
Arttu Ruusiala

VEHICLE AUTOMATION SOFTWARE

DEVELOPMENT USING SOFTWARE-ONLY

SIMULATION

Master of Science Thesis

Faculty of Information Technology and Communication Sciences

Examiners: Prof. Hannu-Matti Järvinen

Dr. Juhana Helovuo

October 2022

i

ABSTRACT

Arttu Ruusiala: Vehicle automation software development using software-only simulation
Master of Science Thesis
Tampere University
Master’s Programme in Information Technology
October 2022

Automatic driving and driver assistance systems are gaining attraction in the automotive in-
dustry. Their development is not an easy task and requires enormous amounts of testing and
validation. However, conducting all testing with a real car is expensive and inefficient. A possible
solution to streamline testing is simulation, especially software-only simulation. In software-only
simulation, everything is simulated using just software. It does not require any specialized hard-
ware making it cheaper and easier to establish and scale up the number of testing environments.

The goal of this thesis was to study how a software-only simulation environment could be built
using readily available open-source components. A simulator environment based on an open-
source driving simulator, CARLA, was built, and an example application was developed and inte-
grated into it using Robot Operating System 2 (ROS2). The example application, Carlabot, sup-
ports manual driving with a gamepad and utilizes a LiDAR sensor to implement a simple collision
avoider, which slows down or stops the car if something is detected in front of the car.

The process of setting up a CARLA simulator environment using predefined assets, such as
vehicle and world model, proved to be straightforward, and integrating a simple example appli-
cation was fairly uncomplicated. However, using the environment for real product development
would require customizing at least the assets.

Software-only simulation brings benefits to the software development of automatic vehicles.
It allows testing on a scale that is not viable using just real hardware, and it enables using test
automation already in integration testing. Software-only simulation supports agile software devel-
opment, where testing begins early, already during the development.

Keywords: software-only simulation, CARLA, ROS2, automatic driving, simulation

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Arttu Ruusiala: Ajoneuvoautomaation ohjelmistokehitys käyttäen ohjelmistopohjaista simulaatiota
Diplomityö
Tampereen yliopisto
Tietotekniikan DI-ohjelma
Lokakuu 2022

Automaattinen ajaminen ja erilaiset kuljettajaa avustavat järjestelmät herättävät nyt suurta kiin-
nostusta autoteollisuudessa. Niiden kehittäminen ei kuitenkaan ole täysin vaivatonta, ja kehityk-
seen liittyy paljon testausta ja validointia. Oikean auton käyttäminen testaukseen on kallista ja
tehotonta. Simulaatiota, ja erityisesti ohjelmistopohjaista, eli kokonaan ohjelmistolla toteutettua
simulaatiota, voidaan käyttää testauksen tehostamiseen. Kun simulaatio on ohjelmistopohjaista,
voidaan testaukseen käyttää erikoislaitteiston sijaan yleiskäyttöistä laitteistoa, ja testaus voidaan
siten toteuttaa halvemmalla ja testausympäristön monistaminen on helpompaa.

Tämän työn tavoitteena oli tutkia, miten ohjelmistopohjainen simulaatioympäristö toteutetaan
käyttäen saatavilla olevia avoimen lähdekoodin komponentteja. Työssä kehitettiin myös esimerk-
kisovellus, Carlabot, joka integroitiin simulaatioympäristöön käyttäen Robot Operating System 2
-väliohjelmistoa. Varsinaisen simulaatioympäristön pohjana käytettiin avoimen lähdekoodin ajosi-
mulaattori CARLAa. Carlabot-esimerkkisovellus tukee ohjausta manuaalisesti peliohjaimen avul-
la, sekä toteuttaa yksinkertaisen LiDAR-anturiin perustuvan törmäyksenestojärjestelmän, joka ha-
vaitsee kohteet ajoneuvon edessä, ja hidastaa tai pysäyttää ajoneuvon tarvittaessa.

CARLA-simulaattorin pystyttäminen käyttäen sen mukana tulevia malleja, kuten maailma- tai
ajoneuvomalleja, oli suoraviivaista, ja esimerkkisovelluksen integroiminen CARLAan ei tuottanut
suuria haasteita. Työssä tehty esimerkkisovellus ja ympäristö olivat kuitenkin varsin yksinkertai-
sia, ja ympäristön käyttäminen oikeaan tuotekehitykseen vaatisi vähintään simulaattorin mallien
muokkaamista.

Ohjelmistopohjaisen simulaation käytöstä automaattisten ajoneuvojen ohjelmistokehitykseen
on merkittäviä hyötyjä. Se mahdollistaa testauksen huomattavasti suuremmassa mittakaavassa
kuin pelkällä oikealla laitteistolla on mahdollista. Simulaatioympäristön käyttäminen testiautomaa-
tiossa mahdollistaa automaattisen integraatiotestauksen. Ohjelmistopohjaisen simulaation käyttö
tukee ketterää ohjelmistokehitystä, jossa testaus alkaa aikaisessa vaiheessa, jopa kehityksen ol-
lessa vielä kesken.

Avainsanat: ohjelmistopohjainen simulaatio, CARLA, ROS2, automaattinen ajaminen, simulaatio

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This thesis was done as a part of my work at Atostek. The thesis was supervised by Doc-

tor Juhana Helovuo from Atostek and Professor Hannu-Matti Järvinen from the Faculty of

Information Technology and Communication Sciences, Tampere University. I am grateful

for their continuous support and insightful comments throughout the thesis project.

Haluan kiittää vanhempiani ja sisaruksiani, jotka ovat väsymättä tukeneet ja kannustaneet

minua läpi koulu-urani, ja erityisesti isääni, jonka jalanjäljissä olen päätynyt ohjelmis-

toalalle. Kiitän ystäviäni sekä työkavereitani Atostekilla, varsinkin vertaistuesta heitä,

jotka samaan aikaan kanssani painivat omien diplomitöidensä parissa. Lopuksi erityiski-

itokset Nooralle jatkuvasta henkisestä tuesta ja satunnaisesta tiellä olosta.

Tampere, 7th October 2022

Arttu Ruusiala

iv

CONTENTS

1. Introduction . 1

2. Background. 3

2.1 Vehicle software development 3

2.1.1 Onboard and offboard software 3

2.1.2 History of automatic driving 5

2.1.3 Regulations and standards 7

2.2 Simulation . 7

2.3 Sensors . 9

2.3.1 Vehicle dynamics sensors 10

2.3.2 LiDAR sensor . 10

3. Simulation tools . 13

3.1 CARLA. 13

3.1.1 Architecture of CARLA 13

3.1.2 Vehicles. 15

3.1.3 Sensors. 15

3.1.4 World. 16

3.2 Robot operating system 2 (ROS2) 17

3.3 Data Distribution Service (DDS) 19

4. Demonstrator . 21

4.1 Environment setup . 21

4.2 Flexbot framework . 23

4.3 Example Application . 23

5. Results . 27

5.1 Benefits . 27

5.2 Challenges . 29

6. Conclusion . 31

References . 33

v

LIST OF SYMBOLS AND ABBREVIATIONS

ADS Automated Driving System

API Application programming interface

CAN Controller Area Network

DARPA Defense Advanced Research Projects Agency

DCPS Data-Centric Publish-Subscribe model

DDS Data Distribution Service

DDSI Data Distribution Service Interoperability Wire Protocol

ECU Electronic Control Unit

GDS Global Data Space

GNSS Global Navigation Sattelite System

GPU Graphics Processing Unit

HIL Hardware-In-the-Loop

IDL Interface Definition Language

IMU Inertial Measurement Unit

IoT Internet of Things

IoV Internet of Vehicles

ISO International Organization for Standardization

LiDAR Light Detection And Ranging

OMG Object Management Group

QoS Quality of Service

ROS2 Robot operating system 2

RTPS Real-Time Publish-Subscribe

SIL Sofware-In-the-Loop

UE4 Unreal Engine 4

UML Unified Modeling Language

V2I Vehicle-to-Infrastructure

V2P Vehicle-to-Pedestrian

vi

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Everything

XML eXtensible Markup Language

1

1. INTRODUCTION

Automatic driving has been a growing trend in the automotive industry in the last decade.

American electric car manufacturer Tesla has been pioneering automatic driving and

many traditional car manufacturers are also following the trend. However, automatic driv-

ing is not a trivial challenge to solve. It is safety-critical, and requires heaps of testing

to verify the functionality. Automatic driving utilizes various sensors perceiving the en-

vironment such as LiDARs or cameras. Many studies of automatic driving suggest that

sufficient testing and verification requires up to billions (1 000 000 000) of driven testing

kilometers [1][2]. That is a gruesome task to achieve using only real vehicles. Conse-

quently, simulation appears to be a solution for this.

Simulation has been an integral part of car development for a long time. Traditionally, it

has been utilized in vehicle dynamics, and when modeling the physical properties of a

vehicle. For example, engineers have modeled the vehicle body behavior during a crash

or effects of vibrations on the durability of parts in the engine. However, to develop auto-

matic driving or driver assistance functions, different kind of simulation is needed. While

the accurate simulation of vehicle dynamics is still valuable, the importance of simulating

the perception of the surrounding environment is rising. The simulation should be able to

maintain a model of the surrounding world and produce realistic sensor data for the auto-

matic driving system. Ideally, the system under test should not be able to differentiate the

simulated world from a real one. While realistic sensor simulation is important, it is cru-

cial that the physics simulation and the vehicle-world interaction is realistic. This includes

for example accurate simulation of wheels and traction. The field of mobile robotics sim-

ulation tools is growing quickly and there are multiple open-source tools for simulation

including Gazebo [3] and CARLA [4] as well as proprietary solutions such as Cognata [5].

