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A B S T R A C T

In this study, we propose a new type of a BN analogue of two-dimensional (2D) graphdiyne. By DFTB, we carried
out the changes in the electronic and optical properties of BNdiyne based on size. Higher binding energies with
increase size ensure an increase in the stability of BNdiyne. Considerable decrease in the energy gap from
1.09 eV to 0.02 eV suggests BNdiyne transforms from a semiconductor to metal, thus an increase in electrical
conductivity. The HOMO energy of BNdiyne with size contributes the stability. The increase in the size induces a
decrease in adiabatic electron affinity and chemical hardness, but an increase in the refractive index, adiabatic
ionization potential, electrophilicity index and maximum amount electronic charge index which enhance the
energy stability of the BNdiyne during charge transfer. These findings herein indicate that new 2D-BNdiyne can
be used in promising applications from nanosensors to solar cell applications.

1. Introduction

Carbon-based materials (CBNs) have attracted intense scrutiny in
diverse fields of applications due to their unique structure and elec-
tronic properties. Among them, graphdiyne (GDY), which has unique
two-hybrid state sp sp( )2 , uniform pores, and highly π-conjugated
structure [1,2], has induced much interest in many applications such as
lithium-ion storage [3], nanocomposite photocatalyst [4], the anode of
lithium and rechargeable batteries [5,6], clean energy [7], and spin-
tronics [8,9].

GDY, a novel 2D non-natural carbon allotrope containing hexagonal
carbon rings connected by diacetylene bonds [1], has been successfully
synthesized in experiments [10]. GDY exhibits high electron mobility at
room temperature owing to its bandgap of 0.46 eV [11,12], thus it has a
high electrical conductivity [13]. With the properties mentioned above,
an electrochemical actuator based on GDY has been fabricated with a
high electromechanical transduction efficiency of up to 6.03% [14].
GDY as electrode has been performed for electrochemical super-
capacitor [15]. Besides, the ultrathin GDY nanofilms considerably im-
prove the coulombic efficiency and long-term cycling performance of Li
metal battery [16]. Integrating ultrathin GDY sheets on silicon elec-
trodes also exhibits high-performance silicon anode [17]. On the other
hand, a novel GDY-ZnO nanohybrid was examined on the degradation
of methylene blue and rhodamine B for photocatalytic applications

[18].
Tunability in the electronic structure and optical properties of CBNs

is possible with a dopant atom or molecule [19–21]. Among dopant
atoms, in general, nitrogen (N)-and boron (B)-doped CBNs have been
preferred, because the electrons can be injected into the materials by N
atom [22] and thus tuning the properties. Herein, N-doped CBNs have
been extensively studied both theoretically and experimentally [23–27]
because N-doped GDY has more desirable properties than undoped
GDY. The literature review shows that dopant N induces an increase in
the performance of GDY electrochemical electrodes for new energy
fields, such as fuel cells, batteries, solar cells, Li/Na-ion capacitors
[28,29]. B/N-doped GDY can be used as superior supercapacitor elec-
trode [30]. The N-doped GDY and porous GDY can be used as excellent
metal-free catalysts for oxygen reduction [31,32]. The local structures
of N-doped GDY are shown based on computational X-ray spectroscopy
[33]. On the other hand, B-GDY based materials are suggested as pro-
mising candidates for Li, Na and K ion batteries [34]. In the literature,
many studies have been performed to investigate the influence of size
and doping of nanomaterials on their physical/chemical properties to
design devices with improved performance [19,35–40]. The main
conclusion from those studies is that at nanoscale the size plays a sig-
nificant role. Herein, we systematically investigated the changes in the
electronic and optical properties of BNdiyne based on the size for the
first time. In this context, we explore the binding energy, adiabatic
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ionization potential, adiabatic electron affinity, HOMO, LUMO, HOMO-
LUMO energy gap, the density of state, refractive index, electron lo-
calization function, Hirshfeld charge analyses, quantum chemical de-
scriptors such as chemical hardness and potential, the maximum
amount of electronic charge index, and electrophilicity index by den-
sity-functional tight-binding (DFTB) theory.

2. Computational details

The changes in the electronic and optical properties of BNdiyne
based on size have been investigated using DFTB implemented in
DFTB + code [41] with the matsci [42] set of Slater parameters. There
has been previous works using full DFT and wavefunction-based
methods on the base GDY structures [43,44] however, DFT limited to
molecular systems made up of a small number of atoms when compared
to DFTB which is also faster than DFT. Besides, our previous study and
benchmarks showed that DFTB gives good match to DFT for GDY
structures [45].

