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A B S T R A C T   

Raman spectroscopy was compared with near infrared (NIR) hyperspectral imaging for determination of fat 
composition (%EPA + DHA) in salmon fillets at short exposure times. Fillets were measured in movement for 
both methods. Salmon were acquired from several different farming locations in Norway with different feeding 
regimes, representing a realistic variation of salmon in the market. For Raman, we investigated three manual 
scanning strategies; i) line scan of loin, ii) line scan of belly and iii) sinusoidal scan of belly at exposure times of 
2s and 4s. NIR images were acquired while the fillets moved on a conveyor belt at 40 cm/s, which corresponds to 
an acquisition time of 1s for a 40 cm long fillet. For NIR images, three different regions of interest (ROI) were 
investigated including the i) whole fillet, ii) belly segment, and iii) loin segment. For both Raman and NIR 
measurements, we investigated an untrimmed and trimmed version of the fillets, both relevant for industrial in- 
line evaluation. For the trimmed fillets, a fat rich deposition layer in the belly was removed. The %EPA + DHA 
models were validated by cross validation (N = 51) and using an independent test set (N = 20) which was 
acquired in a different season. Both Raman and NIR showed promising results and high performances in the cross 
validation, with R2CV = 0.96 for Raman at 2s exposure and R2CV = 0.97 for NIR. High performances were 
obtained also for the test set, but while Raman had low and stable biases for the test set, the biases were high and 
varied for the NIR measurements. Analysis of variance on the squared test set residuals showed that performance 
for Raman measurements were significantly higher than NIR at 1% significance level (p = 0.000013) when slope- 
and-bias errors were not corrected, but not significant when residuals were slope-and-bias corrected (p = 0.28). 
This indicated that NIR was more sensitive to matrix effects. For Raman, signal-to-noise ratio was the main 
limitation and there were indications that Raman was close to a critical sample exposure time at the 2s signal 
accumulation.   

1. Introduction 

For many years, the health effects of the omega-3 fatty acids eico-
sapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have gained 
much attention [1–6]. Fat rich fish, such as Atlantic salmon, is a major 
source of EPA and DHA in the human diet and therefore, the abundance 
of these fatty acids can be considered an important quality parameter in 
the aquaculture industry. Today most of the salmon found in the stores 
are farmed, and studies have shown that feed is the main factor deter-
mining fatty acid composition of the muscle of Atlantic salmon [7–9]. It 
is also known that other factors such as genetics can influence [10–12]. 
In later years, there has been a trend to replace marine ingredients in 

feed with vegetable oils, resulting in lower abundance of EPA and DHA 
[13–15]. A challenge is that low levels of EPA and DHA have been 
connected to low fish welfare in sea cages and low fillet quality [16,17]. 
This emphasizes the motivation to monitor fatty acid features in salmon 
more closely. Continuous monitoring of EPA and DHA in salmon fillets 
could provide opportunities for salmon farms to obtain continuous 
knowledge on impact of different feeding regimes and potentially other 
farming parameters. It could also provide the opportunity to report 
specific quality features to consumers, resulting in increased consumer 
trust and more targeted quality differentiation. Preferably, measure-
ment stations should be integrated on the conveyor belt, scanning each 
single fillet. For this to be realized, a robust and rapid in-line 
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measurement technique is needed. Two of the practically relevant 
methods in this respect are Raman spectroscopy and near infrared 
spectroscopy (NIRS). 

The reported use of NIRS for estimation of omega-3 fatty acids in 
pure fish oils is promising [18,19]. However, estimation of specific fatty 
acids in intact salmon fillets is more challenging due to lower concen-
trations and more interferants, such as water and protein. Brown et al. 
[20] utilized NIR spectra in the range 800–1850 nm and reported 
moderate performances for prediction of EPA and DHA in intact salmon 
cutlets, which indicated compatibility with rough screening applications 
only. In addition, it was unclear if these models relied on indirect 
modelling on total fat, as discussed by Eskildsen et al. [21] An advantage 
of NIRS (400–2500 nm) is that hyperspectral imaging instruments are 
available and reasonably affordable. NIR hyperspectral imaging has 
been successfully used for determination of total fat content and fat 
distribution in whole salmon fillets [22–24]. These instruments already 
allow very fast measurements of whole fillets on the conveyor belt. In an 
in-line situation, imaging ensures representative measurements of whole 
salmon fillets and provides the opportunity for distributional analysis. 
To the authors knowledge there are no studies concerning EPA and DHA 
measurements in salmon fillets using NIR hyperspectral imaging which 
include the spectral region above 1700 nm. This region is likely 
important for more robust modelling of unsaturated fatty acids since it is 
associated with the CH––CH vibration [25]. 