In CARLA and Cognata the focus of simulation is on automatic driving and realistic sensor

simulation, while Gazebo focuses more on robotics and accurate physics simulation.

The objective of this thesis is to study how an automatic driving development environment

could be established using software-only simulation and readily available open-source

components, and to build a demonstrator of such system that could be used as a refer-

ence when planning to use software-only simulation in the future. The CARLA simulator

[4] is chosen as the basis of this setup, and it is accompanied by the Robot operating

system 2 (ROS2), providing a means for communication between the components [6].

2

The study is conducted using a case study, where a small proof-of-concept application

is developed, and integrated into the setup. This study aims to analyze and evaluate the

benefits of using this kind of simulation environment in automatic vehicle control software

development. The analysis is based on qualitative information gathered from personal

observations during the development and setup of the example case, as well as from

related literature. The used literature sources were journal articles, where the same or

similar tools were utilized for software-only simulation, and the documentation provided

with the tools. The quantitative research method was chosen as it was suitable for a case

study where the results are solely observational and numerically unmeasurable.

Chapter two describes the background of vehicle software development and how simula-

tion is a central part of it. The following third chapter is introducing the simulation tools that

are used, after which the fourth chapter presents the demonstrator project of this study,

and gives an overview of the setup. Chapter five presents the results and the analysis,

and finally in chapter six there are conclusions and ideas for future steps.

3

2. BACKGROUND

This chapter covers in Section 2.1 general knowledge and background of vehicle software

development, focusing on automatic driving. Section 2.2 introduces simulation, which is

often used when developing and testing automatic driving systems. Finally, Section 2.3

discusses sensors used in automatic vehicles.

2.1 Vehicle software development

A modern car, or any moving vehicle, contains a lot of electronics and software. Al-

most everything is controlled by a computer. Therefore, vehicle development, which has

traditionally been mechanical engineering, nowadays involves more and more software

engineering. From motor control systems to driver assistance functions, and from safety

systems to passenger entertainment systems, everything is connected and running some

kind of computer software.

This section starts with the division of onboard and offboard vehicle software in Subsec-

tion 2.1.1. It is followed by short description of the history of automatic driving. Safety is

an important part of vehicle software development. There are standards and regulations

that aim to enforce safety. These are briefly discussed in Section 2.1.3. Software verifica-

tion typically involves a combination of simulation testing and testing using real hardware

and vehicle. Section 2.2 describes the simulation aspect of automatic vehicle software

development in more detail.

2.1.1 Onboard and offboard software

Vehicle software can be divided into onboard and offboard software, where onboard cov-

ers the software running on a hardware in the vehicle itself, and offboard the other sys-

tems the vehicle might be connected to. Offboard software could be, for example, an

online navigation service, to which the vehicle is connected, or a diagnostics tool used

during maintenance. Onboard software in cars traditionally spread across multiple elec-

tronic control units (ECU) all having specified purposes. They are connected using e.g.

the controller area network (CAN). An example of a traditional such system is an elec-

tronic braking control system, which is a safety and assistance system for cars. It has

4

electrical sensors to control and adjust the brake hydraulics to maintain the traction to the

road, and to prevent the wheels from locking while braking. [7]

Vehicles connected to external services, and other vehicles form a subcategory of Inter-

net of Things (IoT), Internet of Vehicles (IoV). Another term, often heard when vehicle

communications are discussed, is Vehicle-to-Everything (V2X) and its various deriva-

tives, such as Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-

Pedestrian (V2P). [8] They stand for different ways the vehicle can communicate and

interact with the environment. For example, V2V communication could be automatic cars

exchanging information about their planned actions, or V2I could be a road info system

warning cars about an accident or congestion further up the road.

The focus of this thesis is on onboard software used for automatic or autonomous driving

and driver’s assistance. The distinction between automatic and autonomy is the need

for some background control system, hence the ability to operate autonomously. For ex-

ample, an automatic car could drive a predefined route, but if an unexpected obstacle

appeared in the middle of its route, it would stop, and not be able to recover before the

obstacle disappeared, or it received help from an outside system or a human. However,

an autonomous car could try to adapt to the unexpected obstacle by, for example, mod-

ifying its route. The terms are often used as synonyms for each other, but technically,

autonomy is much more difficult and rare. This thesis refers to them both from now on as

automated driving systems (ADS).

Onboard ADS software can be divided into four categories: positioning, perception, plan-

ning, and control. The positioning system is localizing and keeps track of the current

position of the vehicle. The perception system is utilizing sensors to extract information

about the surrounding environment. The planning systems consist of path or route plan-

ning, behavior planning, meaning making the decisions and reacting to the surrounding

environment, and motion planning, which is planning the actual motion actions, such as

acceleration or steering. The control system is taking the actions from motion planning

and transforming them into commands that can be issued to lower-level control units. [8]

Offboard software in the automatic driving context could be, for example, an upper-level

control system for fleet management or a data collection service fetching information from

onboard software. It could be a service that keeps an up-to-date high-definition map of

the world, using data gathered from vehicles and shares it with an onboard navigation

system running on all vehicles connected to the service. Because the world is constantly

changing, the navigation system would then send updates to the map when it notices

discrepancies between the map and the world it is perceiving with its sensors.

5

Figure 2.1. The winner of 2005 DARPA grand challenge, Stanford Racing Team [9]

2.1.2 History of automatic driving

Automated driving systems (ADS) are onboard software responsible for either controlling

the vehicle or assisting a human driver. In a sense, early driver assistance systems

such as the anti-lock braking system which date as far as the ’70s, could be counted as

ADS, but the breakthrough in automated driving systems happened in the early 2000s.

Especially, the DARPA (Defense Advanced Research Projects Agency) challenges were

playing an important role in getting more traction for ADS development.

The United States Department of Defense organized the first DARPA grand challenge in

2004, which started a series of competitions pushing the automated driving technologies

forward. The first challenge was held in the Mojave Desert, United States, and the goal

was to drive a 240 km off-road course without human intervention. None of the contes-

tants were able to finish the race, and no winner was declared. All the contestants had

either suffered mechanical problems, withdrawn or disqualified from the race, or got stuck

in the difficult terrain. The challenge was scheduled again for the next year 2005. At that

time five vehicles completed the over 200 km route, and the era of automatic driving was

kicked off. Figure 2.1 displays the car of the 2005 winning team, the Stanford Racing

Team. [9]

The capabilities of ADS can vary a lot, and for that reason, ADS are often categorized

based on the level of autonomy achieved. SAE International, formerly named as Society

of Automotive Engineers, is an organization developing and maintaining standards for

various industries, including the automotive industry. They have defined in their standard

6

Ta
bl

e
2.

1.
Ta

bl
e

de
sc

rib
in

g
S

A
E

le
ve

ls
of

dr
iv

in
g

au
to

m
at

io
n

[1
0]

E
xe

cu
tio

n
of

M
on

ito
ri

ng
Fa

llb
ac

k
S

ys
te

m

S
A

E
N

am
e

N
ar

ra
tiv

e
de

fin
iti

on
S

te
er

in
g

an
d

of
D

ri
vi

ng
P

er
fo

rm
an

ce
C

ap
ab

ili
ty

le
ve

l
A

cc
el

er
at

io
n/

E
nv

ir
on

m
en

t
of

D
yn

am
ic

(D
ri

vi
ng

D
ec

el
er

at
io

n
D

ri
vi

ng
Ta

sk
M

od
es

)

H
um

an
dr

iv
er

m
on

ito
rs

th
e

dr
iv

in
g

en
vi

ro
nm

en
t

0
N

o
A

ut
om

at
io

n

Th
e

fu
ll-

tim
e

pe
rfo

rm
an

ce
by

th
e

hu
m

an
dr

iv
er

of
al

la
sp

ec
ts

of
th

e
dy

-
na

m
ic

dr
iv

in
g

ta
sk

,
ev

en
w

he
n

en
ha

nc
ed

by
w

ar
ni

ng
or

in
te

rv
en

tio
n

sy
st

em
s.

H
um

an
dr

iv
er

H
um

an
dr

iv
er

H
um

an
dr

iv
er

n/
a

1
D

riv
er

A
ss

is
ta

nc
e

Th
e

dr
iv

in
g

m
od

e-
sp

ec
ifi

c
ex

ec
ut

io
n

by
a

dr
iv

er
as

si
st

an
ce

sy
st

em
of

ei
th

er
st

ee
rin

g
or

ac
ce

le
ra

tio
n/

de
ce

le
ra

tio
n

us
in

g
in

fo
rm

at
io

n
ab

ou
tt

he
dr

iv
in

g
en

vi
ro

nm
en

ta
nd

w
ith

th
e

ex
pe

ct
at

io
n

th
at

th
e

hu
m

an
dr

iv
er

pe
r-

fo
rm

al
lr

em
ai

ni
ng

as
pe

ct
s

of
th

e
dy

na
m

ic
dr

iv
in

g
ta

sk
.

