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Abstract
Cancer disease leads to deaths worldwide. Anti-cancer drugs have a high prevalence of side effects and cause multidrug resistance
(MDR) that remains a significant barrier to major cancer therapy. To date, chemical and herbal substances have been analyzed for their
MDRmodulatory activity. However, research on new and safe molecules has been continued to overcomeMDR in cancer. The plant
compounds can be an effective inhibitor for successful cancer therapy. Recently, computational models have gained importance to
discover new inhibitors. In the present study, we aimed to explore the various compounds of Passiflora species as P-gp inhibitor. P-gp
protein was dockedwith the active substrate and inhibitor, respectively, including tamoxifen and verapamil. Besides, 3D structure of P-
gp was docked with 11 compounds (luteolin, beta amyrin, beta-sitosterol, chimaphilin, chrysin, edulan I and II, apigenin, oleanolic
acid, stigmasterol, hydroxyflavone) of plant origin using AutoDock4.2 program. Furthermore, the compounds were analyzed for
ADMET and drug likeness properties of compounds determined as Lipinski, Veber, and Ghose’s rules (http://www.swissadme.ch/).
As obtained molecular docking analysis results, luteolin, chrysin, hydroxyflavone, and apigenin may be a candidate for being P-gp
inhibitor. Hence, it may be of attention to consider these compounds for further in vitro and in vivo evaluation.

Keywords P-gp inhibitor . Passiflora . Molecular docking . Drug likeness . ADMET

Introduction

Traditional cancer therapies are surgery, radiation therapy,
and chemotherapy, or their combinations [1]. Chemotherapy
generally is more difficult important in the treatment of met-
astatic malignancies and it also causesmultiple drug resistance
(MDR) and side effects on healthy cells [2]. MDR demon-
strates a large field of resistance against functionally and struc-
turally unrelated chemotherapeutic agents [3, 4], is the ability
of cancer cells to escape and to survive from chemotherapeu-
tics in cancer therapy, and this situation seriously disrupts the
success of cancer chemotherapy [4–7].

ATP-binding cassette transporters (ABC transporters) are a
complicated pump superfamily, in which substrate is
transported across membranes against a concentration gradient

in the efflux of small molecule drugs [8–11]. P-glycoprotein (P-
gp) is one of the well-described ABC transporters which are
currently considered to be one of the important barriers in can-
cer therapy [12]. P-gp has an important role in drug resistance
and its overexpression has been associated with the MDR, so it
has become a therapeutic target to overcome MDR [7, 9].

Since prehistoric times, flowers, berries, roots, and leaves
of herbals have great importance and they have been used in
traditional natural medicine, natural products have a key role
in the discovery of new drugs, and they have been in constant
use in therapy of different diseases [13]. Passiflora species are
also one of the natural products. Studies have reported various
pharmacological activity of Passiflora species including anti-
oxidant [14] and anti-tumor [15] effects.

Recently, computational methods are a rapidly growing area
and play an important role in drug discoveries in medicine and
therapeutics [16].Molecular dynamic, pharmacophoremodeling,
QSAR, and docking analyses can determine protein-ligand inter-
action, structural changes, binding sites, drug candidates, etc.
[17–21]. Prompted by this, in the present study, we investigated
new potential inhibitors of P-gp from compounds of Passiflora
species with molecular docking analyses.
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Material and Method

Molecular Structure Preparing

To analyze the molecular docking between P-gp and potential
inhibitors, we used the P-gp structures (PDB code: 6c0v)
which were found by Kim and Chen et al. at the resolutions
of 3.4 Å. The PDB file for P-gp proteins was obtained from
the RCSB Protein Data Bank (available at http://www.rcsb.
org). The water and other molecules were removed from P-gp
protein, and then, only 3D structure of P-gp (Fig. 1) was hid-
den as pdb. file. 3D structures of 11 ligand molecules, includ-
ing luteolin, beta amyrin, beta-sitosterol, chimaphilin, chrysin,
edulan I and II, apigenin, oleanolic acid, stigmasterol,
hydroxyflavone, and control drugs (tamoxifen and verapa-
mil), were detected for molecular docking from Pubchem
(https://pubchem.ncbi.nlm.nih.gov/) (Table 1).