Raman spectroscopy is a promising tool for compositional analysis of 
fatty acids [26–29]. In a recent work, Lintvedt et al. [30] demonstrated 
the potential use of in-line Raman spectroscopy for samples of ground 
salmon which were passing by on the conveyor belt. Here it was shown 
that the spectra had sufficient quality at high speeds and could be used 
for estimation of the fatty acids %EPA + DHA. However, fast 
non-contact Raman measurements of intact salmon fillets have not been 
investigated, and the challenge that is posed by the heterogeneity of the 
fillets should be addressed. Raman spectroscopy is practically chal-
lenging due to sensitivity to ambient light signals in the production hall, 
the limited focal volume and the need for timing the signal accumula-
tion. Since the Raman focal volume is small, the collection of repre-
sentative measurements from a heterogeneous fillet is not self-evident. 
By using a so called wide area illumination probe one can obtain larger 
measurement areas (spot size diameter 3–6 mm) than with traditional 
Raman instrumentation which in addition provides insensitivity to 
smaller variations in working distance [31]. The latter is important 
when measuring samples varying in thickness. The signal-to-noise ratio 
(SNR) is a limiting factor for Raman when exposure time is reduced to 
only a few seconds [30]. Fat is a relatively strong Raman scatterer, so 
stronger Raman signals will be obtained on fat rich tissue. The fat 
deposition in salmon gradually increases from loin to belly and from tail 
to head, and as much as 49% of the belly flap wet weight can be lipids. 
This means that it is important to determine the optimal sampling region 
on the fillets, and for in-line Raman measurements, robotics can be used 
to implement this critical sampling. This motivates an investigation of 
different strategies for robotic control of the Raman probe, i. e to 
determine what is the optimal scanning path. 

Although Raman spectroscopy is practically more challenging to 
employ in the industry, the method could have considerable advantages 
with respect to robustness of the %EPA + DHA predictions. Firstly, 
Raman scattering originate from fundamental vibrational transitions 
yielding a lower degree of overlapping spectral bands (e.g. between 
protein and fat) compared to NIR spectra [19]. This is because NIR ab-
sorptions are based on overtones and combination modes, in contrast 
[32]. In addition, water signals can dominate NIR spectra, while it is 
well known that water is a very weak Raman scatterer and is usually not 
a challenge. Robust methods can potentially reduce the needed fre-
quency of re-calibrations. Although relevant Raman instrumentation is 
currently about twice the cost of NIR hyperspectral cameras, the po-
tential gain from less effort on model maintenance represents a 
considerable cost reduction, which should be considered. Afseth et al. 

[33] compared Raman and NIR laboratory measurements of homoge-
nized salmon samples (N = 668) and found that chemical information on 
fatty acids in Raman measurements are much better resolved than in NIR 
measurements. This study also showed that Raman had significantly 
higher cross validated performances for estimation of EPA and DHA, 
indicating that Raman might be the more robust solution. However, at 
higher speeds, signal-to-noise ratio (SNR) can be a limitation for Raman 
as pointed out above. Therefore it is of interest to compare the two 
methods in a relevant in-line setup employing short exposure times. 

In this work, the main aim was to investigate the feasibility of in-line 
Raman measurements of %EPA + DHA in single intact salmon fillets 
employing a wide area Raman probe and to compare the robustness of 
this method with measurements with an NIR hyperspectral camera 
(930–2500 nm). The model generalization ability to new samples was 
mainly demonstrated through predictions on an independent test set. 
For Raman spectroscopy, in-line measurements were manually 
mimicked by employing short exposure times of several different scan-
ning paths over the fillet. For the same samples, NIR images were ac-
quired while the fillets moved on a conveyor belt at 40 cm/s, 
investigating different regions of interest (ROI). For both Raman and 
NIR measurements, we investigated a fat trimmed and an untrimmed 
version of the fillets, which are both relevant for industrial in-line 
evaluation. To the best of our knowledge, this is the first time the 
feasibility for in-line Raman measurements of %EPA + DHA prediction 
in intact salmon fillets is investigated and compared with NIR hyper-
spectral imaging (930–2500 nm). 