H
um

an
dr

iv
er

an
d

sy
st

em
H

um
an

dr
iv

er
H

um
an

dr
iv

er
S

om
e

dr
iv

in
g

m
od

es

2
P

ar
tia

l
A

ut
om

at
io

n

Th
e

dr
iv

in
g

m
od

e-
sp

ec
ifi

c
ex

ec
ut

io
n

by
on

e
or

m
or

e
dr

iv
er

as
si

st
an

ce
sy

st
em

s
of

bo
th

st
ee

rin
g

an
d

ac
ce

le
ra

tio
n/

de
ce

le
ra

tio
n

us
in

g
in

fo
rm

a-
tio

n
ab

ou
tt

he
dr

iv
in

g
en

vi
ro

nm
en

ta
nd

w
ith

th
e

ex
pe

ct
at

io
n

th
at

th
e

hu
-

m
an

dr
iv

er
pe

rfo
rm

al
lr

em
ai

ni
ng

as
pe

ct
s

of
th

e
dy

na
m

ic
dr

iv
in

g
ta

sk
.

S
ys

te
m

H
um

an
dr

iv
er

H
um

an
dr

iv
er

S
om

e
dr

iv
in

g
m

od
es

A
ut

om
at

ed
dr

iv
in

g
sy

st
em

(“
sy

st
em

”)
m

on
ito

rs
th

e
dr

iv
in

g
en

vi
ro

nm
en

t

3
C

on
di

tio
na

l
A

ut
om

at
io

n

Th
e

dr
iv

in
g

m
od

e-
sp

ec
ifi

c
pe

rfo
rm

an
ce

by
an

au
to

m
at

ed
dr

iv
in

g
sy

st
em

of
al

la
sp

ec
ts

of
th

e
dy

na
m

ic
dr

iv
in

g
ta

sk
w

ith
th

e
ex

pe
ct

at
io

n
th

at
th

e
hu

m
an

dr
iv

er
w

ill
re

sp
on

d
ap

pr
op

ria
te

ly
to

a
re

qu
es

tt
o

in
te

rv
en

e.
S

ys
te

m
S

ys
te

m
H

um
an

dr
iv

er
S

om
e

dr
iv

in
g

m
od

es

4
H

ig
h

A
ut

om
at

io
n

Th
e

dr
iv

in
g

m
od

e-
sp

ec
ifi

c
pe

rfo
rm

an
ce

by
an

au
to

m
at

ed
dr

iv
in

g
sy

st
em

of
al

la
sp

ec
ts

of
th

e
dy

na
m

ic
dr

iv
in

g
ta

sk
,e

ve
n

if
a

hu
m

an
dr

iv
er

do
es

no
tr

es
po

nd
ap

pr
op

ria
te

ly
to

a
re

qu
es

tt
o

in
te

rv
en

e.
S

ys
te

m
S

ys
te

m
S

ys
te

m
S

om
e

dr
iv

in
g

m
od

es

5
Fu

ll
A

ut
om

at
io

n

Th
e

fu
ll-

tim
e

pe
rfo

rm
an

ce
by

an
au

to
m

at
ed

dr
iv

in
g

sy
st

em
of

al
l

as
-

pe
ct

s
of

th
e

dy
na

m
ic

dr
iv

in
g

ta
sk

un
de

r
al

lr
oa

dw
ay

an
d

en
vi

ro
nm

en
ta

l
co

nd
iti

on
s

th
at

ca
n

be
m

an
ag

ed
by

a
hu

m
an

dr
iv

er
.

S
ys

te
m

S
ys

te
m

S
ys

te
m

A
ll

dr
iv

in
g

m
od

es

7

J3016 six levels of driving automation for on-road vehicles. The levels start with 0, where

there is no automation, but the system may give a warning or momentarily intervene in

the driving, to level 5 where no human is required at all. Table 2.1 describes the levels

in detail. [10] Most of the current ADS fall into level 1 or 2. For example, an adaptive

cruise control is a level 1 driver assistance system, and Tesla admits that its full self-

driving is only at level 2 [11]. However, many car manufacturers, such as Toyota [12],

Stellantis [13], and Polestar [14], have ambitious plans for level 3 or higher automation.

The simulation environment studied in this work could be used to develop and test a

system from any SAE level. The example application built in this work categorizes in level

1 driver assistance.

2.1.3 Regulations and standards

There are standards and regulations to guide the development of moving vehicles. The

ISO 26262, titled Road Vehicles – Functional safety [15], is the most important stan-

dard for the automotive industry. It is an adaptation of IEC 61508: Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-related Systems for road vehicles.

The goal of ISO 26262 is to ensure that functional safety is achieved during the whole

lifecycle of a vehicle: development, production, operation, service, and decommission-

ing. It applies to all safety-related systems in road vehicles, whether they were electrical,

electronic, or software components. [15]

Traditionally, the standards have been focused on functional safety. However, cyber-

security-related standards have emerged in recent years, such as ISO 21434: Road

Vehicles – Cybersecurity Engineering [16], and SAE J3061: Cybersecurity Guidebook

for Cyber-Physical Vehicle Systems [17]. [18] The standards offer references and re-

quirements, which help to achieve safety and security.

The V-model, in Figure 2.2, is a development process, which is often followed in the

automotive industry. It suits well for safety-critical requirements and verification-driven

development of vehicle software. [18] For each design phase in the development, there

is a corresponding testing phase, which validates and verifies the system is fulfilling the

requirements. Testing in a simulated environment is an important part of the validation

and testing.

2.2 Simulation

The level of simulation can vary based on how it is used, and what is needed from the

simulation, from a light-weight software-only simulation to a sophisticated Hardware-In-

the-Loop (HIL) simulation. Software-In-the-Loop (SIL) testing is often the most lightweight

simulation environment.

8

Figure 2.2. V-model development process, adapted from [18].

The idea of SIL is that the simulation environment does not require any specific hardware

to run, and everything in the simulation is implemented using software. Possible hard-

ware requirements are satisfied by emulating the hardware. Interfaces to other devices,

such as sensors, are simulated in the software. Platform hardware emulation is utilized if

the tested software needs to be running on a specific hardware. The vehicle’s lower-level

control units, such as steering or braking controllers, are simulated as separate software

components that implement the necessary functionality of the interface. They are acting

as if they were actual independent hardware components, when communicating with the

software under test. A more inexpensive SIL environment could be utilized already during

the software and vehicle hardware development. It could be light enough for each devel-

oper to have their own simulation environment for testing. This allows quick development

and testing cycles and enables agile software development.

Hardware-In-the-Loop, in contrast, relies on using many of the same hardware compo-

nents as the real vehicle. This means that the software under test is running on the same

computer hardware as in a real vehicle, and communicating with real other hardware

components of the vehicle. Possible inputs for those other components are then simu-

lated in software, instead of simulating the whole vehicle. High-end HIL simulation can be

used as a last testing and verification milestone before testing with a vehicle in the real

world. It is usually more expensive and complicated to build and maintain than the SIL

environment.

For example, Ford Motor Company has utilized HIL simulation in the development of a

SAE level 2 ADS system. They used Simulink [19] and CarSim [20] as the base of the

hardware simulation. [21] Simulink is a framework for developing, testing, and simulating

using model-based design. It is a popular framework for setting up a HIL environment.

9

CarSim is a simulation tool, which is specialized in the simulation of the mechanical and

physical properties of a car. These two along with Gazebo [3] are simulation tools made

specifically for HIL or SIL testing. However, there are other options as well.

Video games could be utilized for driving simulation. Many of them have stunningly realis-

tic visuals and quite advanced physics simulations. For example, there are studies where

Grand Theft Auto V [Rockstar Games, 2014] is used as a simulation environment for test-

ing automated driving systems [22][23]. However, using video games poses certain chal-

lenges. Video games do not usually support detailed benchmarking and customization.

The control over the simulated world is limited. It can be difficult to have a deterministic

environment. Data collection from a video game might be difficult and require modifica-

tions to the game, which might not be possible due to the closed-source nature of video

games.

However, using a video game engine to create bespoke driving simulation from the ground

up is a way to benefit from technologies created for video games. A video game engine

is a framework providing tools for needed in making video games, such as real-time ren-

dering, animation, and physics simulation. Originally they were used just to create video

games, but nowadays, they have become more common also in other fields, that can ben-

efit from photorealistic rendering, such as filming, architecture, and automotive industry.

[24] Unity [25] and Unreal Engine [26] are both game engines that are widely used as the

core of a simulation environment. CARLA [4] and Airsim [27] are open-source examples

of simulators based on a game engine.

2.3 Sensors

Sensors and perception are an important part of vehicle software. They provide the ADS

means to localize and position themselves, as well as react and adapt to the changing

environment. Sensors can be classified into two categories: vehicle dynamics sensors

and environmental sensors. Vehicle dynamics sensors are observing and measuring the

state of the vehicle itself. Such sensors are, for example, wheel encoder, tire pressure

sensor, and inertial measurement unit (IMU). Environmental sensors, such as LiDAR,

camera, radar, or Global Navigation Satellite System (GNSS) antenna, are perceiving the

surrounding environment. For autonomous driving, LiDAR is one of the most important

sensors, along with the GNSS.

Subsection 2.3.1 briefly discusses the vehicle dynamics sensors. From the environmental

sensors, LiDAR is introduced in Subsection 2.3.2, as it is the most important, and the only

sensor used, in the demonstrator of this work.