The optimized geometry of 1-BNdiyne which is the most stable
structure is indicated in Fig. 1. The other structures are given in Fig. S2-
S6 in Supporting information. The number of atoms changes from 72
(for n= 1, initial geometry with hexagonal structure) to 504 atoms (for
n= 7). The binding energies Eb are calculated as follows:

= × + × + × + +E n E n E n E E n n n( )/( )(1)b C C B B N N total C B N

where Etotal is the total energy of n-BNdiyne (n= 1–7) models. EC, EB
and EN are the single particle energy of C, B and N atoms. nC , nN and nH
also are the numbers of C, N and H atoms. The adiabatic ionization
potential (AIP) and adiabatic electron affinity (AEA) are calculated as
follows: [ =AIP E Ecation neutral] and [ =AEA E E ].neutral anion Here,
AIP is the difference in energy between cation E( )cation and neutral
E( )neutral structures at their respective equilibrium geometries. AEA is
the difference in energy between anion E( )anion and neutral E( )neutral

structures at their respective equilibrium geometries. On the other
hand, the HOMO/LUMO energies can be considered converged with
respect to Pearson’s theorem [46–48] by I ≈ -EHOMO and A ≈ -ELUMO

and, consequently, properties such as chemical hardness ( ), electro-
philicity index ( ), maximum amount of electronic charge index N( )tot
can be calculated as follows: [ = I A( )/2], = +[ ( ) /2 ]I A( )

2
2 and

= +N I A[ ( )/2 ]tot .

3. Results and discussions

3.1. Structure, energy and stability

The calculated binding energy per atom (Eb) for n-BNdiyne
(n= 1–7) models is shown in Fig. 2 and listed in Table 1. The value of
BNdiyne (n=1) is calculated to be 8.68 eV. With an increase in the
size, Eb increases slightly to 8.76 eV with the number of linking
BNdiyne units, and thus 7-BNdiyne is a little more stable than the other
models.

The HOMO/LUMO levels and HOMO-LUMO energy gap (Eg) for n-
BNdiyne (n= 1–7) models are plotted in Fig. 3. The HOMO and LUMO
energies of the BNdiyne (n= 1) are about −5.23 and −4.14 eV, and so
Eg is found to be 1.10 eV for n=1. However, LUMO level for n=2
model shifts to lower energy level, and thus Egdecreases dramatically to
0.25 eV (see Table 1). Later, the energy level of HOMO increase gen-
erally in range of n=3–7, while that of LUMO remains constant.
Therefore, Eg is gradually decreased by increasing the number of
BNdiyne units. Small values of Eg cause high electrical conductivity
and, consequently, the electrical conductivity changes dramatically
with the number of linking BNdiyne units. Therefore, n-BNdiyne models
could be recommended as highly sensitive materials for the use of na-
nosensors. It is noteworthy to mention that the HOMO-LUMO energy
gap in n-BNdiyne models can be tuned by changing the number of
models. Fig. 4 shows the density of states (DOS) of n-BNdiyne (n=1–7)
models. The DOS provides information about the localization of charges
in various energy ranges along with BNdiyne models. Moreover, for
BNdiyne models, maximum peaks are seen in different energy ranges

Fig. 1. (Colour online) The optimized geometry of 1-BNdiyne computed by
DFTB method.

Fig. 2. (Colour online) Binding energy per atom (Eb) for n-BNdiyne (n= 1–7)
models.

Table 1
The electronic and reactivity properties of n-BNdiyne (n= 1–7) periodic
models. All values are eV.

n

1 2 3 4 5 6 7

Eb 8.68 8.68 8.71 8.72 8.74 8.73 8.76
AIP 6.29 5.88 5.73 5.53 5.42 5.49 5.35
AEA 3.11 4.11 4.26 4.41 4.44 4.50 4.51
HOMO −5.23 −5.16 −5.12 −4.99 −4.95 −5.04 −4.95
LUMO −4.14 −4.90 −4.91 −4.95 −4.92 −4.97 −4.93
Ef −4.69 −5.03 −5.01 −4.97 −4.93 −5.00 −4.94
Eg 1.09 0.25 0.21 0.04 0.02 0.07 0.02
η 1.59 0.88 0.73 0.56 0.49 0.49 0.42
ω 6.94 14.13 17.00 22.01 24.68 25.24 28.90
ΔNtot 2.95 5.65 6.80 8.86 10.01 10.11 11.73
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(-7.0/-6.0 eV, −2.5/-1.0 eV and 2.5/3.5 eV). This can be due to the
overlapping of bands arising from CeC and B-N in the chains along with
the BNdiyne models. Consequently, the DOS spectrum is significantly
enhanced by increasing the number of BNdiyne units as it can be seen
from the graphs of other models (n= 2–7) compared to n=1 (see
Fig. 4). On the other hand, we find that the magnitude of DOS peaks of
BNdiyne become higher with an increase in the size, which means
stronger interaction of B/N dopants in BNdiyne, causing a metal–se-
miconductor transition. The similar behavior was observed in previous
studies based on the CBNs [49,50], which arises from the spin-

dependent splitting of carbon p-bands occurring in the gap.