2. Material and methods 

2.1. Salmon fillets 

A calibration set of 51 salmon fillets was acquired from five different 
farming locations with varying feeding regimes from three different 
Norwegian suppliers (SalMar ASA, Norway Royal Salmon ASA and Lerøy 
Seafood Group ASA). Salmon were supplied as whole gutted fish stored 
on ice in which state they were kept for about 5 days in a cold room at 
1–2 ◦C before filleting. Subsequently the right fillet was vacuum packed 
and frozen (− 30 ◦C) and used for the NIR measurements which were 
carried out in a different location. The left fillet was immediately used 
for the Raman measurements. Thawing of the salmon fillets before the 
NIR experiment was done on racks in a room with air circulation for 
about 2 h, then they were kept in a cold room (1–2 ◦C) over night. 
Approximately half a year later, an independent test set consisting of 20 
salmon fillets was acquired from three different farming suppliers with 
different feeding regimes. The test set was treated the same way as the 
calibration set. 

Two fillet versions were measured in both Raman and NIR experi-
ments. First, each fillet was measured untrimmed, with a surface layer of 
deposited fat and bones covering the muscle fibers in the belly. After-
wards, the surface layer of deposited fat and bones were trimmed away 
while keeping as much intact belly muscle as possible. Fillets were 
stored in a cold room at 1–2 ◦C during the experiment time. 

2.2. Measurements and data analysis 

2.2.1. Raman measurements 
We employed a MarqMetrix All-in-One (AIO) Raman system 

covering a Raman shift range of 100–3250 cm− 1. The system was 
equipped with a 785 nm laser operating at 450 mW power and the 
sampling optic was a wide area illumination (D = 3 mm), Proximal 
BallProbe HV standoff Raman probe (MarqMetrix Inc., Seattle, WA, 
USA) with working distance at approximately 9 cm. Each salmon fillet 
was placed on a PE plastic plate covered with aluminium foil. The foil 
was used to prevent potentially disturbing signals from the plate plastic. 
We mimicked in-line scans manually in a dark room, with the help of a 
movable instrument rack for the probe. One person pushed the fillet 
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forward while another handled the rack which allowed the probe to be 
moved transversely to the speed direction, resulting in the three 
different scanning strategies illustrated in Fig. 1 and denoted as S1) line 
scan of loin, S2) sinusoidal scan of belly and S3) line scan of belly. The 
result was one accumulated spectrum for each of the illustrated paths. 
The different scans were chosen to elucidate the effect of varying fat 
deposition across the salmon fillet on spectra and performance. Two 
different accumulation times were applied: 4s and 2s, where 4s repre-
sented fast at-line measurements and 2s was regarded short enough to be 
relevant in the process line. Three replicate measurements were ac-
quired for each combination of scanning path and accumulation time. 

2.2.2. NIR measurements 
We employed a hyperspectral camera (HySpex SWIR-384) from 

Norsk Elektro Optikk (NEO) with spectral range 930–2500 nm that 
employs an MCT detector cooled down to 150 K. Diffuse halogen 
lighting was used for illumination, and measurements were done in 
reflectance mode. The fillets moved on a conveyor belt at a speed of 40 
cm/s, which correspond to an acquisition time of 1s for a 40 cm long 
fillet. The images were collected from a working distance of approxi-
mately 1 m with an acquisition speed of 200 frames per second. The 
focus plane was about 4 cm over the conveyor belt. For the 51 calibra-
tion fillets, one image scan was collected per fillet. For the test set fillets, 
3 replicate measurements were acquired. 

2.2.3. Reference measurements 
Since the right fillet was frozen and sent to a different location for 

NIR imaging, the reference samples were prepared from the belly of the 
trimmed left-side fillets as indicated in Fig. 2b. The variation between 
the left and right fillet was assumed to be negligible. The bellies were 
homogenized (Retsch Knife Mill GRINDOMIX GM 200, 7000 rpm for 3s), 
vacuum packed and frozen at − 30 ◦C. Analyses of the samples were 
carried out by BioLab (Bergen, Norway). Fatty acid concentrations were 
determined by gas chromatography (capillary GC-FID) on fatty acid 
methyl esters (AOCS Official Method Ce 1b-89), and were expressed as a 
percentage of the total fat in the analyzed sample. The total fat of the 
belly samples was determined by the Bligh and Dyer method [34]. 

2.2.4. Estimation of iodine value 
As a measure of total unsaturation in the salmon, the iodine value 

(IV) was estimated from the full fatty acids (FA) profile in accordance 
with the AOCS recommended practice Cd 1c-85, and same as reported 
by Berhe et al. [35] and Afseth et al. [33]. 