10

2.3.1 Vehicle dynamics sensors

Vehicle dynamics sensors are producing information about the physical state of the ve-

hicle itself. Many of these sensors are present even in modern cars without any ADS

capabilities. A wheel encoder is an electromechanical sensor that measures the angular

position or movement of a shaft or an axle. They are used for odometry measurements.

[2] Figure 2.3 shows anti-lock braking system (ABS), which is an example of a wheel

encoder in a passenger car.

Figure 2.3. Anti-lock braking system (ABS). [28]

IMU is a sensor that is a combination of accelerometers, gyroscopes, and sometimes

magnetometers. It measures the acceleration and angular velocity of the vehicle, and

when combined with the GNSS, it can provide accurate positioning results. [8]

2.3.2 LiDAR sensor

LiDAR is an acronym for light detection and ranging. It is an application of laser rang-

ing, where transmitting laser radiation and measuring the reflected radiation is used to

calculate the distance to objects. Examples of other applications are laser rangefinders

or scanners. In laser ranging, the measuring instrument emits a beam of laser radiation

towards the measured object and then proceeds to measure the reflection. There are two

methods to calculate the range of the object. The first, time of flight is based on sending

short laser pulses and then measuring accurately the time it takes for the pulse to be re-

11

flected back from an object. The second, solid state ranging is based on the amplitude (or

intensity) modulated continuous laser beam and the range is calculated using the phase

difference between transmitted and received beam. [29]

LiDARs typically use the pulsed time of flight ranging and rotating beams to make mil-

lions of measurements of a surrounding environment. Measurements produce a point

cloud, which is a 3D map of the environment as seen by the LiDAR. Figure 2.5 displays

an example of a visualized point cloud. The main properties of LiDAR sensors are the

number of beams, the vertical and the horizontal resolution (Figure 2.4), the range, the

rotation frequency, and the points generated per second. A LiDAR can emit one or more

laser beams for each measurement cycle. The beams are usually vertically stacked and

the angles between the beams are determining the vertical resolution of the LiDAR. The

horizontal resolution is the angle that the sensor is rotated between each measurement.

The range describes how far the sensor can detect objects. Rotation frequency tells the

frequency at which the measurements are taken. [29]

Figure 2.4. Illustration of horizontal and vertical resolution of LiDAR.

LiDARs can be simulated using ray tracing. Ray tracing is a method for simulating the

behavior of light by casting a ray of light, either from an observation point or from a light

source. It is then checked and calculated where the light ray would hit the objects in

the scene. [30] When the properties of a LiDAR are known, a virtual sensor can be

constructed. Rays are cast from the simulated LiDAR origin, and the distance to the

12

Figure 2.5. LiDAR generated point cloud data visualized in RViz tool.

intersection point of the ray and objects in the simulation environment is calculated. These

rays are calculated with the frequency and angles similar to how a real sensor would send

laser beams. Calculated distances can be used to produce a point cloud. Using just ray

tracing produces a too ideal result. It does not produce any noise and disturbances that

are present in real-world measurements. For that reason, drop-off of measurements and

addition of noise are introduced into the produced data in simulation. These can be based

on, for example, the distance the ray has to travel, or completely at random.

13

3. SIMULATION TOOLS

This chapter gives an introduction to simulation tools that were used in this work. Section

3.1 describes the CARLA simulator used for world and sensor simulation. Robot Oper-

ating System 2 (ROS2) is presented in Section 3.2 followed by Data Distribution Service

(DDS) in Section 3.3.

3.1 CARLA

CARLA is an open-source driving simulator focused on supporting the development of

automatic driving systems. Its main use context is in the automotive industry and auto-

matic driving of passenger cars, but it can be customized for other fields of automatic

driving due to its open-source nature [31]. Using custom maps and vehicle models, it can

be used, for example, in the development of automatic heavy working machines. CARLA

is developed and maintained by the Computer Vision Center of Universitat Autonoma de

Barcelona, and it has some well-known companies as sponsors such as Intel and Toyota

Research Institute. CARLA has been utilized in both SIL [32] and HIL [33] testing and

is gaining popularity in autonomous driving research. Its key features are realistic world

simulation, focusing on urban environments, including traffic and pedestrian simulation,

and sensor simulation. [4]

The following subsections will describe the main aspects of CARLA. The first Subsection

3.1.1 describes the architecture of CARLA. It is followed by Subsection 3.1.2 describing

the vehicles, Subsection 3.1.3 the sensors, and Subsection 3.1.4 the world in CARLA.

3.1.1 Architecture of CARLA

CARLA follows the client-server architecture. The core of the server and world simulation

is a game engine, Unreal Engine 4 (UE4). It provides a 3D world with physics simulation

and tools to create game logic for controlling the vehicles and other objects in the world. A

CARLA plugin on top of the game engine provides the functionality needed for the server

to communicate with clients and control the simulation state. The main responsibilities

of the server are updating the world-state and its actors, computing the physics and ren-

dering the simulated sensor data. In CARLA, objects in the simulated world that can

14

Figure 3.1. Architecture of CARLA server and client.

do actions and interact with other objects are called actors. Actors can be, for example,

pedestrians, vehicles, sensors attached to the vehicles, or traffic lights and signs. Vehi-

cles controlled outside of the simulation i.e. controlled by vehicle control software running

against the simulator, are called ego vehicles. [34]

The client-side controls the logic of actors and manipulates the world conditions such as

weather, or time of day. The server and the clients do not need to be running on the same

machine. The connection is established using TCP/IP protocol. Both the server and the

client utilize LibCARLA for establishing the connection between the two. CARLA provides

multiple ways for clients to connect to the server. CARLA client application programming

interface (API) is available for Python and C++. For Python, there is a client library that is

packed with a CARLA installation package, whereas the C++ library needs to be built from

the source code. Figure 3.1 presents the architecture of CARLA with ADS connected to

it using the Python API. In addition, there is support for Robot Operating system (ROS),

both original and ROS2, using the CARLA ROS bridge. It is using the Python API to

translate the communication to ROS topics and services. CARLA ROS bridge supports

most of the same functionalities as the Python API, but some functions are missing. [34]

When the CARLA server is started, it starts up using the default configurations and one

of the default maps. The server can be configured to some degree using command line

arguments when starting it. For example, to set the network ports it is using for client

connections. However, the majority of configuration is done using clients. Also, a freshly

started CARLA server does not have any actors. They need to be spawned from the client

side. CARLA installation comes with a set of Python scripts. There are both examples of

how to use the Python API, and utility scripts to ease the configuration, and manipulate

the simulation world state. [34]

Actors are defined in CARLA with blueprints. A CARLA blueprint is, in a way, an extended

15

Figure 3.2. A screenshot of Tesla Model 3 in CARLA.

class definition. It is a combination of things, such as functionality and code, a 3D model,

and several attributes, of which some are configurable. CARLA blueprints allow spawning

new instances of actors to the simulation. There are five different types of actors: sensors,

spectators, traffic signs and lights, vehicles, and walkers. [34]

3.1.2 Vehicles

Vehicles are actors that consist of a 3D model and a list of attributes that describe the

vehicle. Some attributes can be modified after spawning while others are only describing

the properties of a vehicle. Version 0.9.13 has around 35 pre-defined vehicles including

passenger cars, bikes, and trucks. Vehicles include both imaginary vehicles and vehicle

models from real manufacturers, such as Tesla Model 3 shown in Figure 3.2. From the

actor’s point of view, ego vehicle and common traffic vehicles are the same. The differ-

ence is only which entity is controlling the driving. Ego vehicles are controlled with control

messages through CARLA client API, while traffic vehicles are controlled by one of the

traffic simulators provided by CARLA. [34]

3.1.3 Sensors

Sensors in CARLA are actors, which retrieve information from the surrounding simulation

environment, and pass it on to the client. Sensor actors should be attached to a parent

actor, usually to a vehicle. CARLA comes with an implementation of a variety of sensors

such as RGB cameras, depth cameras, LiDARs, radars, and IMUs. These sensors can

produce data continuously, but there are also sensors that produce only on certain events.

Such a sensor is, for example, a collision sensor that provides data only if a collision

16

Figure 3.3. A scene from Town10HD map in CARLA.

happens.

Sensors are spawned from the client-side, but for most sensors, the computation for their

measurements is done on the server-side. The server uses LibCARLA to serialize the

sensor data and send it to the client using TCP. The client deserializes it and depending

on the API used, makes it available for the connected automated driving system.

3.1.4 World

CARLA version 0.9.13 comes with 8 different pre-defined maps. They vary from a simple

small-town layout to a highway loop and city environments. Figure 3.3 displays a scene

from an urban map Town10HD. A map consists of a 3D model of the world and its road

definition. Road definition is based on OpenDRIVE standard [35] by ASAM (Association

of Standardization of Automation and Measuring Systems). OpenDRIVE defines roads,

lanes, junctions, and road network-related objects, such as road signs or traffic lights.

New and existing maps can be created and modified using Unreal Engine Editor. In

addition, generating maps from the OPENDrive definition is supported.

World simulation support changing environmental conditions, such as time of day or

weather. Weather options include controlling cloudiness, rain intensity, wind intensity,

azimuth, and angle of the sun, fog, and light interaction with small particles in the air such

as pollution or dust. Snow and ice, which are quite important in Finland, are missing.

