critical. How-

ever, the power consumption of FPGA products is much higher than ASICs, especially on

edge devices and mass-produced IoT. Table 2.3 compares the characteristics of different

kinds of computing systems.

Characteristic CPU GPU ASIC FPGA

Development cost Low Low High Medium

Unit cost High High Low High

Time to Market Short Medium Long Medium

Flexibility High Medium Low Very High

Power consumption High Very High Low Medium

Table 2.3. Comparison of various chip platforms

It is essential to remember that the appropriate hardware solution is chosen in ac-

cordance with the application, time to market, and design criteria. It is possible to catego-

rize most DL accelerator designs between general-purpose architectures like GPUs and

CPUs and neuromorphic architectures like [22].

With the development of technology, the need for smart, portable gadgets increases.

In edge devices, local memory processing and power consumption are bottlenecks. Hence,

there is a need to develop either specific hardware for each unique task or flexible hard-

ware. Thus, it is possible to have optimal hardware that can perform the same assignment

much faster. It is recommended to design specific hardware to get the best performance

and accelerate the speed of computation.

2.3 Relationship between System on Chip and Machine Learning

With the most recent breakthroughs in information technology, ML has found oppor-

tunities to expand in several technologies. Nowadays, ML is being applied extensively

in industrial and edge processing, such as speech recognition, computer vision, image

classification, object detection, and many other use cases. There are numerous ML al-

gorithms, like state-of-the-art DNNs. Even though DNNs predict the results with high

accuracy, they introduce high computational complexity. It is possible to deploy ML algo-

rithms on different hardware platforms; the cloud, GPUs, CPUs, FPGAs, and ASICs are

the most famous hardware platforms.

SoCs and ML can become related in two ways. Either ML is used to design an SoC

or design an SoC for a specific ML application. The emphasis here is on the latter. There

is a tradeoff among various hardware platforms. The platform is selected based on the

application requirements.
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However, the tendency to process data locally is increasing to protect data privacy,

especially in edge applications. In some use cases to prevent fraudulent activities, hack-

ing, phishing, and identity theft, the cloud is not a viable option. On the other hand, CPU-

based platforms are insufficient for parallel computing, which DNNs need. They support

several instructions sets, and multiple access to external memory per instruction has a

negative effect on power consumption, although there are only a few repetitive instruction

sets needed for specific tasks.

GPUs are commonly utilized for accelerating ML algorithms. GPU-based platforms

are much better than CPUs at deploying DL. GPU’s multiple cores provide astonishingly

fast, highly parallel computations. GPU-based platforms can have high throughput, but

they use too much power to be useful for edge devices. [23] has compared FPGAs against

other hardware platforms. According to their research, FPGAs and ASICs surpass GPUs

and CPUs in terms of energy efficiency and performance. Moreover, ASICs rise above

all of them.

[24] compares hardware options for neural network acceleration in terms of power

efficiency and the number of processing units. According to the book, ASICs and FPGAs

with customized compute logic have higher power efficiency than GPUs with single in-

struction, multiple data executed for general-purpose computing. And the CPU with a few

cores for mobile/edge has the lowest power efficiency.

The DNN algorithms on GPUs with the Von-Neumann architecture are computation-

ally more costly than the ASIC’s design. Nowadays, the trend is to use the ASIC platform

for ML, especially for DNNs. As the number of weight parameters is high in the DNN

algorithms, it demands data movement between the processing unit and memory, which

is expensive due to latency and energy consumption caused by the memory wall. DLA’s

design is shifting toward Non-von Neumann architecture to support parallelism. As a re-

sult, it enables fixed memory access and computational patterns with deterministic data

reuse-ability, and it is easy to increase parallelism with more PE utilization.

General purpose processors such as CPU and GPU have Von Neumann architec-

ture like figure a in 2.3. These kinds of processors consume a considerable amount of

power, and they are not suitable for low-power edge devices. On the other side, by imple-

menting the non-von Neumann architecture or even computing in memory, it is possible to

carry out higher performance, energy efficiency, and cost-effective platforms. As a result,

DL accelerators designed by FPGAs or ASICs follow a semi-spatial structure like in fig-

ure b 2.3. Therefore, as ML develops quickly, hardware architecture should be designed

to support ML computation. There is a need for a hardware architecture to execute the

highly computational neural network algorithms fast. The spatial hardware architecture

helps to increase the speed of computations. This can happen by bringing memory near

the computation unit or inside it. Thus, there will be less latency for transferring the data
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Figure 2.3. Two common platform structures for ML: a) General purpose processors b)
Common spatial architecture

between different units.

ML is all about computation, and it consumes considerable amounts of power. But

the power source is limited to edge devices. Thus, it is challenging to design an ML

accelerator that consumes a smaller amount of energy. According to [25], Moore’s law is

going toward the end. Power becomes a key factor. Therefore, to have a faster processor

instead of a general-purpose processor, build a more heterogeneous architecture that

only does one specific task. The software-centric, hardware-centric, and combination

approaches are the ones suggested. So, there is a need to employ domain-specific

hardware in a computing system and use the hardware and software co-design to boost

performance. In other words, to do co-design, the proposed DL accelerator is designed

for a specific NN algorithm. In this thesis, the MobileNet algorithm [16] is selected as it

can cover many applications of ML.
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3. RELATED WORK

3.1 Deep Learning Accelerators

In recent years, DNNs and other domain-specific ML accelerators have gained a lot

of attention in the computer architecture community. The amount of literature available

on DL accelerators is growing quickly. Table 3.1 demonstrates several deep learning ac-

celerators and compares them based on their technology, chip area, power consumption,

and overall performance.

Platform Technology (nm) Area (mm2) Power (mW) Performance (GOPS)

Ballast [1] 22 2,63 439,3 80.80

Eyeriss V2 [26] 65 ≈301 - 193.7

CENNA [28] 65 1.38 47.34 86

EIE [29] 45 40.8 590 102.4

VWA [30] 40 1.56 154.98 146.33

DaDianNao [31] 28 67.7329 15970 5580

ParaML [32] 65 3.51 596 1056

Bert-Marian [33] 40 2.4 76 102

Table 3.1. The comparison of DNN accelerators

Ballast [1] has an AI-subsystem based on NVDLA [34]. It has 32x8 bit MAC units

and operates at a 750 MHz clock frequency. Eyeriss version 2 [26] reports the throughput

and energy efficiency of their designed DL accelerator with four different DNN algorithms.

The values in Table 3.1 are for the MobileNet neural network inferences on their DL ac-

celerator. CENNA [28] is the 16-bit CNN accelerator which uses matrix multiplication for

1Eyeriss v1 area is 1394k NAND-2 gate reported in [26] which is also reported 16 um2 in [27]. Therefore,

Eyeriss v2 area which is reported 2695k NAND-2 gate in [26] is estimated ≈ 30 um2.



13

doing the convolution. As shown in Table 3.1, it produces good results.

Chen et al. [35] focus on different approaches to reduce data movements such as

Weight stationery, Output Stationery, No local Reuse (NLR), Row Stationary (RS). Then

claim that the RS is the best in power and energy consumption. Calculating the 1D Row

Convolution in PE is named row stationary.

State-of-the-art, EIE [29] is an efficient inference engine that supports sparsity. It

utilized a dedicated accelerator, performing Sparse Matrix Vector Multiplication (SMVM)

and handling weight sharing. EIE saves a considerable amount of energy with four ac-

tions: moving the data from Dynamic Random Access Memory (DRAM) to Static Random

Access Memory (SRAM), then using sparsity, sharing weights, and finally, skipping zeros

caused by activation. Another AI accelerator that supports sparsity is NullHop [36]. The

authors claim that an efficiency of 368 percent is possible because of its zero-skipping

pipeline and high MAC utilization.

VWA [30] is a hardware-efficient CNN accelerator that can implement different con-

volution filters with good results. It combines systolic array architecture with vector-wise

input and weight data to preserve regular structure. As a result, they manage to reduce

expenses while still satisfying the aforementioned requirements for flexibility.

Another well-known DLA is DaDianNao [31]. It stores all the computation-related

data in local memory to reduce the number of memory accesses. The author claims

accomplishments in both high performance and low power consumption.

ParaML [32] or Polyvalent Multi-core Accelerator for ML is an architecture that sup-

ports ten different ML techniques (k-NN, k-means, linear regression, SVM, DNN, naive

bayes, classification tree, LVQ, parzen window, PCA) and is a flexible design that can

accommodate for increased data size and is energy efficient for different ML scenarios.

Bert-Marian [33] is a low-power precision-scalable processor for CNN which has 256 par-

allel PU and runs at 204MHz, it uses the sparsity of convolutions and implements dynamic

scalability, it utilizes 16x16 MAC array.

Table 3.2 shows all these different accelerators sorted by their performance per

power consumption (GOPS/W). Because these are implemented with different technolo-

gies ranging from 22 to 65nm, comparing the area or power is not a one-to-one compar-

ison, so sorting them by their respective performance per power consumption is a better

way to demonstrate their efficiency. Figure 3.1 visualizes the results, and as some im-

plementations have power consumption on a scale of thousands more than others, the X

axis is cropped at 600 to be able to view the smaller values. CENNA [28] has the best

GOPS/W result, followed by ParaML [32], even though both are implemented in 65nm

technology. Although DaDianNao [31] had the highest performance, we can see that it

has very medium GOPS/W compared to other accelerators. As there is no other 22nm
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accelerator, we can’t compare Ballast in more detail with others correctly.

Platform GOPS/W

CENNA [28] 1816,65

ParaML [32] 1771,81

Bert-Marian [33] 1342,11

VWA [30] 944,186

DaDianNao [31] 349,405

Eyeriss V2 [26] 243,036

Ballast [1] 183,929

EIE [29] 173,559

Table 3.2. Sorting Table 3.1 by Performance per power consumption

Figure 3.1. Visual comparison of Table 3.1
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Chen et al. [26] explore sparsity and architectural design for sparse DNN models.

By using Rectified Linear Unit (Relu), the decoder layer and pruning sparsity happen to

DNNs. It is possible to use this sparsity to improve energy efficiency and the speed of

processing. These can happen in two ways: either skipping, gating the MAC computation,

or compressing the weights and activations. The latter helps to decrease data movement

and storage. However, it is not as easy as it sounds. There are two main challenges:

first, access pattern irregularity, and second, a different PE has an uneven workload. It is

noteworthy to mention that Eyeriss V2, in contrast with other versions, supports sparsity.

Eyeriss v1 [27] does not support sparsity and it has 1394k NAND-2 gate area, while

Eyeriss v2 [by supporting sparsity] consumes 2695k NAND-2 gate area, approximately

two times more. It vividly shows that supporting sparsity increases area. Sparsity is not

the only reason for the increase in area; another reason is the use of Single Instruction,

Multiple Data (SIMD), which doubles the MAC operations.

Bing et al. [37] is the FPGA based DL accelerator, which supports depth-wise sep-

arable convolution. It consists of depth-wise convolution and point-wise convolution. Mo-

bileNet and ShuffleNet are examples of ML models which use depth-wise separable con-

volution. The MobileNet architecture introduces depth-wise separable convolution layers

[16]. In this architecture, 2D convolution is replaced by 1D convolution along with depth-

wise convolution. Reducing the number of parameters as well as calculations are the

reasons for using this kind of convolution, while keeping the loss of precision limited.

Table 3.3 demonstrates three convolution-recurrent neural networks (CNN-RNN),

and compares them in terms of area, power, and throughput. Because of the space

and power requirements, there are few designs for the combined CNN-RNN accelerator.

Shin et al [38], [39] propose a heterogeneous ML-specific integrated circuits (MSICs)

architecture called DNPU. There is a top controller, the MLP-RNNs processor, and a

CNNs processor inside the DNPU in order to support gesture and action recognition as

well as image captioning. As a consequence of supporting CNN and RNN at the same

time, this accelerator consumes more areas. Furthermore, the Unified Neural Processing

Unit (UNPU) [40] accelerator employs CNN-RNN cores. It is designed specifically for

dialogue generation and emotion recognition tasks. An interesting point about UNPU is

that weight and input features are concatenated into a 1D vector.

CNN-RNN Technology (nm) Area (mm2) Power (mW) Performance (GOPS)

UNPU [40] 65 16 279 691.2

YIN [41] 65 19,36 447 409.6

Zeng [42] FPGA-ZU5EG N/A 8000 690.76

Table 3.3. Related works with CNN-RNN architecture at 200 MHz frequency.
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3.2 Multipliers

Convolution is calculated by multiplying and accumulating input feature maps and

weights. Billions of MAC operations are required, which results in intensive data move-

ments. Table 3.4 shows the number of MACs for different DL algorithms.

In most DLA designs, the terms MAC and PE are mentioned a lot. A PE can contain

MAC units, a small memory buffer, and a control unit. For example, [43] uses four RISC-V

processors as PEs, and each RISC-V core has a buffer, controller, and MAC. Conse-

quently, these terms are sometimes used instead of each other. When PE is mentioned,

the focus is on the number of MAC units it contains.

Deep Learning Algorithms Num of PE/MAC units Num Weights

MobileNet [16] 569 M 13 M

Inception [44] 5.74 B 52 M

AlexNet [4] 724 M 61 M

VGG16 [5] 15.5 G 138 M

ResNet-50 [7] 3.9 G 25.5 M

GoogLeNet [6] 1.43 G 7 M

Table 3.4. Computation requirements MACs and weights of various deep neural networks

Table 3.5 shows the number of MAC/PE units of various deep learning accelerators.