Molecular Docking Analyses

In this study, we performed AutoDock-Version 4.2 (http://
autodock.scripps.edu) to analyze molecular docking. The
AutoDock is designed as computational docking tools for
the prediction of protein-ligand interaction [Morris et al.
1998]. Molecular docking calculations were analyzed via
Lamarckian Generic Algorithm [22] in Autodock Vina [23,
24]. All bound water molecules and nonprotein molecules
were removed from the proteins, non-polar hydrogen atoms
were merged, and the polar hydrogen atoms were added. The
Molegro Molecular Viewer 2.5 (Molegro Molecular viewer

academic free software) and VMD (Visual Molecular
Dynamic) [24] programs were used in the visualization of
protein-ligand interaction [25].

Drug Likeness and ADME Analysis

Recently, in silico ADMET analyses are gaining attention in
computer-based drug discovery [26]. ADMET analyses are
used to determine the pharmacological structure from the per-
spective of drug discovery (http://biosig.unimelb.edu.au/
pkcsm/prediction). Pharmacokinetics and drug likeness
prediction for compounds were also performed by online
tool SwissADME (http://www.sib.swiss) (http://www.
swissadme.ch / index .php) [27 , 28] . In addi t ion ,
pharmacokinetics and drug likeness predictions have been
applied on Lipinski, Ghose, and Veber rules and
bioavailability scores [29–31].

Results and Discussion

Cancer is a complex disease, and multiple drug resistance is a
major drawback in cancer therapy. Therefore, the design and
development of new drugs are becoming increasingly neces-
sary. P-gp is a significant factor of MDR because its overex-
pression is associated with increased efflux of cancer drugs in
cancer [10]. Here, we aimed at the discovery of new drug
compounds with computer-based analyses and presented an
opportunity for further experimental analysis.

Fig. 1 3D structure of P-gp
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Table 1 Ligands used in the study and their properties

No Ligands PubChem 
ID code

Molecular 
weight

(g.mol-1)

Structure(2D) Structure(3D)

1 Luteolin 5280445 286.24 g/mol

2 Beta -Amyrin 73145 426.7 g/mol

3 Beta-Sitosterol 222284 414.7 g/mol

4 Chimaphilin 101211 186.21 g/mol

5 Chrysin 5281607 254.24 g/mol
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Table 1 (continued)

6 Edulan I 521066 192.3 g/mol

7 Edulan II 6432428 192.3 g/mol

8 Apigenin 5280443 270.24 g/mol

9 Oleanolic Acid 10494 456.7 g/mol

10 Stigmasterol 5280794 412.7 g/mol

11 Hydroxyflavon

e

72279

238.24 g/mol
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The search for herbal compounds cannot be easy to use them
for experiments in vitro and in vivo. Recently, predicted data of
these compounds were obtained by applying computer-based
studies. The absorption, distribution, metabolism, elimination,
and toxicity (ADMET) analysis have a big importance in drug
discovery studies. In silico ADMET predictions have been de-
signed to evaluate the pharmacokinetic and toxicity properties. In
present work, human intestinal absorption, aqueous solubility

levels, BBB penetration levels, CYP inhibition, hepatotoxicity,
etc. of luteolin, beta amyrin, beta-sitosterol, chimaphilin, chrysin,
edulan I and II, apigenin, oleanolic acid, stigmasterol,
hydroxyflavone, and control drugs (tamoxifen and verapamil)
were determined. ADMET and pharmacokinetics results are pre-
sented in the supplementary file (supplementary data). ADMET
analysis shows that most of the compounds are predicted good
human intestinal absorption, no toxicity, and water solubility.

Table 1 (continued)

12 Tamoxifen 2733526 371.5 g/mol

13 Verapamil 2520 454.6 g/mol

Table 2 A drug likeness results of potential inhibitors

Ligand Drug likeness Bioavailability Score

Lipinski Ghose Veber

Luteolin Yes Yes Yes 0.55

Beta-amyrin Yes 1 violation: MLOGP > 4.15 No 3 violations: WLOGP> 5.6, MR > 130, #atoms > 70 Yes 0.55

Beta-sitosterol Yes 1 violation: MLOGP > 4.15 No 3 violations: WLOGP> 5.6, MR > 130, #atoms > 70 Yes 0.55

Chimaphilin Yes Yes Yes 0.55

Chrysin Yes Yes Yes 0.55

Edulan I Yes Yes Yes 0.55

Edulan II Yes Yes Yes 0.55

Apigenin Yes Yes Yes 0.55

Oleanolic acid Yes 1 violation: MLOGP > 4.15 No 3 violations: WLOGP> 5.6, MR > 130, #atoms > 70 Yes 0.56

Stigmasterol Yes 1 violation: MLOGP > 4.15 No 3 violations: WLOGP> 5.6, MR > 130, #atoms > 70 Yes 0.55