IV = Mw(I2)
∑n

i=1

DB(i)VFAMe(i)

Mw(FAMe(i))
(1)  

where Mw is molecular weight, I2 is iodine, FAMe(i) is the fatty acid 
methyl ester number i, DB is the number of double bonds and VFAMe(i) is 
percentage of fatty acid number i. 

2.2.5. Pre-processing of spectral data 
For Raman spectra, the Raman shift range 520–1800 cm− 1 was used 

in analyses. Cosmic ray spikes were removed manually by a simple spike 
detection algorithm based on derivatives. Subsequently Savitsky-Golay 
(SG) smoothing (polynomial order 2 and window size 9) [36] was 
applied, followed by Extended Multiplicative Signal Correction (EMSC) 
[37,38] employing up to the sixth order polynomial and the Asymmetric 
Least Squares (ALS) algorithm [39,40] for baseline correction of the 
EMSC reference spectrum. The ALS reference spectrum correction 
employed a smoothing parameter of 5.8 and an asymmetric weighting 
parameter (of the residuals) of 0.01. For the test set spectra, 
pre-processing by EMSC employed the mean spectrum of the calibration 
samples as the reference spectrum. Pre-processing was applied sepa-
rately on subsets which were defined by the combinations of fillet 
version, scanning paths and exposure time. 

The NIR hyperspectral images were radiance calibrated in the Hys-
pex Rad V2.5 software (NEO, Oslo, Norway) and reflectance values were 
calculated through division by a spectralon white reference. Each 
reflectance spectrum was then transformed to the pseudo-absorbance (A 
= loge (1/R)). An average spectrum across all pixels was used for further 
analysis. For each image, three different regions of interest (ROI) were 
investigated, where we used the i) whole fillet, ii) belly region and iii) 
loin region, as indicated in Fig. 2. The average spectra were pre- 
processed by regular EMSC employing linear and quadratic poly-
nomials for baseline correction and the spectral region 1170–1850 nm 
was selected and used for further analysis to avoid the noisy region 
above 2000 nm. Similar to the Raman spectra, pre-processing on NIR 
spectra was applied on the separate subsets which were defined by the 
combinations of fillet version and ROIs. Between the two periods of 
acquisition of calibration data and test set data, the camera was repaired 
and a small wavelength shift occurred. This required an additional 
wavelength interpolation for the test set sample spectra. 

2.2.6. Data modelling 
Partial least squares regression (PLSR) [41,42] was used for Fig. 1. Scanning strategies for Raman signal accumulation, including S1) line 

scan of loin, S2) sinusoidal scan of belly, and S3) line scan of belly. 

Fig. 2. Example of hyperspectral NIR images (1210 nm shown) for one salmon 
fillet in untrimmed (a) and trimmed (b) version, with the belly and loin ROIs 
indicated by the white outlines. References were prepared from the corre-
sponding belly area (*) of the fillet used for the Raman experiment. 
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calibration development. We established models for EPA + DHA con-
centration in salmon fillets. Note that EPA and DHA concentrations were 
not estimated separately, but as a joint concentration value. PLSR 
models were built on the 51 calibration fillets. For selection of optimal 
number of latent variables for the models, we employed cross-validation 
(CV), where replicate measurements were held out in the same CV 
segment to avoid overfitting. The reason for not averaging the replicates 
was to keep the prediction conditions as close to an in-line situation as 
possible. The choice of number of latent variables for the PLS modelling 
was based on a simple criterion using a 3% punish factor, as described by 
Westad and Martens [43]. The model was then rebuilt on the full cali-
bration set with the optimum number of components and applied on the 
pre-processed test set spectra. We report performance through the co-
efficient of determination (R2) and the root mean squared error (RMSE). 
For the test set validation, we also report these metrics when corrected 
for slope and bias errors, together with the bias and slope. To establish 
whether the estimation errors of the test set using Raman spectra were 
significantly different from those using NIR hyperspectral images, we 
applied a two-way analysis of variance (ANOVA) of the squared re-
siduals. In addition, the confidence intervals of the coefficient of 
determination (R2) were reported in some figures. These were calcu-
lated from the Fisher Z-transformation [44,45]. 

2.3. Signal to noise ratio 

In this work, we compared the SNR of sets of spectra obtained by 
different Raman measurement strategies. First, the spectra in the given 
set were pre-processed as described in section 2.2.5. Then, the SNR of 
each spectrum was calculated as the ratio between the average spectrum 
and the standard deviation of the estimated noise, according to Eq. (2). 
The reported value for one set was the average SNR of all individual 
spectra in the respective set. 