According to [26] MAC units consume around 65 percent chip area of their work, which is

the similar situation in most of the DL accelerator designs. Moreover, it indicates that the

number of MACs that contain multipliers is high in each DLA. Thus, it is important to have

a multiplier that consumes less chip area and power. For example, the systolic array in

Eyeriss [27] architecture consists of 168 MAC units. It’s interesting to note that in Eyeriss

V2 [26], the bit width has been reduced from 16 to 8 bits. The array of MAC unit structures,

in particular multipliers, will occupy a vast chip area and consume a considerable amount

of power.

Camus et al [45] evaluate the implementation of MAC units in various DL acceler-

ators. Using the precision-scalable MAC architecture is one of the common ways, such

as the Deep Neural Processing Unit (DNPU) [46], Unified Deep Neural Network (UNPU)

accelerator [40].
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Platform Num of PE/MAC units Area (mm2) Bit Width

Ballast [1] 256 2.63 8-bit

Eyeriss v1 [27] 168 16 16-bit

Eyeriss v2 [26] 192 ≈ 30 8-bit

Bert-Marian [33] 256 2.4 1-16 bits

EIE [29] 64 63.8 4-bit

VWA [30] 168 1.56 16-bit

Table 3.5. Comparison in the number of MAC/PE, area; ASIC platform.
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4. DESIGN PRINCIPLES OF DEEP LEARNING

ACCELERATOR ARCHITECTURES

This chapter discusses some principles of designing a DLA. Figure 2.3 demonstrates

how DLAs adhere to spatial architecture. It enables the increase of parallelism with the

high number of PEs utilized, because there are fixed computational patterns, memory

access, and data reusability in them.

4.1 Data Movement

Training and inference of each ML algorithm require abundant amount of data. Only

considering the inference, each layer of ML needs a tremendous amount of data transfer

across distinct blocks. The transmission of data can become a bottleneck in execution.

Data movement and memory data structures influence overall performance, such as en-

ergy consumption and throughput, especially in memory-bound systems. According to

[47], transferring the data from DRAM (external memory) to ALU consumes 200 times

more energy than transferring the data from the register file (RF) to ALU, and data move-

ment between the global buffer (internal memory) and ALU spends six times more energy.

One of the ways to reduce data movement overhead is the use of Direct Memory

Access (DMA). While the main processing unit is occupied by other tasks such as read-

ing from external inputs and generating control signals, another part of the system called

DMA can enable certain hardware subsystems to access main system memory indepen-

dently of the CPU. DMA makes the design faster by reducing the time required for data

movement. However, even after utilizing the DMA, data movements in the DL accelerator

are noticeable, time-consuming operations.

It is critical to remember that enabling sparsity minimizes data movement. Because

the sparse weight is no longer in memory, and when the input data is 0, MAC operations

are omitted.
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4.1.1 Data flow of the systolic array

Going toward the spatial architecture enables data reuse, which reduces data move-

ments. It is noteworthy to highlight that it is necessary to exploit spatial reuse. Otherwise,

it leads to the underutilization of parallelism. Multiple MAC units align together to form

a systolic array. Hence, since convolution doesn’t have ordering constraints, alternative

data flows can be implemented. Usually, the connection of MAC units follows one of the

data flow structures listed below. The weight stationary is the most popular among others.

Notably, there are methods for transferring data across MACs and reducing data move-

ments. The most well-known ones are mentioned by the listing. To understand each item

in the for loop, consider I[w] to be the input activations, F[s] to be the filter weights, and

O[q] to be the output activations.

• Weight stationary like NVDLA [48], TPU [49], Origami [50] and UltraTrail [51]. Weights

are stationary and are obtained once from memory. The connection in the pseudo

code in section 2.1.1 has this kind of connection. It can also be represented as:

for s = [ 0 : s ] :

for q = [ 0 : q ] :

w = q + s

O[ q ] += I [w] * F [ s ] ;

Listing 4.1. Weight stationary

• Output stationary like ShiDianNao [52], DaDianNao [31]. In this kind of data flow,

intermediate results known as partial sum are stationary.

for q = [ 0 : q ] :

for s = [ 0 : s ] :

w = q + s

O[ q ] += I [w] * F [ s ] ;

Listing 4.2. Output stationary

• Input stationary like SCNN [53], This kind of data flow to reduce the data movement,

keeps the input feature maps stationary.

for w = [ 0 :w ] :

for s = [ 0 : s ] :

q = w − s

O[ q ] += I [w] * F [ s ] ;

Listing 4.3. Input stationary

• No local reuse like DianNao [54], as it is obvious from its name there is no data

reuse in any local register.

• Row stationary 1D Row Convolution in PE) like Eyeriss Version 1 and version 2

[27]. In this data flow, a row of a kernel and a row of one channel of the input fea-
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ture map are stationary.

Based on the findings of [27], the row stationary is much more efficient than the

other mentioned data flow. The comparison was between different data flows of the same

design of 256 PEs and a batch size of 16 based on the ALexNet convolutional layer.

4.1.2 Dimension of the systolic array

With regards to [55] a roofline model tells how to improve the performance. It is

used to figure out the appropriate number of MAC units and the dimension of the systolic

array. According to the roofline model, the number of MACs/PEs cannot exceed a certain

amount since having an unnecessary number of MACs/PEs wastes resources. Hence,

finding the suitable dimension of the systolic array is the most challenging part. A suitable

number of MAC units should be chosen so that the DL accelerator performs optimally.

Figure 4.1 depicts the factors influence the number of PEs/MACs. There are seven

steps to determining an adequate number of MAC units [56]. These seven steps are the

layer shape and size, data flow; predefining the number of PEs/MACs to check the impact

of the architecture, dimension of the systolic array, memory capacity by considering the

global buffer size, data bandwidth, and various data access patterns.

Figure 4.1. Roofline Model for selecting the number of MAC operation [55]
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4.2 The network on chip of the systolic array

As explained in 4.1.1, a Network on Chip (NoC) should have three features to support

data flow: processing with high parallelism by efficiently delivering data between storage

and data path; Moreover, it should exploit data reuse to minimize the bandwidth require-

ment and improve energy efficiency. Finally, it is scalable at a reasonable implementation

cost.

Figure 4.2 illustrates four NoC structures suitable for DL accelerators. Unicast net-

works are represented by a, 1D Multicast networks by b, 1D Systolic networks by c, and

broadcast networks by d. Each NoC implementation has pros and cons. As an exam-

ple, Unicast Network has low reuse and high bandwidth, while broadcast Network is vice

versa.

Figure 4.2. Common Network on Chip

It must be pointed out how the results data flow would be. According to [57] the

results of each MAC unit can either sum apart or sum together. [57] proposed two MAC

engines, with different implementation of sum separate and sum together suitable for DNN

inferences. Sum separate means that the intermediate results from each PE are apart

from each other while sum together means the results form one single output.
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4.3 Post processing

Post-processing is the final step of the computational pipeline. Depending on the

layer, it may include pooling, activation, Batch Normalization (BN), etc. Here, briefly,

some of them are discussed.

There are two types of nonlinear activations: conventional and contemporary. Clas-

sical nonlinear activations include the sigmoid and hyperbolic tangent, while current non-

linear activations include the Rectified Linear Unit (Relu), Leaky Relu, and Parametric

Relu. The three most popular activation functions are Sigmoid, Tanh, and Relu. The first

two are well-known for their mathematical analysis, while the third is well-known for their

simplicity. These functions improve the DNN’s linearity.

Pooling or more generic downsampling helps to resize the feature map. It is usually

executed after the activation. The ability to extract aspects of a picture, such as sharp

and smooth characteristics, is the ability of pooling. Maximum, Minimum, and Average

are different pooling operations. On the other hand, there is also unpooling/upsampling

which increases the resolution of the feature map.

BN is executed between convolution and a fully connected layer or nonlinear activa-

tion. In the design of CNNs, batch normalization has become the norm.

Equation of the batch normalization: y = γ ∗ x− µ√
δ2 + ϵ

+ β (4.1)

γ : Scale value, β : Shift value, ϵ : Constant, δ : Diviation, µ : Mean, x : input

Figure 4.3 illustrates some of the layers. Convolution extract features by convolving

the trained filters on input feature maps. In the convolution, when the the filters are the

same size of the input feature map is a special situation, called fully connected layer.

Figure 4.3. Different layers of Neural Network
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5. PROPOSED DEEP LEARNING ACCELERATOR

ARCHITECTURE

This chapter briefly explains the elements of the proposed deep learning accelerator

and the reasoning behind them. Figure 5.1 depicts the structure of the proposed DL

accelerator. It has five important Intellectual Properties (IPs): the Global Buffer, the DMA,

the Control Unit, the CNN/RNN core, and the Aggregation Core.

Figure 5.1. Top level overview of proposed the DL accelerator

5.1 CNN/RNN Core

To keep the design highly flexible, the architecture should be configurable so that it

can perform on both CNN and RNN. This subsystem is constructed of four MAC arrays.
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Each MAC array consists of 64 MAC units which in total there 4*64 = 256 MAC units.

Figure 5.1 only illustrates 16 of them. In addition, each MAC unit has a multiplier and an

adder.

The number if MAC units is selected based on the roofline model 4.1.2. The first

constraints would be the layer size and shape. This affects the maximum workload par-

allelism, which is based on the selected NN model. The second step, the dataflow loop

nest will limit the maximum data flow parallelism. For example, here we would like to have

weight stationary dataflow, this means that each MAC stores one weight. Then in the third

step, the finite number of MACs is defined, based on theoretical peak performance and

evaluating different scenarios we conclude that based on our use cases if 512 MAC units

is selected we will end up with multiple idle MACs at the processing time which reduces

the overall performance therefore reducing that to 256 we reach our peak performance,

128 MAC units result in under performance and increased latency, this constraint the

number of maximum MAC parallelism to 256 units. The dimension of the MAC array and

fixed storage capacity for intermediate data will bound the number of active MAC units.

5.1.1 MAC Unit: Multiplier and Adder

The MAC unit is the smallest unit in the whole DL submodule. There are different

ways to implement MAC units. Here, a simplistic MAC unit is considered. It consists of

an adder and a multiplier. Figure 5.2 demonstrates the inputs and outputs of each MAC

unit as well as the relationship between multipliers and adders. For building the MAC

unit different multiplier and adder algorithms are implemented and compared. Chapter 7

explains more about it. Here is a brief primer on multipliers and adders.

Figure 5.2. MAC unit structure

As illustrated in section 2.1.1 multiplication and addition operations are at the heart of
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convolution. The multiplier is one of the critical parts of the DL subsystem since it’s both

repeated multiple times and consumes a tremendous amount of chip area and power.

Therefore, designing an efficient multiplier has a great impact on the overall performance

of the subsystem. On the other hand, the bandwidth that the multiplier can handle will

affect the on-chip buffer size. For these two main reasons, it is valuable to implement

the multiplier with logic gates that can calculate 2-bit, 4-bit, and 8-bit values. Similarly,

addition is repeated several times. Although they do not consume too much area, the

multipliers and adders’ goal are to perform convolution. There are several different ways

to do the convolution, such as Toeplitz, Gauss’s complex multiplication transform, and

Strassen’s Matrix Multiplication Transform [58], [59].

Another notable factor is that the bit width of the outputs of multiplication is twice the

bit width of the input. For example, the output of 8-bit multiplication is 16 bits. As a result,

it should be truncated to 8 bits consequently some values will be lost. This affects the

accuracy of the ML result. The truncation should occur before being written back to the

memory.

This DL accelerator also supports the characteristic of sparsity. This feature min-

imizes MAC operations by bypassing the MAC units when the input data is zero. The

sparse weight will no longer be saved in the memory. However, additional zero values

may be formed during some process like Relu activation. Therefore, it is feasible to filter

out these needless MAC operations by placing one flip flop before the MAC units and

skipping MAC operation if the input is zero.

5.1.2 Data Movement

Another way to reduce the data movement is to decrease the bit width of the weights

and input features. Hence, in the proposed design, input features and weight data are

packed in any 2, 4, or 8-bit format. The designed equivalent multiplier can perform the

2,4,8-bit computation. As a result, there is no need for data manipulation inside the DL

accelerator. The [60] is an excellent example of limiting weights and activation to 4 and

8 bits, respectively. It is important to highlight that reducing the precision will decrease

memory bandwidth, storage costs, energy per MAC operation, and memory access. How-

ever, it will have an impact on accuracy. Then, it is critical to be careful to maintain accu-

racy.

The proposed DL accelerator supports depth-wise separable and normal convolu-

tion. Thus, the connections between the MAC units are important. They should be con-

nected in such a way that both computations are feasible with one systolic array. The key

rationale is that this method of operation will save area while increasing efficiency. Fur-

thermore, because we will be doing the calculation layer by layer in each NN model, there

will be no requirement for concurrent computation of normal and depth-wise convolution.
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There is a significant challenge in selecting the suitable NoC due to various layers

and models. Each model requires a different amount of data reuse. Considering the

MobileNet model, the DL accelerator’s proposed NoC would be a row-stationary data

flow with a broadcast NoC.

5.2 DMA

To decrease the data movement, data is read once from the external memory and

stored in the internal memory. The data is then distributed across other units, particularly

systolic arrays, via DMA. Figure 5.3 depicts the data path of deep learning accelerators.

A control bus links the top controller with other IPs. And between DMA and other IPs,

there is a data bus.

Figure 5.3. Data movements between major blocks

In hardware design, it is always important to specify the input and output of intellec-

tual property (IP). In the proposed deep learning accelerator, data transfer occurs through

the AXI protocol and DMA. DMA has a configurable interface to transfer the data. It max-

imizes the amount of data that can be transferred between external and internal memory.