Additionally, most of the weather effects only affect camera sensors making, for example,

LiDARs work too ideally.

CARLA provides four means to simulate traffic and run specific scenarios: Traffic Man-

17

ager, Scenario Runner, Scenic, and SUMO. Traffic Manager is the simplest tool. It is a

module within CARLA that controls the vehicles from the client-side. It is simply enabled

by setting the autopilot attribute on for a vehicle actor. The Traffic Manager also controls

pedestrians. Vehicles controlled by Traffic Manager are driving and making random turns

at intersections, while obeying traffic lights and speed limits, and avoiding collisions. Al-

though it is possible to configure some vehicles to ignore the traffic rules to test more

authentic traffic behavior. The Traffic Manager is running as a client, but keeps track of

the simulation state, and a registry of all vehicles. It utilizes them to calculate a driving

path and the reactions to traffic lights, or potential collisions. The calculated plan is then

translated to driving commands which are sent to the CARLA server. The calculations

for all Traffic Manager Controlled actors are done simultaneously, and the commands are

sent to the server as a batch. [34]

The other three (Scenario Runner, Scenic, and SUMO) are not included in the main

CARLA package, but are available separately. Scenario Runner allows for defining and

running complete and complex scenarios. Scenario Runner comes with a set of exam-

ple scenarios. The scenarios are defined either with a Python interface, or using the

OpenSCENARIO standard [36]. OpenSCENARIO is a standard defining a file format for

describing complex and dynamic driving and traffic simulator scenarios. It is maintained

by ASAM. Scenario Runner has support for running scenarios with distinct metrics for

evaluating the performance of the AD systems being tested.

Scenic [37] is alternative for defining and running scenarios. It is a domain-specific prob-

abilistic programming language for modeling environments for robots and autonomous

cars. It is a separate project from CARLA, and supports multiple other simulators.

SUMO is the fourth option for traffic simulation. It is an open-source project focused on

microscopic traffic simulation. Microscopic traffic simulation means that each vehicle and

its dynamics are simulated individually, whereas in macroscopic only traffic flow and its

density is simulated. [38] SUMO can be connected with CARLA to control vehicles in the

simulation similarly to with Traffic Simulator.

3.2 Robot operating system 2 (ROS2)

Robot Operating System 2 (ROS2) is an open-source middleware for developing robotics

applications. It is maintained by Open Source Robotics Foundation (OSRF). ROS2 pro-

vides a topic-based publisher/subscriber transport layer for communication and useful li-

braries and tools for robot development. Its predecessor Robot Operating System (ROS)

was lacking support for real-time performance and was only available for certain operat-

ing systems. Therefore, ROS2 was introduced in 2014 to improve on these aspects [6]

and in 2017 the first distribution of ROS2 was released. ROS2 utilizes Data Distribution

Service (DDS) for its inter-process communication. [39]

18

The ROS2 communication network is referred to as the ROS2 graph. It consists of nodes

each responsible for a single purpose. This spreads the functionality of the application to

single-purpose modules, which communicate with each other using topics, services, ac-

tions, and parameters. Topics are used for nodes to send messages to each other. Each

topic has a name, and message type that defines the structure of the data. Nodes can

subscribe to topics to receive these messages, or publish their messages in the topics.

Topics are meant for continuous data streams such as sensor data or state information.

They are the main communication channel in ROS2 and the only one used in the scope

of this thesis.

Services similarly to topics have a name but instead of publishing and subscribing, one

node is acting as a server and others as clients. A client node requests from the server

node, and the server node returns some response. Services are meant for remote proce-

dure calls, such as querying the state of a node, or running some calculation. Figure 3.4

shows an example of nodes communicating via topic and service.

Figure 3.4. Examples ROS2 nodes communicating with a topic and a service.

Actions are similar to services, but for long-running tasks. They are built using services

and topics. The action client node requests some goal from the action server node, using

a goal service. The action server will then execute the action towards the goal, while

publishing its progression in the feedback topic. Finally, when the goal is achieved, the

action server sends the result to the client using the result service. Figure 3.5 shows an

example of nodes communicating via action. [40]

ROS2 includes tools such as RViz, rqt, and roslaunch. RViz is a 3D visualizer that can

visualize the robot itself, as well as the environment it is working in, and the data its

sensors are producing. It works by subscribing to relevant topics and then drawing a

visualization of the published data. Rqt provides a software framework for various GUI

tools for ROS2. It is highly customizable via plugins. Roslaunch is a tool that can be used

to automate and configure the launching of ROS2 nodes. [40]

19

Figure 3.5. Example of ROS2 nodes communicating with an action.

3.3 Data Distribution Service (DDS)

Data Distribution Service (DDS) specifies a standard for networking middleware that im-

plements the publisher-subscriber pattern for real-time systems. Object Management

Group (OMG) is a non-profit technology standard consortium, which manages the defini-

tion of the standard, but the implementations for it are provided by different vendors. For

example, CARLA ROS bridge is using eProsima’s implementation of the DDS, and the

Flexbot framework, used in the demonstrator in this work, relies on RustDDS [41], which

is an open-source DDS implementation for Rust programming language, maintained by

Atostek Oy. DDS standard consists of two parts: DDS API standard and Data Distribution

Service Interoperability Wire Protocol (DDSI). The DDSI specifies the Real-time Publish-

Subscribe (RTPS) wire-level protocol and it provides wire interoperability across different

implementations while the DDS standard specifies the API that allows different vendors

to make their implementations. [42]

DDS is widely used for applications that depend on distributing high volumes of data with

real-time constraints. It is used, for example, in applications in automated financial trad-

ing, defense, aviation, and supervisory control and data acquisition systems. DDS aims

to answer three key challenges: real-time, dependability, and high performance, which

make DDS viable for these fields. First, it operates in real-time, meaning the information

is delivered consistently at right time and in the right place. Real-time does not nec-

essarily mean that the data is distributed with low latency, but that it may not miss the

deadlines set for it. The second challenge addressed is dependability. It means that the

system integrity is kept, and data is available and reliable even if hardware or software

failures occur. The third challenge is the high performance, which means that the DDS

can distribute very high volumes of data with low latencies while also succeeding in the

two aforementioned challenges. [42]

The core of the DDS API standard is a data-centric publish-subscribe model (DCPS).

20

The idea is that the information is in a state that is shared between all nodes. That

state is called Global Data Space (GDS). Information in the GDS is defined by topics.

The concept of topics is similar to ROS2 topics. They have a name, a data type, and

a collection of Quality of Service (QoS) policies. Topic names need to be unique within

a GDS. Topic data types are structural, and can be defined with a variety of syntaxes,

such as Interface Definition Language (IDL), eXtensible Markup Language (XML), Unified

Modeling Language (UML), and annotated Java. [42]

The nodes in DDS are called participants and consist of publishers and subscribers,

which contain DataWriters and DataReaders for specific topics. They are abstractions

for reading and writing to a topic, and utilize QoS to match which readers can subscribe

to which writers in a topic. The matching for DDS subscriptions is made against the name

and the type of the topic along with QoS policies offered by DataWriters and requested by

DataReaders. To match a reader to a writer requested policies should be less demanding

than the ones offered. [42]

The QoS can define, for example, the availability of the data to the participants with Dura-

bility policy. The Volatile level of Durability does not maintain the published data for par-

ticipants joining the topic late, while Transient local and Transient make sure that the

data is stored for late joiners. Another example is the Reliability policy, which dictates if

lost data is guaranteed to be re-transmitted with Reliable policy, or if the lost data is not

retransmitted with Best effort policy. [42]

21

4. DEMONSTRATOR

This chapter introduces the demonstrator simulation environment in Section 4.1, Flexbot

framework in Section 4.2, and a proof of concept application, Carlabot, in Section 4.3.

4.1 Environment setup

The goal was to set up a demonstrative development and testing environment using the

CARLA simulator. To test this environment in practice, some software to integrate into

the simulation is needed. Therefore, a small vehicle control application, called Carlabot,

was developed using the Flexbot framework. The communication between the simulation

and the application is established using ROS2. Visualization of the sensor data utilizes

the RViz visualization tool which is a part of ROS2. The simulation environment and the

application, as described in Figure 4.1, are running the same computer, although that is

not necessary. The example application represents SAE level 1 [10] automation system.

It is a driver assistance system providing simplistic collision avoidance, and therefore it

requires a human driver. Manual driving is implemented using a gamepad.

Figure 4.1. Architecture of the demonstrator environment.

The vehicle model used in the simulation was Tesla model 3. It was chosen as it is an

electrical car without a gearbox, which simplifies the controlling, as gear changes are not

required. The world model is not significant for this work, so Town10HD_Opt was chosen,

since it was one of the more detailed and visually rich maps of the pre-defined maps.

A virtual LiDAR sensor is attached to the roof of the car. Additionally, a virtual camera

sensor follows the car from behind. The images are not used in the example application,

22

but they are visualized in the RViz visualization for a human driver to see better what is

happening in the simulation. An example view of RViz visualization is shown in the Figure

4.2.

The simulation environment was set up on a desktop PC running Ubuntu 20.04 Linux.

The setup does not have very demanding requirements for the hardware, although, to

utilize CARLA’s high-quality image rendering, a separate graphics processing unit (GPU)

is recommended. The processor was Intel i5-10600K and GPU NVIDIA RTX 3090, but

lower-end components would probably have been sufficient. For manual driving, Sony

Dualshock 3 gamepad was used. Ubuntu 20.04 Linux has USB drivers for Dualshock 3,

and the gamepad is accessible as a generic joystick device.