3.2. Optical properties

We have examined the optical property of n-BNdiyne (n=1–7)
models including refractive index n( ). Ravindra [51] and Hervé and
Vandamme [52] found relations between Eg and n in semiconductors

= En 4.084 0.62 g and = +A E Bn 1 /( )g
2 2 2, respectively. A (13.6 eV)

and B (3.4 eV) are a constant. The n of the n-BNdiyne (n= 1–7) models
is calculated from here and the results are plotted in Fig. 5. According to

Fig. 3. (Colour online) HOMO, LUMO and HOMO-LUMO energy gap (Eg) for n-
BNdiyne (n= 1–7) models.

Fig. 4. (Colour online) Density of states (DOS) plots of n-BNdiyne (n=1–7) models.

Fig. 5. (Colour online) Refractive indices based on Ravindra and Hervé-
Vandamme relations of n-BNdiyne (n= 1–7) models.
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Ravindra and Hervé and Vandamme relations, the n of the BNdiyne
(n=1) is in the range of 3.2 to 3.4. Moreover, the n is increased up to
n=3 by increasing the number of BNdiyne unit but then remains
constant in the range of n= 4–7.

3.3. Electronic and reactivity properties

The AIP of the BNdiyne (n=1) is found to be 6.29 eV (see Table 1).
AIP is generally decreased (see Fig. 6). This means that based on the
number of BNdiyne units, the energy needed to remove an electron is
decreased. On the other hand, the AEA of the BNdiyne (n=1) is cal-
culated to be 3.11 eV (see Table 1). AEA shows a smooth upward trend
with a sharp increase starting at n= 2 (see Fig. 6). We note that this
rising in AEA can be a good option for optoelectronic applications due
to the easier electron transfer. It is known that a hard structure corre-
sponds to a large energy gap in the formalism of the maximum hardness
principle [48]. In addition, a larger chemical hardness follows a larger
ionization potential and a smaller electron affinity in the formalism of
the Pearson principle [46,47]. Fig. 7 shows the chemical hardness ( ) of
n-BNdiyne (n=1–7) models. The value of BNdiyne (n= 1) is calcu-
lated to be 1.59 eV. Moreover, the decreases significantly to 0.42 eV
(see Table 1) with the number of linking BNdiyne units, thus indicating
a lower impedance to charge flow and change in the energy gap. It also
can be understood that the graph of shows basically the same trend as
that of AIP. Fig. 8 shows the electrophilicity index ( )and maximum
amount electronic charge index N( )tot of n-BNdiyne (n= 1–7) models.

These indexes are used as a measure of the tendency of a given model to
accept electron. The and Ntot values for BNdiyne (n=1) are calcu-
lated to be 6.94 eV and 2.95 eV (see Table 1), respectively. Moreover,
and Ntotshow a smooth increasing trend as the number of BNdiyne
units increase (see Fig. 8). Especially, ω is a term associated with the
energy stability of the system during its charge transfer with the en-
vironment. We note that the increasing number of BNdiyne units could
increase the structural strength of the system, and thus may cause a
significant change in the structural properties.

We have examined the charge transfer of n-BNdiyne (n=1–7)
models including Hirshfeld analysis. Fig. 9 shows the Hirshfeld charge
analyses of n-BNdiyne (n=1–7) models. The majority of the charge of
BNdiyne models is mainly on the B atoms. Despite the fact that the
transfer of electrons goes from the more electropositive atoms to the
more electronegative atoms, the charge is transferred from B to N and
C. Note that the increasing number of BNdiyne units does not cause a
significant change in the redistribution of charges.

4. Conclusions

In summary, we have carried out the effect of size on the electronic
and optical properties of a new type of a BN analogue of 2D graphdiyne
(BNdiyne) by DFT. Our calculated results show that the stability in-
creases with increasing the size of BNdiyne due to changes in the
binding energies. Increasing size effectively reduces the HOMO-LUMO

Fig. 6. (Colour online) Adiabatic ionization potential (AIP) and adiabatic
electron affinity (AEA) of n-BNdiyne (n= 1–7) models.

Fig. 7. (Colour online) Chemical hardness (η) of n-BNdiyne (n= 1–7) models.

Fig. 8. (Colour online) Electrophilicity index (ω) and maximum amount elec-
tronic charge index (ΔNtot) of n-BNdiyne (n= 1–7) models.

Fig. 9. (Colour online) Hirshfeld charge analyses of n-BNdiyne (n= 1–7)
models.
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gaps in BNdiyne structures, so that BNdiyne transforms from a semi-
conductor to metal, thus an increase in electrical conductivity. The
HOMO energy authenticates the stability of the BNdiyne with an in-
crease in the size. The behavior of the size dependence of the adiabatic
electron affinity and chemical hardness has been found to be a de-
creasing trend, however, an increase in the refractive index, adiabatic
ionization potential, electrophilicity index and maximum amount
electronic charge index, thus there is an enhancement in the energy
stability of the BNdiyne during charge transfer. Overall, we hope that
obtained results would provide an insight of experimental synthesis of
this new material because many reported BN analogues of carbon-based
materials have been synthesized successfully.
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