One of the critical roles of a DMA is to remove the requirement for a processing unit

to transfer data. It should sync with other relevant components to be utilized effectively.
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Interrupt signals are sufficient for initiating the data transfer.

5.3 Control Unit

The control unit is a component that oversees the operation of the accelerator. It

interacts with different parts of the design through control signals and interconnects [61].

The resources are managed by the control unit, and it directs the flow of data between

each part of the design. To make the design simpler, there is one main/top controller

which activates other units. The top controller is responsible for configuring the units that

are needed in each layer. DMA can move the necessary control data to and from the

control unit and can effectively transfer higher levels of data flow control commands while

the control unit can manage each resource at a lower level of control.

There is a configuration bus which is responsible for communicating with the main

CPU and DL Accelerator. And there are several other control units which are invoked by

the configurable bus controller. The control unit has multiple internal counters dividing

the data into sections, controlling the flow. Each layer of the neural network algorithm

calculation needs its own operations. There are a series of calculations and convolutions

done on the data based on the coefficients respective of their widths, heights, and channel

numbers, and then there are different kernel numbers, kernel heights, and kernel widths,

which further require configuring the resources accordingly. The pooling and activation

stages of the data flow also need a control unit to decide. This is done by controlling the

signals to stimulate the inputs of different units and latching the outputs.

The dynamic kernel size is utilized to simplify the control unit and decrease the num-

ber of various kernels. In this work, the kernel size is 3*3 by default. And, if the kernel size

is smaller than the default size, then zero-padding should be added. In other cases, if the

kernel size is bigger than the default size, it should be divided into multiple 3*3 matrices.

There are multiple configuration registers inside the control unit which can be con-

figured to control this flow, and as they are being configured through DMA, the control

unit communicates with several other smaller control units inside each part of the design,

handshaking the data to the next phase and activating them at the right moment. And

as this is a time-critical task, there is a dedicated configuration bus for all the control

communications.

5.4 Global Buffer

To process multiple neural network layers, there is a need to provide neurons output

values from previous layers, therefore the global buffer is allocated to store the input data

and weight data. The global DMA transfers the required data from external memory into

the global buffer. As this is the most time-consuming process of the accelerator, it reduces
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the data movement by storing the data inside the buffer. On other hand, as a trade-off

Memory on chip consumes huge amount of area and it is costly.

The output of each layer will be the input of the next iteration, and this process is

repeated until the last layer, to take advantage of this periodic operation, the result of first

computation will be stored in the global buffer and it will be used for the next iteration, it

is possible to use the memory page mirroring technique for this multi-step computation.

In the final layer the result will be stored in the output buffer. It should be truncated and

packed accordingly to be suitable for the next iteration.

The buffers should be designed in the ping pong method to save the time and reduce

the latency. The concept is a way to move the data back and forth so that all the resources

can use the data without colliding each other’s transaction. Using DMA and indicator

signals such as data ready, data is transferred without losing any part and the receiving

unit will only take the data into use only if the previous unit is done writing to it.

5.5 Aggregation core

The aggregation core consists of an activation and pooling core. Considering that

each ML model does something specific, for example, it may be a sequential NN model

with five layers that may be a combination of convolution layer, pooling layer, recurrent

layer, and so on. We would like to have several to support for different NN models.

Therefore, suggested DL accelerator supports linear and nonlinear activation such as

Relu, as well as providing support for maximum, minimum, average pooling.

For example, if adapts the design to the MobileNet NN model. The Basic MobileNet

model doesn’t have the pooling layer, however according to the [62], using the pooling

layer in the MobileNet model with a kernel size of 3x3 and stride 2 provides more accuracy

and reduces the size of the hidden layer more than common pooling. Furthermore, this

feature reduces parameters and the cost of computation. Pooling exists in our proposed

architecture because it encapsulates the image to one label which is needed in some

applications such as image classification applications.
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6. METHODOLOGY

This chapter explains the methods and tools used in this thesis work. The 22 nm

ASIC technology is used for implementation. The tools utilized are Visual Studio [63] for

writing and editing the code. Modelsim [64] is used for the RTL simulation and finally

Cadence [65] tools for ASIC synthesis. Figure 6.1 demonstrates the whole process of

doing the work.

6.1 Procedure

This thesis tries to find which algorithm and RTL implementation is better regarding

different parameters such as area, power, and performance for the proposed DL accel-

erator subsystem. Various approaches proposed in other thesis works and literature are

compared, to come up with a conclusion on which algorithm is performing better. Different

hardware implementation algorithms were implemented and then ran the simulation and

synthesis to come up with the conclusion table of the results.

In this thesis work, multipliers and adders are written in SystemVerilog hardware de-

scription language. The Visual Studio Code Integrated Development Environment (IDE)

with the SystemVerilog extension is very convenient to write and debug the code. After

preparing the Hardware Description Language (HDL) known as Register Transfer Level

(RTL) code, there is a need to check the functionality of the design. For this reason, the

design is simulated by Modelsim, one of the Mentor graphics tools. Various verification

methods are used to ensure that the designed hardware is behaviorally correct according

to the models which are written in SystemVerilog as well.

The next step after the simulation and verifying the functionality of the design is the

actual hardware implementation at a low level and generating the netlist file and back-end

tools for the physical implementation. To do the synthesis, a wrapper file is prepared to

hold the top-level design and creates two registers in the input and output of the design,

and then by running the synthesis flow. Some features of the design are given in the

results, which are compared here.

The data is collected from the synthesis tool summary report. Then it is attempted

to use different scenarios to collect multiple varying data and then compare them and list
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Figure 6.1. Methodology flow

them in the corresponding table and sort each algorithm based on each feature that has

preferred results.

The methodologies used in this thesis follow industry standards and the most elab-

orate method to verify and choose different architectural implementations in RTL design.

By simulating the observed behavior, which is independent of and unaffected by the im-

plementation method and evaluating each design option against it.

6.2 Evaluation

As the field of research is developing and study is carried out related to the ML, DL,

NN, and hardware accelerator for specific/general NNs. Therefore, it was important to

know how to compare them. These are the metrics for comparing a DLA.

• Operation Per Seconds (OPS) which the unit would be Tera/Giga/Mega operation

per second (TOPS, GOPS or MOPs) is the best value for comparing the perfor-

mance of various DL accelerators. It is possible to include the power into this num-

ber and report Operation per second normalized by power consumption (TOPS/W,

GOPS/W or MOPs/W). Equation 6.1 demonstrates it.

Operations
second

= (
1

cycles
operation

∗ cycle
second

) ∗ Number of MAC units ∗ Utilization of MAC units

(6.1)
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• Throughput demonstrates the computational capability of the hardware. There are

effective throughput which obtain in real world conditions, and theoretical through-

put that the number of arithmetic units (MAC units) and clock frequency determines

it. The achievable throughput relates to the number of utilized MACs. The overall

system theoretical throughput:

Utilization of MACs =
Number of active MACs

Number of MACs
∗ Utilization of active MACs (6.2)

• Latency is the amount of time it takes to return results for given inputs. Low la-

tency is one of the essential criteria for real-time applications such as autonomous

navigation.

• Accuracy determines the quality of the results for specific task. The difficulty of the

task and dataset affects the accuracy. As an example, performing the classification

model on MNIST is less complex than on ImageNet. Object detection is more

difficult than classification.

• Energy and power are one of the most critical variables in edge devices. It deter-

mines the quality of an edge accelerator.

• Hardware cost such as area of the chip and memory bandwidth

• Flexibility, which refers to the DL accelerator’s ability to perform a variety of tasks.

• Scalability refers to the number of different DNN models supported by the DL ac-

celerator.

The accelerator design that can handle multiple NN with the least amount of area

and power consumption is preferred. There is a trade-off between throughput, power

consumption, precision of weights and activation, and inference accuracy. For example,

reducing the power consumption will reduce the inference accuracy as well [24].
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7. IMPLEMENTATION OF MULTIPLIERS

There is one multiplier in every MAC unit of the proposed DL architecture. There are

four MAC arrays in the proposed DL accelerator. Each MAC array consists of 64 MAC

units. Thus, there would be 256 multipliers in total.

Figure 7.1 demonstrates the 4-bit multiplication calculation on pen and paper. The

most traditional way of doing multiplication is with addition and shift. The partial products

are generated by using AND gate. Then, the result is the addition of the partial products.

Thus, it is possible to say that multiplication is repeated addition. The various multiplier

algorithms have their unique structure to generate partial products, and they might use

special adders to make the computation more optimized.

Figure 7.1. Multiplication of two 4-bit number

7.1 Adders

The logic circuit design can get simpler by breaking it down into smaller parts, such

as half adders and full adders. These kinds of combinational arithmetic circuits are in

many architectures. Half adder consists of one AND gate and one XOR gate. Connecting

two half adders create the full adder. Figure 7.2 demonstrates the circuit diagram of

the half and full adder. For example, a 2-bit Vedic multiplier has two half adders in its

architecture. The Wallace multiplier uses several full and half adders.
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Figure 7.2. Logic circuit diagram of Half adder and full adder

Partial products need to be added together in most of the architecture design. There-

fore, here is short list and description of different binary adders.

• Ripple Carry Adder (RCA) is built by cascading several full adders. The RCA com-

bines low area usage, high delay time, and higher power consumption.

• Carry Select Adder (CSA) is basically two RCA that are muxed. It does the calcu-

lation twice with carry-in zero and one.

• Carry Look Ahead adder (CLA) reduces the propagation delay while it increases

the complexity of the HW as bit width increases, but therefore, it is area costly.

• Parallel Prefix Adders (PPA) like Brent-Kung (BK), Kogge-Stone (KS), Han-Charlson

(HC) and Lander-Fischer (LF). PPAs are high performance carry tree adders that

use the generate and propagate signals. It has main three stages, preprocessing

stage, prefix carry stage and post-processing stage. They deliver the best scal-

ability among all adders, but some of them introduce severe routing and fan-out

issues.

7.2 Multipliers

The multipliers implemented in this work are listed below along with short descrip-

tion.

• Braun multiplier [66] and Carry Save Array (CSA) Multiplier [67]. These kinds of

multipliers are similar to the pen and paper methods. One advantage of them is

their regular structure. It is easy to layout. Another advantage is their simplicity of

design for a pipelined architecture. In the Braun multiplier first an array of AND gate
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is used and then an array of half and full adder to produce the final result. while, In

CSA multiplier, there is a multiplier adder block array. The AND gate and full adder

are coupled to each other and make multiplier adder block.

• Baugh-Wooley multiplier [68], [69] is a technique to use for regular multiplier for

two’s complement numbers.

• Wallace tree multiplier [70] and Dadda multiplier [71]. These two multipliers are

similar, but the difference is in the reduction tree. They both have three stages,

generating partial product, row compression and final summation.

• Vedic multiplier [72], [68]. In this multiplier partial products generates vertically and

crosswise simultaneously. The final results can produce either with ripple carry

adder or parallel prefix adders and maybe combination of different adders.

• Booth multiplier [73] and Modified Booth multiplier [74]. The second one is the

improved version of the first. The number of generated partial products is reduced

by half in the Modified Booth. Supporting the signed number is the most amazing

feature of these multipliers.

The area of most multipliers increases as bit widths increases, except for the booth

multiplier, which stays low. Delay and complexity of structure in multipliers vary when

bit size grows; for instance, by increasing the bit width of the Array multiplier, the de-

lay increases linearly, and complexity stay low, while the Booth-like multiplier’s delay is

non-linear, and complexity is medium, moreover, in the Wallace-like multiplier’s delay is

logarithmic, with high complexity.

All the multiplier algorithms do not support signed multiplication but there are nega-

tive weights in most of the ML algorithms and multipliers should be able to calculate the

signed multiplication. To support the signed multiplication; the modified two’s comple-

ment of each input is calculated. Then, based on AND of one and the most significant

bit (MSB) of multiplicand and multiplier, which is the sign bit, the multiplexer selects the

suitable inputs for the unsigned multiplier, and then after calculating the two’s complement

of the result. The final product of multiplication is the output of the third multiplexer, which

it selects signal is the result of the XOR of the two first multiplexer’s select signals.

Figure 7.3 shows how the conversion of the unsigned to the signed multiplier. The

idea of making an unsigned multiplier suitable for signed multiplication based on the

signed-unsigned multiplier design of [75]. Braun, Wallace, Array and Vedic multiplier are

not signed by default, and to calculate the signed number they use structure in the Figure

7.3.
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Figure 7.3. Signed multiplication

The characteristic of the multiplier is based on adders. For example, there are three

adders in an 8-bit Vedic multiplier, and inside each 4-bit multiplier, so there are three 4-bit

adders. Figure 7.4 shows the structure of the Vedic multiplier. Thus, different ways of

implementing the adder would affect the performance of multipliers. All the adders can be

RCA, Parallel prefix adders like Kogge-Stone or Brent-Kung, and eventually, combinations

of Brent-Kung, carry save adder, and carry select adder.
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Figure 7.4. Vedic multiplier
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8. RESULTS AND ANALYSIS

This chapter compares and evaluates every design and implementation based on

four criteria: area, power, performance, and average fan-out. Each multiplier and adder

are evaluated separately. Since the entire system runs at 1 GHz, the multipliers must at

least run at the same speed as the other subsystems.

8.1 Multipliers and Adders

Table 8.1 demonstrates the multipliers and compares them in terms of total area,

which includes the cells, physical and net, and total power consumption, which consists

of leakage and dynamic power. Target synthesis is 1GHz clock frequency and average

fan-out is give separately. A gate output’s fan-out is the number of inputs it can support.

Fan-out determines how effectively the design is routed, and likelihood of meeting time

constraints.