Figure 4.2. A screenshot of RViz visualization, where the virtual camera feed is shown
on the left, and the virtual LiDAR pointcloud view in on the right.

CARLA provides install packages for both Linux and Windows. Alternatively, one can

build CARLA from the source codes as it is an open-source project. Using a ready-made

package is likely enough for most users as it allows customization of the environments and

vehicles, and integrating your control software into it, to control the vehicle in simulation.

However, building from sources allows customizing CARLA more by, for example, adding

new or modifying existing sensors.

Setting up the simulation environment requires some manual steps, although those could

be automated with a script. Spawning actors can be partly done with the CARLA ROS

bridge. Spawning the ego vehicle and the actors, such as sensors related to it, can be

done using the CARLA ROS bridge, but generating general traffic and pedestrians are

handled easier through the Python API with a script.

There is an option to utilize containerization with CARLA. A Docker image including the

23

CARLA server is available in the Docker Hub. This enables running the CARLA server

without having to install the dependencies or running multiple instances of the server.

[34] In this work, containers were not used, but they were recognized as something that

could be used in the future if this kind of environment setup would be taken into wider

use. Packing the server and related scripts for setting up the environment in a Docker

container could significantly simplify the setup process and make the environment more

easily attributable. This could be used, for example, in automated testing, or distributing

the same testing environment to every developer without the inconvenience of installing

dependencies and doing manual configurations.

4.2 Flexbot framework

Flexbot is a software framework developed at Atostek Oy [43]. It provides a platform for

creating microservice architecture based onboard robot control software. Control soft-

ware is split into nodes that each have a specific task. The system structure specification

describing the nodes of the application, and the connections between them, is written in

Haskell. From that specification, a code generator generates the node interfaces and data

structures needed to implement the nodes in Rust language. This allows the developer

to focus on the actual functionality and implementation of the nodes. Flexbot framework

provides logging of the communication between nodes. Flexbot code generator also pro-

duces a visual graph of the nodes and how they are connected in graphml format, which

can be viewed and modified with graph editor tools, such as yEd. [44][45]

Flexbot is flexible when mapping nodes to threads or processes. Each node can run on its

own thread within a single process or the nodes can be spread across multiple processes.

They can even be defined external when the Flexbot application is communicating with

non-Flexbot systems. The node mapping can be easily modified independently of the

actual implementation of the nodes by changing the specification and running the code

generation again. The nodes have typed inputs and outputs, and the defined communi-

cation channels between them can use various methods depending on how the nodes

are mapped to processes. Communication between nodes within the same process can

be generated in native Rust communication. For inter-process communication (IPC), for

example, ROS2 can be used. [44][45]

4.3 Example Application

A proof-of-concept Carlabot example application was made using the Flexbot framework.

Carlabot implements a simple LiDAR-based collision avoider and manual driving using a

gamepad. Figure 4.3 presents the nodes of Carlabot and how they communicate with

each other and the CARLA ROS Bridge. Carlabot consists of three nodes: joystickDriver,

24

Figure 4.3. Graph of ROS2 communication between the example application and CARLA
ROS Bridge

joystickCommander, and collisionAvoider.

JoystickDriver is responsible for reading the joystick state, i.e. the buttons pressed and

analog stick positions, from the generic Linux joystick device. The reading of the joystick

state is done whenever CARLA ROS Bridge publishes to /carla/status topic, and the

simulation time is ticked. CARLA server is running in asynchronous mode without a fixed

timestep meaning it is running with the quickest tick rate possible with the hardware. The

joystick state is read every tick to ensure that a driving command is issued every time

the simulation state is updated. JoystickDriver sends a JoystickReport message to the

joystickCommander node, which combines the joystick commands with driving restrictions

coming from collisionAvoider.

CollisionAvoider node subscribes to /carla/ego_vehicle/lidar topic to receive the

LiDAR data from the simulation. It processes the LiDAR data and decides to either

limit the speed or stop the vehicle completely. CollisionAvoider sends drivingRestriction-

Message to the joystickCommander node. JoystickCommander utilizes the information

from the other two nodes to produce vehicle control commands, which it publishes to

/carla/ego_vehicle/vehicle_control_cmd topic.

The collisionAvoider receives the point cloud and checks if there are any points in the

defined action areas illustrated in Figure 4.4. CollisionAvoider is interested in an area

spanning 1.5 meters to both sides of the LiDAR origin, and in front of it. Points closer

than 5.9 meters in front of the LiDAR cause stopping, and points closer than 10.0 meters

invoke slowdown. Slowdown applies half of the maximum braking power to the driving

25

Figure 4.4. CollisionAvoider issues a slowdown or a stop if LiDAR detects something in
front of the car.

command but does not prevent driving forwards completely. It is possible to bypass the

restrictions from collisionAvoider by either pressing the bypass button on the controller or

switching the drive gear to reverse.

Sony Dualshock 3 gamepad is used for manual driving (Figure 4.5). The left analog stick

is used to control the throttle and braking: up to accelerate, and down to brake. The right

analog stick is for steering. The cross button engages the handbrake. The square button

bypasses the collision avoidance as long as it is pressed, and the triangle button puts the

car into reverse gear as long as it is pressed.

26

Figure 4.5. Sony Dualshock 3 gamepad used for manual driving.

27

5. RESULTS

Chapter 5 presents the results and the analysis. First, Section 5.1 describes the benefits

of using software-only simulation, then in Section 5.2 challenges are outlined.

5.1 Benefits

Having a software-only simulation environment available when doing automatic driving

development gives huge benefits. Developing a system, such as the example application

developed in this work, that utilizes point cloud data from LiDAR sensors is nearly impos-

sible without some kind of simulation or playback of real LiDAR data. While capturing real

data and replaying it to test software might give realistic test scenarios, there are some

problems with it. First, it is not interactive, and therefore, any reactions the ADS has to

the data do not reflect in the replayed data. For example, when replaying point cloud data

where collision with an obstacle would be imminent, and the ADS should avoid this by

either braking or steering the vehicle away from the obstacle, the decision to act can be

done from replayed data, but how the scenario would continue depends on the decision

and replayed data cannot reflect that. With simulation, the data is always produced based

on the scenario, and thus allows the testing of what happens after the decision is made,

and ADS has reacted to the data.

Another problem with replaying data is that the amount of sensor data could be very

large. One LiDAR scan can contain millions of points, and a LiDAR can scan tens of times

per second. Without compression, it becomes very consuming to save that much data.

Simulation, however, can produce a vast amount of data as needed without the need for

saving huge chunks of data on a disk. Many simulation environments, including CARLA,

support determinism, which enables reproducibility comparable to replaying saved data.

The key benefit of software-only simulation, when compared to HIL simulation, is the

cost. While it probably loses in realism, it very likely wins in costs when setting up an

environment, or scaling up the number of simulation instances.

Software-only testing enables testing very early in the development cycle. Simulation,

in general, does not involve the same safety risks as real-world testing. Collisions and

accidents in simulation do not break the vehicle or put anyone in danger. Therefore, a

28

simulation environment can be used to test software that is unfinished or known to be

broken. Each developer can have their own simulation environment they are using to test

their code and make small iterative changes between the tests.

Building a simulator setup using dedicated hardware requires knowledge of the hardware

components and how to configure and install them. Acquiring the hardware might be dif-

ficult and time-consuming. In 2022, the global pandemic and economic instability have

increased the lead times of many hardware components. Given the component short-

age, problems with global logistics are not going to disappear any time soon, so relying

more on general multipurpose hardware and implementing the specialization in software

is likely going to be a growing trend. Software-only simulation is doing exactly that.

The great scalability of software-only testing enables driving more test kilometers than

what would be realistically possible with a physical test vehicle. Many machine learning

based systems need to be trained with test data. Gathering test data from the real world

is a very time-consuming task. First, it involves driving around and capturing the data.

Then, someone needs to label the captured data. For example, when training a camera-

based system that detects and recognizes objects it sees, one needs to capture images

and then label the interesting objects in the images before they can be used to train

the system. Software-only simulation makes this process easier. Capturing data from

the simulation is easy, and does not involve nearly as much manual labor as gathering

data from the real world does. Simulation tools such as CARLA know where and what

each object is, and therefore it is straightforward for them to automatically label the data

semantically as it is produced.

Using a simulated environment grants possibilities to automate the testing further. In-

tegrating simulation into an automated testing pipeline allows executing integration tests

already in the automated testing phase. In addition to just unit testing, SIL or HIL in a

pipeline allows tests that have all the software components present and integrated. Au-

tomated testing could even utilize an algorithm to generate test scenarios automatically

and evaluate the performance on a much larger scale than manually would be possible

[46].

Automatic driving, especially if people are involved in the operating environment, is of-

ten a constraint with safety requirements stemming from standards and regulations. To

fulfill those requirements, comprehensive validation testing is required. While final valida-

tion should be done using a real vehicle, simulation can be used to complement it. For

example, some scenarios might be too difficult or dangerous to test with a real vehicle.