Hydroxyflavone Yes Yes Yes 0.55
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In addition, drug likeness results of potential inhibitors are
shown in Table 2. According to Lipinski’s rule (Pfizer’s rule,
Lipinski’s rule of five, RO5), the active drug has no more than
one violation of the following properties including molecular
weight (MW) ≤ 500, LogP ≤ 5, hydrogen bond acceptors ≤ 10,
and hydrogen bond donors ≤ 5 [29]. According to Veber rules,
the active drug has total hydrogen bonds ≤ 12, rotatable bonds
≤ 10, and polar surface area (PSA). Polar surface area ≤ 140
tend to have oral bioavailability ≥ 20% [30]. According to
Ghose rules, active drug has Log P(− 0.4~5.6), MR (molar
refractivity (40~150), MW (160~480), number of atoms
(20~70), and polar surface area (PSA) < 140 [31]. Based on
the drug likeness analysis, all the compounds were found by
the Lipinski’s and Veber rule. Furthermore, luteolin,
chimaphilin, chrysin, edulan I, edulan II, apigenin, and
hydroxyflavone complied with Ghose’s rules.

To better understand interaction with P-gp of luteolin,
beta amyrin, beta-sitosterol, chimaphilin, chrysin, edulan I
and II, apigenin, oleanolic acid, stigmasterol, and
hydroxyflavone compounds, a molecular docking analysis

was performed by Autodock-Vina program. For this pur-
pose, tamoxifen and verapamil were selected as reference
drugs. The general properties of molecules are described
in Table 1. The results of molecular docking analyses of
11 compounds and the number of hydrogen bonds are
summarized in Tables 3 and 4. In the procedure, luteolin,
beta amyrin, beta-sitosterol, chimaphilin, chrysin, edulan I
and II, apigenin, oleanolic acid, stigmasterol, and
hydroxyflavone were docked to the proteins with a bind-
ing free energy of − 10.7, − 10.0, − 8.7, − 6.8, − 8.6, − 6.2,
− 7.5, − 8.1, − 8.9, − 8.6, and − 8.7 kcal mol−1, respective-
ly. For P-gp [32] protein and luteolin interaction, five hy-
drogen bonds were identified with amino acid residue Thr
1174, Phe 904, Arg 905, Asp 167, and Val 168. In human,
the maximum number of hydrogen bond interactions was
detected between luteolin and P-gp protein. In the P-gp
protein and apigenin interaction, hydrogen bonds can be
observed with residue Tyr 1044, Ser 1077, and Lys 1076.
Hydrogen bonds of other ligands and P-gp interaction are
shown in Table 4.

Table 3 Protein-ligand molecular docking results

Protein Ligand Binding 
Energy 

(kcal/mol)

Interaction

P-gp Luteolin -10.7 

kcal/mol

P-gp Beta -Amyrin -10.0 

kcal/mol

P-gp Beta-Sitosterol -8.7 

kcal/mol
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Table 3 (continued)

P-gp Chimaphilin -6.8 

kcal/mol

P-gp Chrysin -8.6 

kcal/mol

P-gp Edulan I -6.2 

kcal/mol

P-gp Edulan II -7.5 

kcal/mol

P-gp Apigenin -8.1 

kcal/mol
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Table 3 (continued)

P-gp Oleanolic Acid -8.9 

kcal/mol

P-gp Stigmasterol -8.6 

kcal/mol

P-gp Hydroxyflavone -8.7 

kcal/mol

P-gp Tamoxifen -8.8 

kcal/mol

P-gp Verapamil -6.8

kcal/mol
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Table 4 Hydrogen bonds between ligands and P-gp protein

Protein Ligand H 

bound

Ligand-protein interaction

P-gp Luteolin 5

P-gp Beta -Amyrin 0

P-gp Beta-Sitosterol 0

P-gp Chimaphilin 0

P-gp Chrysin 2

P-gp Edulan I 0
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Table 4 (continued)

P-gp Edulan II 0

P-gp Apigenin 3

P-gp Oleanolic Acid 0

P-gp Stigmasterol 0

P-gp Hydroxyflavone 1

P-gp Tamoxifen 0

P-gp Verapamil 2
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Conclusion

The objective of this work was to obtain and evaluate molec-
ular docking, predicted drug likeness, and ADMET analyses
in potential compounds of Passiflora species. The binding
energies, ADMET, and drug likeness for ligands were com-
pared with the control drug, tamoxifen, and verapamil. As a
result, luteolin, chrysin, apigenin, and hydroxyflavone may be
potential inhibitors for P-gp and be helpful in cancer therapy.
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