According to Table 8.1, Modified Booth multipliers have the smallest area footprint

and lowest power usage. Furthermore, the Baugh-Wooley has the second place in terms

of lowest area and power consumption. However, it has the lowest fan-out.

Multiplier Total Area (um2) Total Power (mW) Latency (ns) Average Fan-out

Array1 1053.996 0.749 1.097 1.8

Modified Booth 531.294 0.476 0.964 1.8

Braun 783.200 0.733 0.990 1.8

Baugh-Wooley 584.909 0.498 0.964 1.4

Vedic-RCA 839.146 0.679 0.984 1.6

Wallace 768.623 0.537 0.585 2.2

Table 8.1. Area, Power, Latency, and average Fan-out of 8-bit signed multipliers, CLK =
1GHz

1at 960 MHz
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Figure 8.1. Area, Power, and Latency of Table 8.1 visualized

Figure 8.1 demonstrates the information in the Table 8.2 as it can be seen here,

the size of the bubbles is the area footprint of each multiplier. Array multiplier has the

highest area and power consumption, while Modified Booth has the lowest. The Wallace

multiplier has the lowest latency, being almost half of the others.

The array multiplier cannot execute at 1 GHz frequency, the Worst Negative Slack

(WNS) becomes negative. The results in the table are related to its best performance

at a 960 MHz clock frequency. It has the most area and power consumption. As it was

expected, the Baugh-Wooley multiplier is an improved version of the array multiplier.

Multiplier Total Area (um2) Total Power (mW) Latency (ns) Average Fan-out

Array1 58712.847 47.566 1.206 1.7

Modified Booth 41220.807 38.776 0.954 1.8

Braun 69417.560 67.782 0.987 1.8

Baugh-Wooley 42530.191 42.574 0.956 1.5

Vedic-RCA 64506.278 56.268 0.971 1.6

Wallace 47090.312 45.007 0.95 2.2

Table 8.2. Area, Power, Latency, and average Fan-out of various MAC array, CLK = 1GHz

1at 960 MHz
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Table 8.2 illustrates the synthesis result for a MAC array made up of 64 MAC units.

Each MAC unit contains one multiplier and one adder. The NoC of the MAC array fol-

lows the weight stationary structure. Modified Booth exhibits the best outcomes when

compared to other designs. Baugh-Wooley is placed in the second-best performance.

Figure 8.2. Area, Power, Latency, and Fan-out of Table 8.2 normalized

Figure 8.2 shows the normalized values of each parameter compared to each other,

here the values of area, power, latency, and fan-out are normalized to a value between

[0,1] to demonstrate the differences between various multipliers of Table 8.2.

Figure 8.3 compares the performance of the implemented multiplier in terms of CLK

frequency. The Modified Booth and Wallace multipliers can work at a 1.5 GHz frequency,

which is the same frequency as the entire system and the rest of multipliers at 1 GHz.

Modified Booth also has the lowest area and power consumption Table 8.1. Therefore,

it is worthy of further development. However, the Baugh-Wooley and Wallace multipliers

are not taken into consideration for further development because of their high level of

design complexity, especially since their routing systems are too complex to add the flex-

ibility feature to them. Moreover, while the Vedic-RCA multiplier consumes considerable

amounts of area and power, and it only works at a 1 GHz frequency, it is modular. Thus,

it is feasible to add flexibility to it.
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Figure 8.3. Maximum clock frequency that a multiplier can perform

Based on the above conclusion, the remainder of the study places a greater empha-

sis on Modified Booth and Vedic multipliers.

To provide flexibility to the design, it was decided to implement the multipliers with

the ability to calculate different bit widths from 2-bit, 4-bit, and 8-bit calculations. However,

the input and output bit widths are always 8-bit. However, data in the form of 2-bit and

4-bit can be stored in memory.

Table 8.3 shows two multipliers that support flexible multiplication. It is possible to

calculate four multiplications with 2-bit and two multiplications with 4-bit. The structure of

the Vedic multiplier is changed to make it flexible as shown in Appendix A.10.

Multiplier Area (um2) Total power (mW) Latency (ns) Average Fan-out

Vedic-RCA-Flexible 836.343 0.684 0.961 1.6

Modified-Booth-Flexible 866.461 0.653 0.926 1.9

Table 8.3. Area, Power, Latency, and average Fan-out bit width multipliers, CLK = 1GHz
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8.2 Exploring different Vedic multiplier implementations

Further optimization was attempted of the Vedic multiplier. According to Figure 7.4,

Vedic multiplier has a modular structure. There are several adders inside the Vedic mul-

tiplier. Therefore, using a combination of different adders might be useful. This section

investigates the performance of the Vedic multiplier using a variety of adders. Table 8.4

presents the area and power of 8-bit adders at 1 GHz clock frequency. The 8-bit CSA has

the lowest chip area and power consumption and the highest performance compared to

other adders.

Adder Total area (um2) Total power (mW) Latency (ns)

RCA 136.274 0.144 0.953

BK 129.163 0.136 0.775

PPA 147.963 0.145 0.689

KS 154.033 0.154 0.708

CSA 105.901 0.117 0.363

Table 8.4. Comparison of different implementation of 8-bit adders, CLK = 1 GHz

It should be mentioned that, according to [76], when the bit widths increase, passing

the carry through different stages will consume more time and delays will become domi-

nant. It should be noted that as bit widths rise, transferring the data through the various

steps will take more time, and delays will become more prevalent. Additionally, it distin-

guishes each distinct adder implementation. When the bit width increases, PPAs perform

much better than CLA, RCA, and CSA. However, there is a tiny variation between adders

in terms of area efficiency and power consumption for lower bit widths (2-8 bits).

To find out the best optimal design of 8-bit Vedic multiplier, different designs were

implemented, investigated, and compared. Tables 8.5 and 8.6 demonstrate the area,

and power in 1 GHz clock cycle, respectively. The Vedic multiplier with the Kogge–Stone

adder consumes the most area and power, which was expected according to Table 8.4.

As the adder alone is area hungry. Similarly, the Vedic multiplier with a combination of

BK, CSA and RCA is the most optimal one among the others.
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Multiplier Area (Cell+Physical) Total area (Cell+Physical+Net)

Vedic-RCA 651.672 839.146

Vedic-BK-CSA-RCA 559.566 729.311

Vedic-KS-RCA 621.936 816.395

Vedic-KS 737.982 971.579

Vedic-BK-CSA 487.872 644.837

Table 8.5. Area in um2 consumption of different 8-bit signed Vedic multipliers, CLK =
1GHz

Multiplier Total Power (mW) Latency (ns)

Vedic-RCA 0.679 0.984

Vedic-BK-CSA-RCA 0.594 0.960

Vedic-KS-RCA 0.708 0.961

Vedic-KS 0.734 0.921

Vedic-BK-CSA 0.572 0.956

Table 8.6. Performance and power in mW consumption of different 8-bit signed Vedic
multipliers, CLK = 1GHz

However, the Vedic multiplier with the combination of Brent-Kung and carry save

adder shows a better result than Vedic with ripple carry adder. Yet, the Modified Booth

mentioned in 8.1 is better than Vedic in terms of area footprint and power consumption. It

is selected as the multiplier implementation for the proposed architecture, and based on

our constraints, we sweep through different frequencies of this implementation. Table 8.7

demonstrates the area and power consumption of the signed Modified Booth multiplier at

different clock frequencies.
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Frequency (GHz) Total Area (um2) Total Power (mW) Latency (ns)

0.5 479.889 0.215 1.921

1 531.294 0.476 0.964

1.5 590.154 0.795 0.646

Table 8.7. Area and power of 8-bit signed Modified Booth multipliers at different frequency

This result is normalized and visualized in Figure 8.4 and, as it can be seen here,

by increasing the frequency, total power consumption increases drastically, although the

latency reduces, which is expected because of the frequency. Based on this the overall

requirement for the system, 1 GHz is the selected frequency.

Figure 8.4. Normalized values of Table 8.7



44

8.3 Performance analysis of proposed deep learning accelerator

Performance should be pointed out, as it helps to compare various designs. How-

ever, it should be noted that deep learning accelerators are evaluated based on a variety

of factors, as detailed in the section 6.2. Here the performance of the proposed archi-

tecture is evaluated. The performance of the multipliers is available, but the other IP’s

performances are estimated. The reason for evaluating the performance is to find the

bottlenecks in the proposed DL architecture. The aim is to improve it in the future works.

A NN model contains several layers, and each layer’s neurons are repeated several

times until features are extracted. The considered NN model is MobileNet, as described

by python code in the Listing 8.1. The model is trained on the ImageNet dataset. Figure

8.5 shows the basic structure of the NN model. The calculation is only for the first layer,

which is convolution and is shown with the orange circle.

Figure 8.5. Basic illustration of simple MobileNet layer
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Listing 8.1. Python code of a simple MobileNet model

import t enso r f l ow as t f

import numpy as np

from t enso r f l ow . keras . preprocessing import image

import m a t p l o t l i b . pyp lo t as p l t

from t enso r f l ow . keras . a p p l i c a t i o n s import imagene t_u t i l s

from IPython . d i sp lay import Image

# impor t i ng image

f i lename = ’ / content / t e s t . jpg ’

Image ( f i lename , width =224 , he igh t =224)

img = image . load_img ( f i lename , t a r g e t _ s i z e =(224 ,224))

# i n i t i a l i z i n g the model to p r e d i c t the image d e t a i l s using predef ined models .

t f . keras . a p p l i c a t i o n s . mobi lenet . MobileNet (

input_shape=None ,

alpha =1.0 ,

d e p t h _ m u l t i p l i e r =1 ,

dropout =0.001 ,

inc lude_ top=True ,

weights= ’ imagenet ’ ,

i npu t_ tenso r=None ,

poo l ing=None ,

c lasses =1000 ,

c l a s s i f i e r _ a c t i v a t i o n = ’ r e l u ’ ,

* * kwargs )

res izedimg = image . img_to_array ( img )

f i n a l i m g = np . expand_dims ( resizedimg , ax is =0)

f i n a l i m g = t f . keras . a p p l i c a t i o n s . mobi lenet . preprocess_ input ( f i n a l i m g )

f i n a l i m g . shape

p r e d i c t i o n s = model . p r e d i c t ( f i n a l i m g )

r e s u l t s = imagene t_u t i l s . decode_predic t ions ( p r e d i c t i o n s )

pr in t ( r e s u l t s )

The model is mapped to the proposed DLA on pen and paper. For this model, DMA,

top control unit, CNN core, and activation are enabled, and data goes through these IPs

shown in Figure 8.6 with stars. There are two types of data: control data (green arrows),

and computation data (orange arrows). Control data is transferred to the top controller.

Then it activates different IPs based on the given values.
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Figure 8.6. Data movements between IPs for MobileNet NN model

Based on the assumption that the input image size is 224*224*3. If we assume

the weight dimension, in other words, the kernel size is 3*3, then there will be 150528

multiplications needed for the first layer of convolution. In each MAC array, there are 64

multipliers, and there are 4 MAC arrays in the proposed architecture, which makes the

number of multipliers 256 in total. Then, for a specified layer, the systolic array should be

executed 588 times (150528 multiplications divided by 256 multipliers = 588). This step is

shown by the green square in the Figure 8.7, each MAC operation would take 3 clk cycles

(1 cycle multiply + 1 cycle addition + 1 cycle writing the data) which means 1764 cycles

in total.

Then, from a hardware point of view, we set the clock speed for the DL accelerator

at 1 GHz. The signed Modified Booth multiplier takes 0.964 ns to execute. However, as

the multipliers are working in parallel, and since the system clock is fixed to 1GHz, the

overall time used for calculating the convolution is 588* 3 * 1ns = 1764 ns for C1. look at

the Figure 8.5 for better understanding.
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A multi-cycle control unit has four operations that will be completed in multiple stages.

Considering the timing of the DMA, which is responsible for distributing data in the systolic

array, it has a minimum of four steps: fetch instruction, decode instruction, fetch operand,

and execute the instruction. Besides these, it must store the results and process the

interrupts as well.

Figure 8.7. The latency to execute one layer

Considering using the AXI protocol for all transactions with a data width of 32-bits,

every single transaction takes 6 clock cycles according to [77] and can transfer 4 bytes

of data. Then, the burst mode is used when transferring the main data, which would

take 6 clock cycles + (X amount of 32-bit data). For the 224*224*3, each pixel is one

byte or 8-bits, and it means there are 150528 bytes to transfer. This fits into the 256 KB

SRAM for one layer. This AXI transaction would require 150528 / 4 = 37632 and 37632

+ 6 = 37638 clock cycles to move all the data for transactions number 1 and 2 in Figure

8.6. Then, taking the read delay of SRAM into account, which is 2 clock cycles per read

operation, this would sum up to 75264 clock cycles read delay + 6 + 37632 = 112902

clock cycles just for the read from the internal buffer. For transactions numbers 3 and

4, the result after the C1 phase is 32*112*112. Transferring this data back to the buffer

would consume 32*112*112 = 401408/4 = 100352 and 100352 + 6 = 100358 clock cycles.

Each control data transaction takes 6 clock cycles with 3 phases of control data. For this

layer, each control data would take 8 times the 32-bit transfer. This would sum up to 8*6

= 48 clock cycles for control data.
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DMA distributes data to the systolic array and writes data back to the memory.