29

5.2 Challenges

The first challenge of software-only simulation is how to integrate the ADS being tested

into the simulation, and at the same time have it compatible with a real vehicle. There

is a need for underlying drivers that communicate either directly with the actuators con-

trolling the vehicle, or some lower-level control system that does the controlling/driving of

the vehicle. The simulation has to fulfill the same interface as the drivers or lower-level

control system. It should be the same from the ADS perspective to communicate with real

hardware and the simulation. It is worthwhile to consider both simulation and hardware

integration when designing the software architecture and interfaces of an ADS system.

In a way, during this work, the challenge of integration was realized. There were chal-

lenges in establishing the ROS2 communication channel between the CARLA ROS Bridge

and the Carlabot application. The problem stemmed from a lack of prior usage of ROS2

communication with the Flexbot framework. Flexbot framework is quite new, and it had

not been used to this extent before to communicate with non-Flexbot ROS2 nodes. Some

troubleshooting was needed and improvements to the framework were made to achieve

stable communication.

The next challenges relate to the properties of a simulation environment. Simulation

probably works too ideally. The real world is always more complex than what can be

achieved with simulation. Therefore, there might be factors that make it more difficult

for ADS to work in the real environment. Software that works perfectly in a simulation

could fail miserably when being introduced to the real world. Being too dependent on

simulation is not ideal, but combining it with real vehicle testing is beneficial. Simulation

can help smooth out the biggest and most obvious flaws in the software before entering

the physical world, which is often more time-consuming and expensive [33].

Setting up a meaningful simulation environment is not a trivial task. From the experience

of this work, the initial setup of CARLA is quite quick and does not take too much work to

get some level of simulation world running. CARLA is packed with a sufficient selection

of maps, vehicles, and sensors. However, to gain the best benefit from simulation, and to

use it in real product development, one probably needs to tailor the environment quite a

lot. For example, matching the vehicle model to one that is available for real-world testing

might need some modeling work. The world environments that come prepacked with

CARLA are representing urban environments that might lack the distinctive local features

that might be important for ADS development. For example, developing ADS for Finnish

roads would probably require modifying and adding features that are present in Finland

but might be missing or different in California, often used as a base model. Such features

might include, for example, traffic signs or road markings.

If the configuration of the simulation environment requires a lot of manual work, setting

30

up multiple instances of the environment takes up time and requires repeating manual

configuration tasks. The risk of making mistakes increase, and it is not guaranteed that

the environments are the same. After setting up an environment manually duplicating

it might not yield the same result. Using scripts and configuration files helps in this,

but might not completely solve it. Containerization, meaning using a virtualized isolated

environment containing all the dependencies and configurations, is a potential solution for

this challenge. For example, Docker or Podman container including the whole simulation

environment would make the setup of an environment more effortless.

Carla has a weather system that affects the quality of data coming from simulated sen-

sors. Unfortunately, however, the weather system only applies sensors that produce data

by rendering such as cameras. The rain and fog effects are visible in the produced im-

ages, but not in data from ray casting based sensors such as LiDARS. In that sense,

LiDAR data is a bit too ideal. There are mechanics to add noise and control the attenua-

tion and loss of rays, but those mechanisms are probability-based. Luckily, however, due

to CARLA being open-source, it would be possible to improve the sensor simulation and

add such features.

Another caveat that could be improved by customizing the CARLA is the physics simula-

tion. The physics in CARLA are provided by Unreal Engine 4. The video game physics it

provides might not be realistic enough if physics is an important part of the testing. That

also could be improved to some degree by modifying the simulator. However, CARLA

does not aim to have perfectly realistic physics simulation, but instead focuses on deliv-

ering high-quality visual sensor simulation. If advanced physics simulation is essential,

some other simulation tool might be more suitable for the task.

31

6. CONCLUSION

The goal of this thesis was to study software-only simulation for vehicle software develop-

ment and analyze the advantages it provides over using a hardware-in-the-loop simulation

or a prototype vehicle. To accomplish that, a demonstrator environment, and an exam-

ple ADS application, called Carlabot, was developed. The environment was based on

an open-source driving simulator CARLA, and the communication between the simula-

tor and the example application was established using the Robot Operating System 2

(ROS2) middleware. CARLA simulator was accompanied by CARLA ROS Bridge which

allows the simulator to communicate with ROS-based applications.

The example application, Carlabot, implements manual driving using a gamepad and a

simple collision avoider, which utilizes point cloud data from a LiDAR sensor. The collision

avoider slows or completely stops the driving if obstacles are detected in front of the car.

Carlabot utilizes the Flexbot software framework developed at Atostek Oy. Flexbot is

a platform for developing node-based onboard robot control software. Flexbot provides

tools to generate code for the node interfaces and communication channels automatically

using a system structure specification. Flexbot supports multiple types of communication

channels between the nodes, such as native Rust for communication within a process, or

ROS2 for inter-process communication.

During the work, it was identified that assembling a software-only simulation environment

using open-source components is not complicated when using predefined models and

configurations. CARLA is documented fairly well and comes with an example applica-

tion to get something interactive and moving in the simulation quickly. Establishing the

communication with the Carlabot application using ROS2 was more time-consuming, and

required some troubleshooting and debugging, as the Flexbot framework had not been

used with ROS2 on this scale.

Using software-only simulation alone for testing ADS is not enough, but combining it

with other testing environments brings considerable benefits to automatic vehicle devel-

opment. It can be used as a first level of testing early on in the development cycle.

Software-only simulation can empower the developer to test the software already during

the development, and make small iterative changes between the tests. Including it in

automatic testing pipelines allows automated integration testing. Overall, software-only

32

simulation enables testing on a much larger scale and is cheaper than what is possible

only using a real vehicle, or hardware-in-the-loop simulation.

In the future, one could further tailor the simulation environment to correspond better to

a specific use case. In this work, the example application was a toy example of how

the CARLA simulator could be used, and how to integrate to it. The world, the vehicle

model, and the sensors used could be modified from the pre-defined ones to something

more realistic. An interesting next step with the CARLA simulator would be to create and

customize a simulation environment for an existing ADS.

Additionally, the modified CARLA server along with the ROS Bridge could be packed into

a containerized environment using, for example, Docker or Podman. Containerization

makes setting up the environment easier, and thus supports the efforts of using this kind

of simulator environment in an automated pipeline or distributing it to multiple developers.

33

REFERENCES

[1] Li, R. and Zhai, R. Estimation and Analysis of Minimum Traveling Distance in Self-

driving Vehicle to Prove Their Safety on Road Test. Journal of Physics: Conference

Series 1168 (Feb. 2019).

[2] Yurtsever, E., Lambert, J., Carballo, A. and Takeda, K. A Survey of Autonomous

Driving: Common Practices and Emerging Technologies. IEEE Access 8 (2020),

pp. 58443–58469.

[3] Koenig, N. and Howard, A. Design and use paradigms for gazebo, an open-source

multi-robot simulator. 2004 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 3. IEEE, 2004, pp. 2149–

2154.

[4] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A. and Koltun, V. CARLA: An Open

Urban Driving Simulator. Proceedings of the 1st Annual Conference on Robot Learn-

ing (2017), pp. 1–16.

[5] Cognata Autonomous and ADAS Simulation. Cognata. URL: https://www.cognata.

com/simulation/ (visited on 03/03/2022).

[6] Thomas, D., Woodall, W. and Fernandez, E. Next-generation ROS: Building on

DDS. ROSCon Chicago 2014. Open Robotics, Sept. 2014.

[7] Schaeuffele, J. and Zurawka, T. Automotive Software Engineering, Second Edition.

SAE International, 2016.

[8] Gao, C., Wang, G., Shi, W., Wang, Z. and Chen, Y. Autonomous Driving Security:

State of the Art and Challenges. IEEE Internet of Things Journal 9.10 (May 2022),

pp. 7572–7595.

[9] Buehler, M., Iagnemma, K. and Singh, S. The 2005 DARPA Grand Challenge. The

Great Robot Race. Springer Tracts in Advanced Robotics (2007), p. 552.

[10] Taxonomy and Definitions for Terms Related to Driving Automation Systems for

On-Road Motor Vehicles (SAE J3016). SAE International. Apr. 2021. URL: https:

//www.sae.org/standards/content/j3016_202104/ (visited on 03/22/2022).

[11] Stumph, R. Tesla Admits Current ‘Full Self-Driving Beta’ Will Always Be a Level 2

System: Emails. The Drive (Mar. 9, 2021). URL: https://www.thedrive.com/

tech/39647/tesla-admits-current-full-self-driving-beta-will-

always-be-a-level-2-system-emails (visited on 07/11/2022).

[12] Toyota to Offer Rides in SAE Level-4 Automated Vehicles on Public Roads in Japan

Next Summer. Toyota Research Institute Inc. Oct. 24, 2019. URL: https://global.

https://www.cognata.com/simulation/
https://www.cognata.com/simulation/
https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/
https://www.thedrive.com/tech/39647/tesla-admits-current-full-self-driving-beta-will-always-be-a-level-2-system-emails
https://www.thedrive.com/tech/39647/tesla-admits-current-full-self-driving-beta-will-always-be-a-level-2-system-emails
https://www.thedrive.com/tech/39647/tesla-admits-current-full-self-driving-beta-will-always-be-a-level-2-system-emails
https://global.toyota/en/newsroom/corporate/30344967.html?_ga=2.143289329.554576385.1657549111-450261683.1657549111
https://global.toyota/en/newsroom/corporate/30344967.html?_ga=2.143289329.554576385.1657549111-450261683.1657549111

34

toyota / en / newsroom / corporate / 30344967 . html ? _ga = 2 . 143289329 .