This happens in parallel to MAC cores starting their process. The result (32*112*112

or 401408 bytes) of the first layer needs to be written back to the buffer. Although the

global SRAM buffer is only 256 KB. This means some part of the data needs to be sent

back to the main memory or the DRAM, as only half of those 401408 bytes would be left

out. The calculation is based on the AXI transaction from the systolic array to the buffer

via DMA. There are 401408 bytes / 4 = 100352, and the write operation to SRAM has a 6

clock cycle delay per operation. Thus, 6*401408 + 100352 + 6 = 2508806. Assuming that

read and write operations to the DRAM have an 80 clock cycle delay for each transaction

for our remaining 200704 bytes, this would mean 200704*80 = 16056320 clock cycles de-

lay, and again, transferring this data with the AXI interface would take 200704/4 = 50176,

16056320 + 50176 = 16106496 clock cycles.

Finally, as we consider only this layer of MobileNet execution, it takes 112902 (clock

cycles read operation) + 1764 (clock cycles MAC operations) + 2508806 (cycles write

operation) + 16106496 ( all the DRAM transactions) + 48 (control data) = 18730016 clock

cycles, this means 18730016 ns at the 1 GHz clock.

It is noteworthy to mention OPS/W for the first layer of MobileNet in the proposed DL

accelerator. There are 256 MACs in the proposed DLA. By considering the full utilization,

according to equation. 6.1, we now know that one operation for one layer takes 18730016

ns which mean each cycle we complete 1 / 18730016 = 5.339023e-8 operations, the OPS

would be calculated as such:

Operations
second

= (
1

cycles
operation

∗ cycle
second

) ∗ Number of MAC units ∗ Utilization of MAC units

(8.1)

= 5.339023e-8 * 256 * 100 = 0.001366 TOPS = 1.366 GOPS = 1366 MOPS

Hence, the power consumption of all IPs are not available, only GOPS/W for the

systolic array is reported. The power consumption of one MAC array is 38.776 mW and

there are four of them, so in total, the power consumption of the systolic array is 0.155W

(38.776*4 =155,104 mW). Therefore, the GOPS/W of the systolic array for calculating the

assumed layer of NN would be 1.366 GOPS/W. This calculation is only for the systolic

array and not the entire DL accelerator subsystem, although most of the reported TOP-

S/W in other articles are based on the entire NN model calculation and entire chip power

consumption, therefore they are not one-to-one comparable. Moreover, some calculation

and assumptions are made which are not cycle accurate.
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8.4 Comparison of this work with related works

A few related papers have reported metrics of layer-by-layer computation of one NN

model on their accelerator. For example, Eyeriss [35] reports the metrics of their DL

accelerator based on the AlexNet model. According to the author, for the first layer of

AlexNet, Eyeriss MOPS would be 421.6 at 200 MHz. This work achieves 1366 MOPS at

1GHz for the first layer of MobileNet. Another example would be CENNA which reports

based on VGG16 model. In the future work, the ALexNet and VGG16 model is going to

be mapped to the suggested architecture to make accurate comparisons.

The focus of thesis was mostly on implementing the systolic array, and how to find a

suitable multiplier to save area and power. Bert-Marian [33] and CENNA[28] are similar

works. Table 8.8 demonstrates some of their features. According to table 3.2 shows the

best results compare to other related works. Comparing this work with them predicts that

the final result would be suitable.

Platform This work1 Bert-Marian [33] CENNA [28] Eyeriss[35]

Technology (nm) 22 40 65 65

Area (mm2) 0.2562 2.4 1.38 12.25

Power (mW) 101,253 2324 47.344 332

Number of MACs 256 256 56 Mul/160 Add 168

Precision (bit) 2/4/8 4/8 16 16

Frequency (MHz ) 500 12-204 500 200

Memory (SRAM, KB) 256 144 64 108

Performance (GOPS) 1.3666 1025 86 5 0.42166

Table 8.8. The comparison of proposed DL Accelerator with other

1MAC unit with Flexible Modified Booth multiplier synthesised at 500 MHz
2Area of systolic array without considering the area consumption of other IPs
3Only power consumption of systolic array without considering the power consumption of other IPs
4MAC array + (MEM + Control = 42mW) = 274mW
5Peak Performance of entire DL accelerator
6Peak Performance for one layer of ML model
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9. CONCLUSIONS

This thesis consists of two main parts. Firstly, various multipliers are implemented

and evaluated, which are the most critical units in the deep learning subsystem. To de-

termine the most efficient ones regarding power, area, and latency. As a result, a flexible

multi-precision (2,4,8 bit) signed Modified Booth multiplier is selected. It can perform fast

multiplication with the lowest chip area and power consumption compared to the others.

Secondly, it proposes a flexible deep learning accelerator that utilizes the selected

multiplier and supports CNN. The proposed architecture is scalable enough to support

different bit widths (2, 4, and 8 bits). Furthermore, the focus was to reduce the size of the

arithmetic unit in the DL subsystem based on the first part of the thesis and evaluate its

effect on the proposed DL accelerator. The systolic array contains 256 multipliers, and

the area and power are reduced by using the Modified Booth multiplier.

Moreover, since the designed DL accelerator is part of a bigger system, it is impor-

tant to consider the communication between different subsystems. If the multipliers have

lower latency, they need to stay idle until the next data is ready. Therefore, it is pointless

for the intended multiplier to be faster than the entire design’s critical path.

The suggested deep learning accelerator has two key characteristics. In addition to

using less area, more energy-efficient systolic array, it maintains data transfer efficiency.

This proposed DL accelerator is designed based on the Ballast chip architecture. It inher-

ited the same input and output interfaces. One of the future tasks is to replace the existing

Ballast Deep Learning accelerator by the proposed one and evaluate its performance in

a large chip implementation. On the reported area footprint and power usage, it seems to

be clear improvement. Furthermore, we will evaluate more CNNs and other NN models

to figure out how they can be optimally mapped to the proposed DL accelerator.
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APPENDIX A: APPENDIX

A.1 SystemVerilog Codes

A.1.1 Modified Booth

Listing A.1. Modified Booth multiplication

/ *

* Name: modi f ied_booth . sv

* Date : 16_05_2022

* Author : Samaneh Ammari

* Copyr ight (C) 2022 Tampere u n i v e r s i t y

*

* Desc r i p t i on :

* A lgor i thm : ( f o r unsigned numbers )

* 1) Pad the LSB wi th one zero .

* 2) Pad the MSB wi th 2 zeros i f n i s even and 1 zero i f n i s odd .

* 3) Div ide the m u l t i p l i e r i n t o over lapp ing groups of 3− b i t s .

* 4) Determine p a r t i a l product sca le f a c t o r from modi f ied

booth 2 encoding tab l e .

* 5) Compute the M u l t i p l i c a n d M u l t i p l e s

* 6) Sum P a r t i a l Products

* A lgor i thm Extension : ( f o r signed m u l t i p l i e r )

* 1) Pad the LSB wi th one zero .

* 2) I f n i s even d o n t pad the MSB ( n /2 P P s ) and

* i f n i s odd s ign extend the MSB by 1 b i t ( n+1/2 P P s ) .

* 3) Div ide the m u l t i p l i e r i n t o over lapp ing groups of 3− b i t s .

* 4) Determine p a r t i a l product f a c t o r from tab le . ( booth_record ing . v )

* 5) Compute the M u l t i p l i c a n d M u l t i p l e s

* 6) Sum P a r t i a l Products

* /

module modif ied_booth #(

parameter i n t BIT_WIDTH = 8 )

( input l o g i c signed [ BIT_WIDTH−1:0 ] Data_in_A , Data_in_B ,

output l o g i c signed [ ( 2 * BIT_WIDTH) −1 :0 ] Data_out_sum

) ;
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l o g i c [ BIT_WIDTH+1:0 ] paded_Data_in_B ;

l o g i c [ 2 : 0 ] D_B_three_bi t ;

l o g i c [ BIT_WIDTH − 1 : 0 ] [ 1 : 0 ] op ;

l o g i c s i g n _ b i t ;

l o g i c [10 : 1 ] ps0 , ps1 , ps2 , ps3 ;

l o g i c [8 : 1 ] s1 , s2 , s3 ;

l o g i c [8 : 1 ] c1 , c2 , c3 ;

l o g i c [ ( 2 * BIT_WIDTH) −1 :0 ] A,B ;

l o g i c cout ; / / from adder

booth_encoder i n s t 1 (1 ’ b0 , Data_in_B [ 0 ] ,

Data_in_B [ 1 ] , xP10 , xM10 , xP20 , xM20 ) ;

booth_decoder i n s t 2 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 7 ] , Data_in_A [ 7 ] , temp1 ) ;

booth_decoder i n s t 3 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 7 ] , Data_in_A [ 6 ] , ps0 [ 9 ] ) ;

booth_decoder i n s t 4 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 6 ] , Data_in_A [ 5 ] , ps0 [ 8 ] ) ;

booth_decoder i n s t 5 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 5 ] , Data_in_A [ 4 ] , ps0 [ 7 ] ) ;

booth_decoder i n s t 6 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 4 ] , Data_in_A [ 3 ] , ps0 [ 6 ] ) ;

booth_decoder i n s t 7 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 3 ] , Data_in_A [ 2 ] , ps0 [ 5 ] ) ;

booth_decoder i n s t 8 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 2 ] , Data_in_A [ 1 ] , ps0 [ 4 ] ) ;

booth_decoder i n s t 9 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 1 ] , Data_in_A [ 0 ] , ps0 [ 3 ] ) ;

booth_decoder ins t10 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 0 ] , 1 ’b0 , ps0 [ 2 ] ) ;

assign ps0 [ 1 ] = xM10 | xM20 ;

assign ps0 [10]=~ temp1 ;

booth_encoder ins t13 ( Data_in_B [ 1 ] ,

Data_in_B [ 2 ] , Data_in_B [ 3 ] , xP11 , xM11 , xP21 , xM21 ) ;

booth_decoder ins t14 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 7 ] , Data_in_A [ 7 ] , temp2 ) ;

booth_decoder ins t15 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 7 ] , Data_in_A [ 6 ] , ps1 [ 9 ] ) ;

booth_decoder ins t16 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 6 ] , Data_in_A [ 5 ] , ps1 [ 8 ] ) ;

booth_decoder ins t17 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 5 ] , Data_in_A [ 4 ] , ps1 [ 7 ] ) ;
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booth_decoder ins t18 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 4 ] , Data_in_A [ 3 ] , ps1 [ 6 ] ) ;

booth_decoder ins t19 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 3 ] , Data_in_A [ 2 ] , ps1 [ 5 ] ) ;

booth_decoder ins t20 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 2 ] , Data_in_A [ 1 ] , ps1 [ 4 ] ) ;

booth_decoder ins t21 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 1 ] , Data_in_A [ 0 ] , ps1 [ 3 ] ) ;

booth_decoder ins t22 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 0 ] , 1 ’b0 , ps1 [ 2 ] ) ;

assign ps1 [ 1 ] = xM11 | xM21 ;

assign ps1 [10]=~ temp2 ;

booth_encoder ins t25 ( Data_in_B [ 3 ] ,

Data_in_B [ 4 ] , Data_in_B [ 5 ] , xP12 , xM12 , xP22 , xM22 ) ;

booth_decoder ins t26 ( xP12 , xM12 , xP22 ,

xM22 , Data_in_A [ 7 ] , Data_in_A [ 7 ] , temp3 ) ;

booth_decoder ins t27 ( xP12 , xM12 , xP22 ,

xM22 , Data_in_A [ 7 ] , Data_in_A [ 6 ] , ps2 [ 9 ] ) ;

booth_decoder ins t28 ( xP12 , xM12 , xP22 ,

xM22 , Data_in_A [ 6 ] , Data_in_A [ 5 ] , ps2 [ 8 ] ) ;

booth_decoder ins t29 ( xP12 , xM12 , xP22 ,

xM22 , Data_in_A [ 5 ] , Data_in_A [ 4 ] , ps2 [ 7 ] ) ;

booth_decoder ins t30 ( xP12 , xM12 , xP22 ,

xM22 , Data_in_A [ 4 ] , Data_in_A [ 3 ] , ps2 [ 6 ] ) ;

booth_decoder ins t31 ( xP12 , xM12 , xP22 ,

xM22 , Data_in_A [ 3 ] , Data_in_A [ 2 ] , ps2 [ 5 ] ) ;

booth_decoder ins t32 ( xP12 , xM12 , xP22 ,

xM22 , Data_in_A [ 2 ] , Data_in_A [ 1 ] , ps2 [ 4 ] ) ;

booth_decoder ins t33 ( xP12 , xM12 , xP22 ,

xM22 , Data_in_A [ 1 ] , Data_in_A [ 0 ] , ps2 [ 3 ] ) ;

booth_decoder ins t34 ( xP12 , xM12 , xP22 ,

xM22 , Data_in_A [ 0 ] , 1 ’b0 , ps2 [ 2 ] ) ;

assign ps2 [ 1 ] = xM12 | xM22 ;

assign ps2 [10]=~ temp3 ;

booth_encoder ins t37 ( Data_in_B [ 5 ] , Data_in_B [ 6 ] ,

Data_in_B [ 7 ] , xP13 , xM13 , xP23 , xM23 ) ;

booth_decoder ins t38 ( xP13 , xM13 , xP23 ,

xM23 , Data_in_A [ 7 ] , Data_in_A [ 7 ] , temp4 ) ;

booth_decoder ins t39 ( xP13 , xM13 , xP23 ,

xM23 , Data_in_A [ 7 ] , Data_in_A [ 6 ] , ps3 [ 9 ] ) ;

booth_decoder ins t40 ( xP13 , xM13 , xP23 ,

xM23 , Data_in_A [ 6 ] , Data_in_A [ 5 ] , ps3 [ 8 ] ) ;

booth_decoder ins t41 ( xP13 , xM13 , xP23 ,

xM23 , Data_in_A [ 5 ] , Data_in_A [ 4 ] , ps3 [ 7 ] ) ;
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booth_decoder ins t42 ( xP13 , xM13 , xP23 ,

xM23 , Data_in_A [ 4 ] , Data_in_A [ 3 ] , ps3 [ 6 ] ) ;

booth_decoder ins t43 ( xP13 , xM13 , xP23 ,

xM23 , Data_in_A [ 3 ] , Data_in_A [ 2 ] , ps3 [ 5 ] ) ;

booth_decoder ins t44 ( xP13 , xM13 , xP23 ,

xM23 , Data_in_A [ 2 ] , Data_in_A [ 1 ] , ps3 [ 4 ] ) ;

booth_decoder ins t45 ( xP13 , xM13 , xP23 ,

xM23 , Data_in_A [ 1 ] , Data_in_A [ 0 ] , ps3 [ 3 ] ) ;

booth_decoder ins t46 ( xP13 , xM13 , xP23 ,

xM23 , Data_in_A [ 0 ] , 1 ’b0 , ps3 [ 2 ] ) ;

assign ps3 [ 1 ] = xM13 | xM23 ;

assign ps3 [10]=~ temp4 ;

ha l f_adder i ns t49 ( ps1 [ 9 ] , 1 ’b1 , s1 [ 8 ] , c1 [ 8 ] ) ;

f u l l _ a d d e r ins t50 ( ps1 [ 8 ] , ps0 [ 1 0 ] , 1 ’b1 , s1 [ 7 ] , c1 [ 7 ] ) ;

ha l f_adder i ns t51 ( ps1 [ 7 ] , ps0 [ 9 ] , s1 [ 6 ] , c1 [ 6 ] ) ;

ha l f_adder i ns t52 ( ps1 [ 6 ] , ps0 [ 8 ] , s1 [ 5 ] , c1 [ 5 ] ) ;

ha l f_adder i ns t53 ( ps1 [ 5 ] , ps0 [ 7 ] , s1 [ 4 ] , c1 [ 4 ] ) ;

ha l f_adder i ns t54 ( ps1 [ 4 ] , ps0 [ 6 ] , s1 [ 3 ] , c1 [ 3 ] ) ;

ha l f_adder i ns t55 ( ps1 [ 3 ] , ps0 [ 5 ] , s1 [ 2 ] , c1 [ 2 ] ) ;

ha l f_adder i ns t56 ( ps1 [ 2 ] , ps0 [ 4 ] , s1 [ 1 ] , c1 [ 1 ] ) ;

ha l f_adder i ns t57 ( ps2 [ 9 ] , 1 ’b1 , s2 [ 8 ] , c2 [ 8 ] ) ;

f u l l _ a d d e r ins t58 ( ps2 [ 8 ] , ps1 [ 1 0 ] , c1 [ 8 ] , s2 [ 7 ] , c2 [ 7 ] ) ;

f u l l _ a d d e r ins t59 ( ps2 [ 7 ] , s1 [ 8 ] , c1 [ 7 ] , s2 [ 6 ] , c2 [ 6 ] ) ;

f u l l _ a d d e r ins t60 ( ps2 [ 6 ] , s1 [ 7 ] , c1 [ 6 ] , s2 [ 5 ] , c2 [ 5 ] ) ;

f u l l _ a d d e r ins t61 ( ps2 [ 5 ] , s1 [ 6 ] , c1 [ 5 ] , s2 [ 4 ] , c2 [ 4 ] ) ;

f u l l _ a d d e r ins t62 ( ps2 [ 4 ] , s1 [ 5 ] , c1 [ 4 ] , s2 [ 3 ] , c2 [ 3 ] ) ;

f u l l _ a d d e r ins t63 ( ps2 [ 3 ] , s1 [ 4 ] , c1 [ 3 ] , s2 [ 2 ] , c2 [ 2 ] ) ;

f u l l _ a d d e r ins t64 ( ps2 [ 2 ] , s1 [ 3 ] , c1 [ 2 ] , s2 [ 1 ] , c2 [ 1 ] ) ;

ha l f_adder i ns t65 ( ps3 [ 9 ] , 1 ’b1 , s3 [ 8 ] , c3 [ 8 ] ) ;

f u l l _ a d d e r ins t66 ( ps3 [ 8 ] , ps2 [ 1 0 ] , c2 [ 8 ] , s3 [ 7 ] , c3 [ 7 ] ) ;

f u l l _ a d d e r ins t67 ( ps3 [ 7 ] , s2 [ 8 ] , c2 [ 7 ] , s3 [ 6 ] , c3 [ 6 ] ) ;

f u l l _ a d d e r ins t68 ( ps3 [ 6 ] , s2 [ 7 ] , c2 [ 6 ] , s3 [ 5 ] , c3 [ 5 ] ) ;

f u l l _ a d d e r ins t69 ( ps3 [ 5 ] , s2 [ 6 ] , c2 [ 5 ] , s3 [ 4 ] , c3 [ 4 ] ) ;

f u l l _ a d d e r ins t70 ( ps3 [ 4 ] , s2 [ 5 ] , c2 [ 4 ] , s3 [ 3 ] , c3 [ 3 ] ) ;

f u l l _ a d d e r ins t71 ( ps3 [ 3 ] , s2 [ 4 ] , c2 [ 3 ] , s3 [ 2 ] , c3 [ 2 ] ) ;

f u l l _ a d d e r ins t72 ( ps3 [ 2 ] , s2 [ 3 ] , c2 [ 2 ] , s3 [ 1 ] , c3 [ 1 ] ) ;

assign A = {1 ’ b0 , ps3 [ 1 0 ] , s3 [ 8 ] , s3 [ 7 ] , s3 [ 6 ] ,

s3 [ 5 ] , s3 [ 4 ] , s3 [ 3 ] , s3 [ 2 : 1 ] , s2 [ 2 : 1 ] , s1 [ 2 : 1 ] , ps0 [ 3 : 2 ] } ;

assign B = {1 ’ b1 , c3 [ 8 ] , c3 [ 7 ] , c3 [ 6 ] , c3 [ 5 ] , c3 [ 4 ]

, c3 [ 3 ] , c3 [ 2 ] , c3 [ 1 ] , ps3 [ 1 ] , c2 [ 1 ] , ps2 [ 1 ] , c1 [ 1 ] ,

ps1 [ 1 ] , 1 ’ b0 , ps0 [ 1 ] } ;

r i pp le_car ry_adder # ( . BIT_WIDTH ( ( 2 * BIT_WIDTH ) ) )

i ns t73 (A,B, 1 ’ b0 , Data_out_sum , cout ) ;

endmodule



62

Listing A.2. 4-bit Modified Booth multiplication

/ *

* Name: modif ied_booth_4x4 . sv

* Date : 16_05_2022

* Author : Samaneh Ammari

* Copyr ight (C) 2022 Tampere u n i v e r s i t y

*

* Desc r i p t i on :

* 4*4 modi f ied booth .

* /

module modif ied_booth_4x4 #(

parameter i n t BIT_WIDTH = 4 )

(

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_A , Data_in_B ,

output l o g i c [ ( 2 * BIT_WIDTH) −1 :0 ] Data_out_sum

) ;

l o g i c [ BIT_WIDTH+1:0 ] ps0 , ps1 ;

l o g i c [ BIT_WIDTH−1:0 ] s1 ;

l o g i c [ BIT_WIDTH−1:0 ] c1 ;

booth_encoder i n s t 1 (1 ’ b0 , Data_in_B [ 0 ] ,

Data_in_B [ 1 ] , xP10 , xM10 , xP20 , xM20 ) ;

booth_decoder i n s t 2 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 3 ] , Data_in_A [ 3 ] , temp1 ) ;

booth_decoder i n s t 3 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 3 ] , Data_in_A [ 2 ] , ps0 [ 4 ] ) ;

booth_decoder i n s t 4 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 2 ] , Data_in_A [ 1 ] , ps0 [ 3 ] ) ;

booth_decoder i n s t 5 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 1 ] , Data_in_A [ 0 ] , ps0 [ 2 ] ) ;

booth_decoder i n s t 6 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 0 ] , 1 ’b0 , ps0 [ 1 ] ) ;

assign ps0 [ 0 ] = xM10 | xM20 ;

assign ps0 [ 5 ] =~ temp1 ;

booth_encoder i n s t 8 ( Data_in_B [ 1 ] ,

Data_in_B [ 2 ] , Data_in_B [ 3 ] , xP11 , xM11 , xP21 , xM21 ) ;

booth_decoder i n s t 9 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 3 ] , Data_in_A [ 3 ] , temp2 ) ;

booth_decoder ins t10 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 3 ] , Data_in_A [ 2 ] , ps1 [ 4 ] ) ;

booth_decoder ins t11 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 2 ] , Data_in_A [ 1 ] , ps1 [ 3 ] ) ;
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booth_decoder ins t12 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 1 ] , Data_in_A [ 0 ] , ps1 [ 2 ] ) ;

booth_decoder ins t13 ( xP11 , xM11 , xP21 ,

xM21 , Data_in_A [ 0 ] , 1 ’b0 , ps1 [ 1 ] ) ;

assign ps1 [ 0 ] = xM11 | xM21 ;

assign ps1 [ 5 ] =~ temp2 ;

ha l f_adder i ns t14 ( ps1 [ 4 ] , 1 ’b1 , s1 [ 3 ] , c1 [ 3 ] ) ;

f u l l _ a d d e r ins t15 ( ps1 [ 3 ] , ps0 [ 5 ] , 1 ’b1 , s1 [ 2 ] , c1 [ 2 ] ) ;

ha l f_adder i ns t16 ( ps1 [ 2 ] , ps0 [ 4 ] , s1 [ 1 ] , c1 [ 1 ] ) ;

ha l f_adder i ns t17 ( ps1 [ 1 ] , ps0 [ 3 ] , s1 [ 0 ] , c1 [ 0 ] ) ;

r i pp le_car ry_adder ins t18 ( { 1 ’ b0 , ps1 [ 5 ] , s1 [ 3 ] , s1 [ 2 ] , s1 [ 1 : 0 ] , ps0 [ 2 : 1 ] } ,

{ 1 ’ b1 , c1 [ 3 ] , c1 [ 2 ] , c1 [ 1 ] , c1 [ 0 ] , ps1 [ 0 ] , 1 ’ b0 , ps0 [ 0 ] }

,1 ’ b0 , Data_out_sum , rca ) ;

endmodule

Listing A.3. 2-bit Modified Booth multiplication

/ *

* Name: modif ied_booth_2x2 . sv

* Date : 16_05_2022

* Author : Samaneh Ammari

* Copyr ight (C) 2022 Tampere u n i v e r s i t y

*

* Desc r i p t i on :

* 2*2 modi f ied booth .

* /

module modif ied_booth_2x2 #(

parameter i n t BIT_WIDTH = 2 )

(

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_A , Data_in_B ,

output l o g i c [ ( 2 * BIT_WIDTH) −1 :0 ] Data_out_sum

) ;

l o g i c [ BIT_WIDTH+1:0 ] ps0 ;

l o g i c [ BIT_WIDTH−1:0 ] s0 ;

l o g i c [ BIT_WIDTH−1:0 ] c0 ;

booth_encoder i n s t 1 (1 ’ b0 , Data_in_B [ 0 ] ,

Data_in_B [ 1 ] , xP10 , xM10 , xP20 , xM20 ) ;

booth_decoder i n s t 2 ( xP10 , xM10 , xP20 ,

xM20 , Data_in_A [ 1 ] , Data_in_A [ 1 ] , temp1 ) ;

booth_decoder i n s t 3 ( xP10 , xM10 , xP20 , xM20 ,

Data_in_A [ 1 ] , Data_in_A [ 0 ] , ps0 [ 2 ] ) ;
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booth_decoder i n s t 4 ( xP10 , xM10 , xP20 , xM20 ,

Data_in_A [ 0 ] , 1 ’b0 , ps0 [ 1 ] ) ;

assign ps0 [ 0 ] = xM10 | xM20 ;

assign ps0 [ 3 ] =~ temp1 ;

r i pp le_car ry_adder # ( . BIT_WIDTH ( 4 ) )

i n s t 7 ( { 1 ’ b0 , ps0 [ 3 ] , ps0 [ 2 : 1 ] } , { 1 ’ b1 , 1 ’ b1 , 1 ’ b0 , ps0 [ 0 ] }

,1 ’ b0 , Data_out_sum , rca ) ;

endmodule

Listing A.4. Flexible Modified Booth signed multiplication

/ *

* Name: f l e x i b l e _ m o d i f i e d _ b o o t h _ m u l t i p l i e r . sv

* Date : 14_06_2022

* Author : Samaneh Ammari

* Copyr ight (C) 2022 Tampere u n i v e r s i t y

*

* Desc r i p t i on :

*

* /

module f l e x i b l e _ m o d i f i e d _ b o o t h _ m u l t i p l i e r #( parameter i n t BIT_WIDTH = 8 )

(

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_A , Data_in_B ,

input l o g i c [ 1 : 0 ] se lec t ,

output l o g i c [ ( 2 * BIT_WIDTH) −1 :0 ] Data_out_sum

) ;

l o g i c [ ( 2 * BIT_WIDTH) −1 :0 ] Data_out_sum_s_8 , Data_out_sum_s_1 , Data_out_sum_s_2

, Data_out_sum_s ;

/ / one 8*8 m u l t i p l i e r

modif ied_booth # ( . BIT_WIDTH ( 8 ) ) mul_8x8 (

. Data_in_A ( Data_in_A ) ,

. Data_in_B ( Data_in_B ) ,

. Data_out_sum ( Data_out_sum_s_8 )

) ;