554576385.1657549111-450261683.1657549111 (visited on 07/11/2022).

[13] Stellantis Shares Results of L3Pilot Automated Driving Project. Stellantis. Oct. 13,

2021. URL: https://www.stellantis.com/en/news/press-releases/2021/

october/stellantis-shares-results-of-l3pilot-automated-driving-

project (visited on 07/11/2022).

[14] Ramey, J. Polestar 3 with Level 3 Autonomous Tech on the Way. Autoweek (Jan. 10,

2022). URL: https://www.autoweek.com/news/green-cars/a38737805/

polestar-3-level-3-autonomous-ride-pilot/ (visited on 07/11/2022).

[15] ISO 26262-1:2018 Road vehicles — Functional safety — Part 1: Vocabulary. Inter-

national Organization for Standardization. Dec. 2018. URL: https://www.iso.

org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en (visited on 07/15/2022).

[16] ISO/SAE DIS 21434 – road vehicles — cybersecurity engineering. International

Organization for Standardization, SAE International. Aug. 2020. URL: https://

www.iso.org/obp/ui/#iso:std:iso-sae:21434:ed-1:v1:en (visited on

07/21/2022).

[17] SAE J3061: Cybersecurity Guidebook for Cyber-Physical Vehicle Systems. SAE

International. Dec. 2021. URL: https://www.sae.org/standards/content/

j3061_202112 (visited on 07/21/2022).

[18] Oka, D. K. Building Secure Cars: Assuring the Automotive Software Development

Lifecycle. John Wiley & Sons, Inc., 2021.

[19] Simulink. MathWorks. URL: https://se.mathworks.com/products/simulink.

html (visited on 07/21/2022).

[20] CarSim. Mechanical Simulation Corporation. URL: https://www.carsim.com/

(visited on 07/21/2022).

[21] Joshi, A. Automotive Applications of Hardware-in-the-Loop (HIL) Simulation. SAE

International, Aug. 2019.

[22] Yun, H. and Park, D. Virtualization of Self-Driving Algorithms by Interoperating Em-

bedded Controllers on a Game Engine for a Digital Twining Autonomous Vehicle.

Electronics 10.17 (Aug. 2021), p. 1..14.

[23] Martinez, M., Sitawarin, C., Finch, K., Meincke, L., Yablonski, A. and Kornhauser,

A. Beyond Grand Theft Auto V for Training, Testing and Enhancing Deep Learning

in Self Driving Cars. Dec. 2017. (Visited on 07/06/2022).

[24] Gregory, J. Game Engine Architecture. Third Edition. CRC Press, Taylor & Francis

Group, 2018.

[25] Unity. Unity Technologies. URL: https://unity.com/ (visited on 06/06/2022).

[26] Unreal Engine. Epic Games. URL: https://www.unrealengine.com/en-US

(visited on 06/06/2022).

[27] Shah, S., Dey, D., Lovett, C. and Kapoor, A. AirSim: High-Fidelity Visual and Physi-

cal Simulation for Autonomous Vehicles. Field and Service Robotics. July 18, 2017.

https://global.toyota/en/newsroom/corporate/30344967.html?_ga=2.143289329.554576385.1657549111-450261683.1657549111
https://global.toyota/en/newsroom/corporate/30344967.html?_ga=2.143289329.554576385.1657549111-450261683.1657549111
https://global.toyota/en/newsroom/corporate/30344967.html?_ga=2.143289329.554576385.1657549111-450261683.1657549111
https://www.stellantis.com/en/news/press-releases/2021/october/stellantis-shares-results-of-l3pilot-automated-driving-project
https://www.stellantis.com/en/news/press-releases/2021/october/stellantis-shares-results-of-l3pilot-automated-driving-project
https://www.stellantis.com/en/news/press-releases/2021/october/stellantis-shares-results-of-l3pilot-automated-driving-project
https://www.autoweek.com/news/green-cars/a38737805/polestar-3-level-3-autonomous-ride-pilot/
https://www.autoweek.com/news/green-cars/a38737805/polestar-3-level-3-autonomous-ride-pilot/
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-sae:21434:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-sae:21434:ed-1:v1:en
https://www.sae.org/standards/content/j3061_202112
https://www.sae.org/standards/content/j3061_202112
https://se.mathworks.com/products/simulink.html
https://se.mathworks.com/products/simulink.html
https://www.carsim.com/
https://unity.com/
https://www.unrealengine.com/en-US

35

[28] ABS Sensors. Apec Automotive. Sept. 29, 2021. URL: https://apecautomotive.

co.uk/techmate-guides/abs-sensors/ (visited on 08/18/2022).

[29] Toth, C. K. and Shan, J. Topographic Laser Ranging and Scanning: Principles and

Processing. Second Edition. CRC Press, 2018.

[30] Akenine-Möller, T., Haines, E., Hoffman, N., Pesce, A., Iwanicki, M. and Hillaire, S.

Real-Time Rendering. Fourth Edition. CRC Press, Taylor & Francis Group, 2018.

[31] Hofbauer, M., Kuhn, C. B., Petrovic, G. and Steinbach, E. TELECARLA: An Open

Source Extension of the CARLA Simulator for Teleoperated Driving Research Using

Off-the-Shelf Components. 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE,

Oct. 2020, pp. 335–340.

[32] Stević, S., Krunić, M., Dragojević, M. and Kaprocki, N. Development of ADAS per-

ception applications in ROS and "Software-In-the-Loop" validation with CARLA sim-

ulator. Telfor Journal 12.1 (2020), pp. 40–45.

[33] Brogle, C., Zhang, C., Lim, K. L. and Braunl, T. Hardware-in-the-Loop Autonomous

Driving Simulation Without Real-Time Constraints. IEEE Transactions on Intelligent

Vehicles 4.3 (Sept. 2019), pp. 375–384.

[34] CARLA Documentation. 0.9.12. URL: https://carla.readthedocs.io/en/0.

9.12/ (visited on 05/22/2022).

[35] ASAM OpenDRIVE Standard. Aug. 3, 2021. URL: https://www.asam.net/

standards/detail/opendrive/ (visited on 06/10/2022).

[36] ASAM OpenSCENARIO Standard. 2022. URL: https://www.asam.net/standards/

detail/openscenario/ (visited on 06/09/2022).

[37] Fremont, D. J., Kim, E., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli,

A. L. and Seshia, S. A. Scenic: a language for scenario specification and data

generation. Machine Learning (Feb. 2, 2022).

[38] Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich,

R., Lücken, L., Rummel, J., Wagner, P. and Wießner, E. Microscopic Traffic Simu-

lation using SUMO. The 21st IEEE International Conference on Intelligent Trans-

portation Systems. IEEE, Nov. 7, 2018.

[39] Maruyama, Y., Kato, S. and Azumi, T. Exploring the performance of ROS2. Pro-

ceedings of the 13th ACM SIGBED International Conference on Embedded Soft-

ware (EMSOFT). 2016, pp. 1–10.

[40] ROS 2 (Robot Operating System) Documentation. Open Robotics. URL: https:

//docs.ros.org/en/foxy/index.html (visited on 03/03/2022).

[41] RustDDS. Atostek Oy. URL: https://github.com/jhelovuo/RustDDS (visited

on 05/30/2022).

[42] Corsaro, A. and C., D. The Data Distribution Service – The Communication Middle-

ware Fabric for Scalable and Extensible Systems-of-Systems. System of Systems.

InTech, Mar. 2, 2012.

https://apecautomotive.co.uk/techmate-guides/abs-sensors/
https://apecautomotive.co.uk/techmate-guides/abs-sensors/
https://carla.readthedocs.io/en/0.9.12/
https://carla.readthedocs.io/en/0.9.12/
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/
https://docs.ros.org/en/foxy/index.html
https://docs.ros.org/en/foxy/index.html
https://github.com/jhelovuo/RustDDS

36

[43] Autonomous Machines and Vehicles. Atostek Oy. URL: https://atostek.com/

en/services/autonomous-machines-and-vehicles/ (visited on 10/07/2022).

[44] Daubaris, P., Helovuo, J., Makitalo, N. and Mikkonen, T. On ROS 2 Software Devel-

opment Challenges. Manuscript submitted for publication (2022).

[45] Helovuo, J. Native Rust components for ROS2. ROSCon Kyoto 2022 (to appear).

Oct. 2022.

[46] Straub, J. Automated testing of a self-driving vehicle system. 2017 IEEE AUTOTEST-

CON. IEEE, Sept. 2017, pp. 1–6.

https://atostek.com/en/services/autonomous-machines-and-vehicles/
https://atostek.com/en/services/autonomous-machines-and-vehicles/

	Introduction
	Background
	Vehicle software development
	Onboard and offboard software
	History of automatic driving
	Regulations and standards

	Simulation
	Sensors
	Vehicle dynamics sensors
	LiDAR sensor

	Simulation tools
	CARLA
	Architecture of CARLA
	Vehicles
	Sensors
	World

	Robot operating system 2 (ROS2)
	Data Distribution Service (DDS)

	Demonstrator
	Environment setup
	Flexbot framework
	Example Application

	Results
	Benefits
	Challenges

	Conclusion
	References