/ / two 4*4 m u l t i p l i e r BIT_WIDTH/2

modif ied_booth_4x4 # ( . BIT_WIDTH ( 4 ) ) mul_4x4_1 (

. Data_in_A ( Data_in_A [ 3 : 0 ] ) ,

. Data_in_B ( Data_in_B [ 3 : 0 ] ) ,

. Data_out_sum ( Data_out_sum_s_1 [ 7 : 0 ] )

) ;

modif ied_booth_4x4 # ( . BIT_WIDTH ( 4 ) ) mul_4x4_2 (

. Data_in_A ( Data_in_A [ 7 : 4 ] ) ,
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. Data_in_B ( Data_in_B [ 7 : 4 ] ) ,

. Data_out_sum ( Data_out_sum_s_1 [ 1 5 : 8 ] )

) ;

/ / f ou r 2*2 m u l t i p l i e r

/ / rep lace i t w i th rad i x 2 booth m u l t i p l i e r .

modif ied_booth_2x2 mul1 ( Data_in_A [ 1 : 0 ] ,

Data_in_B [ 1 : 0 ] ,

Data_out_sum_s_2 [ 3 : 0 ] ) ;

modif ied_booth_2x2 mul2 ( Data_in_A [ 3 : 2 ] , Data_in_B [ 3 : 2 ] ,

Data_out_sum_s_2 [ 7 : 4 ] ) ;

modif ied_booth_2x2 mul3 ( Data_in_A [ 5 : 4 ] , Data_in_B [ 5 : 4 ] ,

Data_out_sum_s_2 [ 1 1 : 8 ] ) ;

modif ied_booth_2x2 mul4 ( Data_in_A [ 7 : 6 ] , Data_in_B [ 7 : 6 ] ,

Data_out_sum_s_2 [ 1 5 : 1 2 ] ) ;

mux_4x1 # ( . BIT_WIDTH ( ( 2 * BIT_WIDTH ) ) )

mux_inst ( . a ( Data_out_sum_s_2 ) , . b ( Data_out_sum_s_8 ) ,

. c ( Data_out_sum_s_8 ) , . d ( Data_out_sum_s_1 ) ,

. se l ( s e l e c t ) , . f ( Data_out_sum ) ) ;

assign Data_out_sum_s = Data_out_sum ;

endmodule : f l e x i b l e _ m o d i f i e d _ b o o t h _ m u l t i p l i e r

A.1.2 Vedic multiplier

A.5 shows the signed Vedic multiplier. To calculate the signed multiplication for:

Array, Braun and wallace multiplier same code structure is used just the Vedic multiplier

is replaced by unsigned version of mentioned multipliers.

Listing A.5. Example of signed multiplication

/ *

* Name: s i g n e d _ v e d i c _ m u l t i p l i e r . sv

* Author : Samaneh Ammari

* Copyr ight (C) 2022 Tampere u n i v e r s i t y

*

* Desc r i p t i on : Adding the s ign fea tu re .

* /

module s i g n e d _ v e d i c _ m u l t i p l i e r #(

parameter i n t BIT_WIDTH = 8 ) (

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_A ,

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_B ,

/ / i npu t l o g i c [ 1 : 0 ] se lec t ,

output l o g i c [ ( 2 * BIT_WIDTH − 1 ) : 0 ] Data_out_sum

) ;
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l o g i c [ BIT_WIDTH−1:0 ] data_a_tc_s ;

l o g i c [ BIT_WIDTH−1:0 ] data_b_tc_s ;

l o g i c [ BIT_WIDTH−1:0 ] data_a_mux_s ;

l o g i c [ BIT_WIDTH−1:0 ] data_b_mux_s ;

l o g i c [ ( 2 * BIT_WIDTH − 1 ) : 0 ] data_out_mul_s ;

l o g i c [ ( 2 * BIT_WIDTH − 1 ) : 0 ] data_out_mul_tc_s ;

l o g i c [ ( 2 * BIT_WIDTH − 1 ) : 0 ] data_out_sum_s ;

l o g i c c t r l 1 , c t r l 2 , se l ;

twos_complement # ( . BIT_WIDTH(BIT_WIDTH ) )

twos_complement_a (

. Data_in_A ( Data_in_A )

, . Data_out_twos_complement ( data_a_tc_s ) ) ;

twos_complement # ( . BIT_WIDTH(BIT_WIDTH ) )

twos_complement_b (

. Data_in_A ( Data_in_B ) ,

. Data_out_twos_complement ( data_b_tc_s ) ) ;

/ *
s igned_signed : c t r l 1 : MSB_A * 1 , c t r l 2 : MSB_B * 1

unsigned_unsigned : c t r l 1 : MSB_A * 0 , c t r l 2 : MSB_B * 0

signed_unsigned : c t r l 1 : MSB_A * 1 , c t r l 2 : MSB_B * 0

unsigned_signed : c t r l 1 : MSB_A * 0 , c t r l 2 : MSB_B * 1

* /

/ / Here we would l i k e to have signed_signed m u l t i p l i c a t i o n

assign c t r l 1 = Data_in_A [ BIT_WIDTH−1] & 1 ’b1 ;

assign c t r l 2 = Data_in_B [ BIT_WIDTH−1] & 1 ’b1 ;

mux_2x1 # ( . BIT_WIDTH(BIT_WIDTH ) ) mux_inst1

( . a ( Data_in_A ) , . b ( data_a_tc_s ) , . se l ( c t r l 1 ) , . f ( data_a_mux_s ) ) ;

mux_2x1 # ( . BIT_WIDTH(BIT_WIDTH ) ) mux_inst2

( . a ( Data_in_B ) , . b ( data_b_tc_s ) , . se l ( c t r l 2 ) , . f ( data_b_mux_s ) ) ;

/ / NxN Unsigned m u l t i p l i e r i n s t a n t i a t i o n

v e d i c _ m u l t i p l i e r # ( . BIT_WIDTH(BIT_WIDTH ) ) i _du t (

. Data_in_A ( data_a_mux_s ) ,

. Data_in_B ( data_b_mux_s ) ,

. Data_out_sum ( data_out_mul_s ) ) ;

assign se l = c t r l 1 ^ c t r l 2 ;

twos_complement # ( . BIT_WIDTH(2*BIT_WIDTH ) )

twos_complement_mul_result ( . Data_in_A ( data_out_mul_s ) ,

. Data_out_twos_complement ( data_out_mul_tc_s ) ) ;
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mux_2x1 # ( . BIT_WIDTH(2*BIT_WIDTH ) ) mux_inst3

( . a ( data_out_mul_s ) , . b ( data_out_mul_tc_s ) , . se l ( se l ) , . f ( data_out_sum_s ) ) ;

assign Data_out_sum = data_out_sum_s ;

endmodule

Listing A.6. 8-bit Vedic multiplier

/ *

* Name: v e d i c _ m u l t i p l i e r . sv

* Author : Samaneh Ammari

* Copyr ight (C) 2022 Tampere u n i v e r s i t y

*

* Desc r i p t i on : vedic m u l t i p l i e r 8*8

*

* /

module v e d i c _ m u l t i p l i e r #(

parameter i n t BIT_WIDTH = 8 ) (

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_A ,

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_B ,

output l o g i c [ ( 2 * BIT_WIDTH − 1 ) : 0 ] Data_out_sum

) ;

l o g i c [ 2 : 0 ] r c a _ i n s t _ c a r r y ;

l o g i c [ 7 : 0 ] temp1 ;

l o g i c [ 7 : 0 ] temp2 ;

l o g i c [ 7 : 0 ] temp3 ;

l o g i c [ 9 : 0 ] temp4 ;

l o g i c [ 9 : 0 ] temp5 ;

l o g i c [ 7 : 0 ] temp6 ;

l o g i c [ 7 : 0 ] temp7 ;

v e d i c _ m u l t i p l i e r _ 4 x 4 # ( . BIT_WIDTH ( 4 ) ) vm_4b_inst_1

(

. Data_in_A ( Data_in_A [ 3 : 0 ] ) ,

. Data_in_B ( Data_in_B [ 3 : 0 ] ) ,

. Data_out_sum ( temp1 )

) ;

v e d i c _ m u l t i p l i e r _ 4 x 4 # ( . BIT_WIDTH ( 4 ) ) vm_4b_inst_3

(

. Data_in_A ( Data_in_A [ 7 : 4 ] ) ,

. Data_in_B ( Data_in_B [ 3 : 0 ] ) ,

. Data_out_sum ( temp2 )

) ;

v e d i c _ m u l t i p l i e r _ 4 x 4 # ( . BIT_WIDTH ( 4 ) ) vm_4b_inst_2

(
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. Data_in_A ( Data_in_A [ 3 : 0 ] ) ,

. Data_in_B ( Data_in_B [ 7 : 4 ] ) ,

. Data_out_sum ( temp3 )

) ;

v e d i c _ m u l t i p l i e r _ 4 x 4 # ( . BIT_WIDTH ( 4 ) ) vm_4b_inst_4

(

. Data_in_A ( Data_in_A [ 7 : 4 ] ) ,

. Data_in_B ( Data_in_B [ 7 : 4 ] ) ,

. Data_out_sum ( temp6 )

) ;

r i pp le_car ry_adder # ( . BIT_WIDTH ( 1 0 ) ) r ca_ ins t1 (

. Data_in_A ( { 2 ’ b00 , temp2 } ) ,

. Data_in_B ( { 2 ’ b00 , temp3 } ) ,

. Data_in_C (1 ’ b0 ) , / / I t i s not connected : ca r r y_ rca_ ins t1

. Data_out_Sum ( temp4 ) ,

. Data_out_Carry ( r c a _ i n s t _ c a r r y [ 0 ] )

) ;

r i pp le_car ry_adder # ( . BIT_WIDTH ( 1 0 ) ) r ca_ ins t2 (

. Data_in_A ( temp4 ) ,

. Data_in_B ( { 6 ’ b0000 , temp1 [ 7 : 4 ] } ) ,

. Data_in_C (1 ’ b0 ) , / / I t i s not connected : ca r r y_ rca_ ins t1

. Data_out_Sum ( temp5 ) ,

. Data_out_Carry ( r c a _ i n s t _ c a r r y [ 1 ] )

) ;

r i pp le_car ry_adder # ( . BIT_WIDTH(BIT_WIDTH ) ) r ca_ ins t3 (

. Data_in_A ( temp6 ) ,

. Data_in_B ( { 2 ’ b00 , temp5 [ 9 : 4 ] } ) ,

. Data_in_C (1 ’ b0 ) , / / I t i s not connected : ca r r y_ rca_ ins t1

. Data_out_Sum ( temp7 ) ,

. Data_out_Carry ( r c a _ i n s t _ c a r r y [ 2 ] )

) ;

assign Data_out_sum [ 3 : 0 ] = temp1 [ 3 : 0 ] ;

assign Data_out_sum [ 7 : 4 ] = temp5 [ 3 : 0 ] ;

assign Data_out_sum [ 1 5 : 8 ] = temp7 ;

endmodule : v e d i c _ m u l t i p l i e r

Listing A.7. 4-bit Vedic multiplier

/ *

* Name: v e d i c _ m u l t i p l i e r _ 4 x 4 . sv

* Author : Samaneh Ammari

* Copyr ight (C) 2022 Tampere u n i v e r s i t y

*
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* Desc r i p t i on : vedic m u l t i p l i e r 4*4

* /

module v e d i c _ m u l t i p l i e r _ 4 x 4 #(

parameter i n t BIT_WIDTH = 4 ) (

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_A ,

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_B ,

output l o g i c [ ( 2 * BIT_WIDTH) −1 :0 ] Data_out_sum

) ;

l o g i c [ 3 : 0 ] temp1 ;

l o g i c [ 3 : 0 ] temp2 ;

l o g i c [ 3 : 0 ] temp3 ;

l o g i c [ 5 : 0 ] temp4 ;

l o g i c [ 5 : 0 ] temp5 ;

l o g i c [ 3 : 0 ] temp6 ;

l o g i c [ 3 : 0 ] temp7 ;

l o g i c [ 5 : 0 ] w1 ;

/ / l o g i c c_ in = 1 ’b0 ;

l o g i c f i r s t _ r c a _ i n s t _ c a r r y ;

l o g i c second_rca_ ins t_car ry ;

l o g i c t h i r d _ r c a _ i n s t _ c a r r y ;

v e d i c _ m u l t i p l i e r _ 2 x 2 vm_inst_1 (

. Data_in_A ( Data_in_A [ 1 : 0 ] ) ,

. Data_in_B ( Data_in_B [ 1 : 0 ] ) ,

. Data_out_sum ( temp1 )

) ;

v e d i c _ m u l t i p l i e r _ 2 x 2 vm_inst_2 (

. Data_in_A ( Data_in_A [ 3 : 2 ] ) ,

. Data_in_B ( Data_in_B [ 1 : 0 ] ) ,

. Data_out_sum ( temp2 )

) ;

v e d i c _ m u l t i p l i e r _ 2 x 2 vm_inst_3 (

. Data_in_A ( Data_in_A [ 1 : 0 ] ) ,

. Data_in_B ( Data_in_B [ 3 : 2 ] ) ,

. Data_out_sum ( temp3 )

) ;

v e d i c _ m u l t i p l i e r _ 2 x 2 vm_inst_4 (

. Data_in_A ( Data_in_A [ 3 : 2 ] ) ,

. Data_in_B ( Data_in_B [ 3 : 2 ] ) ,

. Data_out_sum ( temp6 )

) ;

r i pp le_car ry_adder # ( . BIT_WIDTH ( 6 ) ) r ca_ ins t1 (

. Data_in_A ( { 2 ’ b00 , temp3 } ) ,

. Data_in_B ( { 2 ’ b00 , temp2 } ) ,

. Data_in_C (1 ’ b0 ) ,
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. Data_out_Sum ( temp4 ) ,

. Data_out_Carry ( f i r s t _ r c a _ i n s t _ c a r r y )

) ;

assign w1 = {4 ’ b0000 , temp1 [ 3 : 2 ] } ;

r i pp le_car ry_adder # ( . BIT_WIDTH ( 6 ) ) r ca_ ins t2 (

. Data_in_A ( temp4 ) ,

. Data_in_B (w1) ,

. Data_in_C (1 ’ b0 ) ,

. Data_out_Sum ( temp5 ) ,

. Data_out_Carry ( second_rca_ ins t_car ry ) / / I t i s not connected

) ;

r i pp le_car ry_adder # ( . BIT_WIDTH ( 4 ) ) r ca_ ins t3 (

. Data_in_A ( temp6 ) ,

. Data_in_B ( temp5 [ 5 : 2 ] ) ,

. Data_in_C (1 ’ b0 ) ,

. Data_out_Sum ( temp7 ) ,

. Data_out_Carry ( t h i r d _ r c a _ i n s t _ c a r r y )

) ;

assign Data_out_sum [ 1 : 0 ] = temp1 [ 1 : 0 ] ;

assign Data_out_sum [ 3 : 2 ] = temp5 [ 1 : 0 ] ;

assign Data_out_sum [ 7 : 4 ] = temp7 ;

endmodule : v e d i c _ m u l t i p l i e r _ 4 x 4

Listing A.8. 2-bit Vedic multiplier

/ *

* Name: v e d i c _ m u l t i p l i e r _ 2 x 2 . sv

* Author : Samaneh Ammari

* Copyr ight (C) 2022 Tampere u n i v e r s i t y

*

* Desc r i p t i on : vedic m u l t i p l i e r 2*2

* /

module v e d i c _ m u l t i p l i e r _ 2 x 2 (

input l o g i c [ 1 : 0 ] Data_in_A ,

input l o g i c [ 1 : 0 ] Data_in_B ,

output l o g i c [ 3 : 0 ] Data_out_sum

) ;

l o g i c ha1_carry ;

l o g i c [ 2 : 0 ] resu l t_o f_and ;

assign Data_out_sum [ 0 ] = Data_in_A [ 0 ] & Data_in_B [ 0 ] ;
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assign resu l t_o f_and [ 0 ] = Data_in_A [ 1 ] & Data_in_B [ 0 ] ;

assign resu l t_o f_and [ 1 ] = Data_in_A [ 0 ] & Data_in_B [ 1 ] ;

assign resu l t_o f_and [ 2 ] = Data_in_A [ 1 ] & Data_in_B [ 1 ] ;

ha l f_adder ha1 (

. Data_in_A ( resu l t_o f_and [ 0 ] ) ,

. Data_in_B ( resu l t_o f_and [ 1 ] ) ,

. Data_out_Sum ( Data_out_sum [ 1 ] ) ,

. Data_out_Carry ( ha1_carry )

) ;

ha l f_adder ha2 (

. Data_in_A ( resu l t_o f_and [ 2 ] ) ,

. Data_in_B ( ha1_carry ) ,

. Data_out_Sum ( Data_out_sum [ 2 ] ) ,

. Data_out_Carry ( Data_out_sum [ 3 ] )

) ;

endmodule : v e d i c _ m u l t i p l i e r _ 2 x 2

Listing A.9. Ripple carry adder

/ *

* Name: r i pp le_car ry_adder . sv

*

* Author : Samaneh Ammari

* Copyr ight (C) 2022 Tampere u n i v e r s i t y

* Desc r i p t i on : F l e x i b l e b i t p r e c i s i o n Ripple ca r ry adder

* /

module r i pp le_car ry_adder #(

parameter i n t BIT_WIDTH = 8 ) (

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_A ,

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_B ,

input l o g i c Data_in_C ,

output l o g i c [ BIT_WIDTH−1:0 ] Data_out_Sum ,

output l o g i c Data_out_Carry ) ;

wire [ BIT_WIDTH−1:0 ] sum;

wire [ BIT_WIDTH−1:0 ] ca r ry ;

f u l l _ a d d e r fa1 (

. Data_in_A ( Data_in_A [ 0 ] ) ,

. Data_in_B ( Data_in_B [ 0 ] ) ,

. Data_in_C ( Data_in_C ) ,

. Data_out_Sum (sum [ 0 ] ) ,

. Data_out_Carry ( ca r ry [ 0 ] )

) ;

genvar i ;
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generate

for ( i =1; i <BIT_WIDTH ; i ++)

begin : gene ra te_ fu l l _adde r_ ins t

f u l l _ a d d e r f u l l _ a d d e r _ i n s t

(

. Data_in_A ( Data_in_A [ i ] ) ,

. Data_in_B ( Data_in_B [ i ] ) ,

. Data_in_C ( ca r ry [ i −1 ] ) ,

. Data_out_Sum (sum[ i ] ) ,

. Data_out_Carry ( ca r ry [ i ] )

) ;

end

endgenerate

assign Data_out_Sum= sum;

assign Data_out_Carry = ca r ry [ BIT_WIDTH − 1 ] ;

endmodule : r i pp le_ca r ry_adder

Listing A.10. Flexible Vedic multiplier

/ *

* Name: ved ic_mul_ f lex . sv

* Author : Samaneh Ammari

* Copyr ight (C) 2022 Tampere u n i v e r s i t y

*

* Desc r i p t i on : F l e x i b l e Vedic m u l t i p l i e r

* Flow_mul_f lex

* /

module ved ic_mul_ f lex #(

parameter i n t BIT_WIDTH = 8 ) (

input l o g i c [ 1 : 0 ] sel ,

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_A ,

input l o g i c [ BIT_WIDTH−1:0 ] Data_in_B ,

output l o g i c [ ( 2 * BIT_WIDTH − 1 ) : 0 ] Data_out_sum

) ;

l o g i c [ ( 2 * BIT_WIDTH − 1 ) : 0 ] Data_out_sum_4 , Data_out_sum_8 , Data_out_sum_2 ;

l o g i c [ 2 : 0 ] r c a _ i n s t _ c a r r y ;

l o g i c [ 7 : 0 ] temp1 ;

l o g i c [ 7 : 0 ] temp2 ;

l o g i c [ 7 : 0 ] temp3 ;

l o g i c [ 9 : 0 ] temp4 ;

l o g i c [ 9 : 0 ] temp5 ;

l o g i c [ 7 : 0 ] temp6 ;

l o g i c [ 7 : 0 ] temp7 ;

l o g i c [ 3 : 0 ] temp1_2x2 ;
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l o g i c [ 3 : 0 ] temp2_2x2 ;

l o g i c [ 3 : 0 ] temp3_2x2 ;

l o g i c [ 5 : 0 ] temp4_2x2 ;

l o g i c [ 5 : 0 ] temp5_2x2 ;

l o g i c [ 3 : 0 ] temp6_2x2 ;

l o g i c [ 3 : 0 ] temp7_2x2 ;

l o g i c [ 5 : 0 ] w1_2x2 ;

l o g i c f i r s t _ r c a _ i n s t _ c a r r y ;

l o g i c second_rca_ ins t_car ry ;

l o g i c t h i r d _ r c a _ i n s t _ c a r r y ;

v e d i c _ m u l t i p l i e r _ 2 x 2 vm_inst_1 (

. Data_in_A ( Data_in_A [ 1 : 0 ] ) ,

. Data_in_B ( Data_in_B [ 1 : 0 ] ) ,

. Data_out_sum ( temp1_2x2 )

) ;

v e d i c _ m u l t i p l i e r _ 2 x 2 vm_inst_2 (

. Data_in_A ( Data_in_A [ 3 : 2 ] ) ,

. Data_in_B ( Data_in_B [ 1 : 0 ] ) ,

. Data_out_sum ( temp2_2x2 )

) ;

v e d i c _ m u l t i p l i e r _ 2 x 2 vm_inst_3 (

. Data_in_A ( Data_in_A [ 1 : 0 ] ) ,

. Data_in_B ( Data_in_B [ 3 : 2 ] ) ,

. Data_out_sum ( temp3_2x2 )

) ;

v e d i c _ m u l t i p l i e r _ 2 x 2 vm_inst_4 (

. Data_in_A ( Data_in_A [ 3 : 2 ] ) ,

. Data_in_B ( Data_in_B [ 3 : 2 ] ) ,

. Data_out_sum ( temp6_2x2 )

) ;

assign Data_out_sum_2 = { temp6_2x2 , temp1_2x2 } ;

r i pp le_car ry_adder # ( . BIT_WIDTH ( 6 ) ) rca_ inst1_2x2 (

. Data_in_A ( { 2 ’ b00 , temp3_2x2 } ) ,

. Data_in_B ( { 2 ’ b00 , temp2_2x2 } ) ,

. Data_in_C (1 ’ b0 ) ,

. Data_out_Sum ( temp4_2x2 ) ,

. Data_out_Carry ( f i r s t _ r c a _ i n s t _ c a r r y )

) ;

/ / assign resu l t_vm_ins t_4 = { f i r s t _ r c a _ i n s t _ c a r r y , rca_ ins t_ ins t_sum } ;

assign w1_2x2 = {4 ’ b0000 , temp1_2x2 [ 3 : 2 ] } ;

r i pp le_car ry_adder # ( . BIT_WIDTH ( 6 ) ) rca_ inst2_2x2 (

. Data_in_A ( temp4_2x2 ) ,

. Data_in_B ( w1_2x2 ) ,
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. Data_in_C (1 ’ b0 ) ,

. Data_out_Sum ( temp5_2x2 ) ,

. Data_out_Carry ( second_rca_ ins t_car ry ) / / I t i s not connected

) ;

r i pp le_car ry_adder # ( . BIT_WIDTH ( 4 ) ) rca_ inst3_2x2 (

. Data_in_A ( temp6_2x2 ) ,

. Data_in_B ( temp5_2x2 [ 5 : 2 ] ) ,

. Data_in_C (1 ’ b0 ) ,

. Data_out_Sum ( temp7_2x2 ) ,

. Data_out_Carry ( t h i r d _ r c a _ i n s t _ c a r r y )

) ;

assign temp1 [ 1 : 0 ] = temp1_2x2 [ 1 : 0 ] ;

assign temp1 [ 3 : 2 ] = temp5_2x2 [ 1 : 0 ] ;

assign temp1 [ 7 : 4 ] = temp7_2x2 ;

v e d i c _ m u l t i p l i e r _ 4 x 4 # ( . BIT_WIDTH ( 4 ) ) vm_4b_inst_3

(

. Data_in_A ( Data_in_A [ 7 : 4 ] ) ,

. Data_in_B ( Data_in_B [ 3 : 0 ] ) ,

. Data_out_sum ( temp2 )

) ;

v e d i c _ m u l t i p l i e r _ 4 x 4 # ( . BIT_WIDTH ( 4 ) ) vm_4b_inst_2

(

. Data_in_A ( Data_in_A [ 3 : 0 ] ) ,

. Data_in_B ( Data_in_B [ 7 : 4 ] ) ,

. Data_out_sum ( temp3 )

) ;

v e d i c _ m u l t i p l i e r _ 4 x 4 # ( . BIT_WIDTH ( 4 ) ) vm_4b_inst_4

(

. Data_in_A ( Data_in_A [ 7 : 4 ] ) ,

. Data_in_B ( Data_in_B [ 7 : 4 ] ) ,

. Data_out_sum ( temp6 )

) ;

r i pp le_car ry_adder # ( . BIT_WIDTH ( 1 0 ) ) r ca_ ins t1 (

. Data_in_A ( { 2 ’ b00 , temp2 } ) ,

. Data_in_B ( { 2 ’ b00 , temp3 } ) ,

. Data_in_C (1 ’ b0 ) , / / I t i s not connected : ca r r y_ rca_ ins t1

. Data_out_Sum ( temp4 ) ,

. Data_out_Carry ( r c a _ i n s t _ c a r r y [ 0 ] )

) ;

r i pp le_car ry_adder # ( . BIT_WIDTH ( 1 0 ) ) r ca_ ins t2 (

. Data_in_A ( temp4 ) ,

. Data_in_B ( { 6 ’ b0000 , temp1 [ 7 : 4 ] } ) ,

. Data_in_C (1 ’ b0 ) , / / I t i s not connected : ca r r y_ rca_ ins t1
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. Data_out_Sum ( temp5 ) ,

. Data_out_Carry ( r c a _ i n s t _ c a r r y [ 1 ] )

) ;

r i pp le_car ry_adder # ( . BIT_WIDTH(BIT_WIDTH ) ) r ca_ ins t3 (

. Data_in_A ( temp6 ) ,

. Data_in_B ( { 2 ’ b00 , temp5 [ 9 : 4 ] } ) ,

. Data_in_C (1 ’ b0 ) , / / I t i s not connected : ca r r y_ rca_ ins t1

. Data_out_Sum ( temp7 ) ,

. Data_out_Carry ( r c a _ i n s t _ c a r r y [ 2 ] )

) ;

assign Data_out_sum_4 = { temp2 , temp1 } ;

assign Data_out_sum_8 = { temp7 , temp5 [ 3 : 0 ] , temp1 [ 3 : 0 ] } ;

mux_4x1 # ( . BIT_WIDTH ( ( 2 * BIT_WIDTH ) ) )

mux_inst ( . a ( Data_out_sum_2 ) , . b ( Data_out_sum_8 )

, . c ( Data_out_sum_8 ) , . d ( Data_out_sum_4 ) , . se l ( se l ) ,

. f ( Data_out_sum ) ) ;

endmodule : ved ic_mul_ f lex
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