SNR =
mean(I)
sd(In)

(2)  

where I is the spectrum intensity and In is the estimated noise intensity. 
The noise component of the spectrum was estimated by subtracting a 
smoothed version of the spectrum from the original spectrum I. This 
resulted in a residual spectrum In containing mainly noise. For 
smoothing we used SG with polynomial order 2 and window size 9. This 
is similar to Guo et al. [46] and same as in our previous work [30]. 

2.3.1. Repeatability of predictions 
For the test set, 3 replicates were acquired for both Raman and NIR. 

The repeatability of the measurements by each method was calculated as 
the pooled standard deviation of the predictions within the replicate 
groups 

STDpooled =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

j=1

∑N

i=1

(ŷij − Yj)

M(N − 1))

√
√
√
√ (3)  

where M is the number of salmon fillets, N is the number of replicate 
measurements and ŷij is the predicted value of replicate number i in 
replicate group number j. The average prediction within the replicate 
group number j is denoted by Yj. 

3. Results and discussion 

3.1. Sample variation in fat composition 

The calibration samples spanned a range of %EPA + DHA levels 
(4.6–10.5%) and DHA/EPA ratios (1.1–2.4) representing typical effects 
of different feeds. The test set samples spanned a similar %EPA + DHA 
range (4.5–12.3%), but had a less even distribution due to the lower 
number of samples. Moreover, there was a shorter span in DHA/EPA 

ratio (1.1–1.6) and higher overall fat level than in the calibration sam-
ples. The higher fat level in the test set corresponded well with expected 
seasonal variations in fat deposition. Note also that the test set repre-
sented some extrapolation in %EPA + DHA levels in comparison to the 
calibration set. See supplementary for distributions in FA properties 
(Fig.A.7). 

3.2. Spectral features 

The Raman spectra (Fig. 3a) were dominated by bands associated 
with fatty acids. The main absorption bands related to fatty acid unsa-
turation are the C––C stretch (1657 cm− 1) and the alkene C–H bend 
(1266 cm− 1) [27,28]. The peak around 930 cm− 1 is most likely related 
to the alkene C–H deformation in polyunsaturated fatty acid moieties 
[47,48]. The main bands related to fatty acid saturation are the meth-
ylene scissor deformation (1440 cm− 1) and the methylene twisting 
deformation (1302 cm− 1). Other bands of interest originate from the 
aromatic ring breathing of phenylalanine (1004 cm− 1) and the liquid 
aliphatic C–C stretch in gauche (1080 cm− 1) [27,28]. 

The NIR spectra (Fig. 3b) had broader bands which overlapped and a 
baseline related to e.g. scattering effects was apparent. The main ab-
sorption bands are associated with the second overtone of the CH stretch 
(1210 nm [49]), the CH stretch first overtone (1723, 1761 nm [25,50]) 
and OH stretch first overtone (1400 nm [49]). The shoulder around 
1164 nm is related to the degree of unsaturation and is an important 
peak for estimation of iodine value [25,51]. Furthermore, the CH band 
at 1761 nm has been primarily related to saturated fatty acids, while 
literature indicate that a shift of the band around 1723 nm towards 
shorter wavelengths is related to the degree of unsaturation [25,49]. The 
spectral region above 2000 nm was noisy and detrimental for model 
performance, and therefore discarded from the further analyses. It 
should be noted that some bands of interest are located in this region 
[49,50]. 

3.3. Implication of Raman sampling strategies 

Regression results from employing the different Raman sampling 
methods, i.e. different fillet versions and scan paths, are shown in 
Table 1. Differences in Raman signal level as a consequence of the 
different sampling strategies were clearly visible in the spectra (Fig. 3), 
and were reflected in the SNR levels (Table 1). Scans of typical high fat 
regions had higher intensity, with highest signals from measurements of 
the untrimmed belly, followed by the scans of the trimmed belly. The 
sinusoidal belly scans had slightly lower signals compared to the cor-
responding line scans. The loin scans exhibited considerably weaker 
signals. From the cross validation on the designated calibration set, it 
was evident that the loin scan stood out with the poorest model errors 
(R2CV = 0.77 at 4s exposure and R2CV = 0.56 at 2s exposure) as well. All 
belly scan variations gave high performances at both 4s and 2s exposure. 
Part of the reason for the low performances from loin measurements can 
also be that the reference sample was taken from belly, and moderate 
variations in FA composition across the fillet is possible [52]. However, 
in previous work [30], we found that %EPA + DHA estimation based on 
Raman spectra was limited by the SNR level. Together, these results 
indicate that pointing the Raman probe toward areas with high fat 
deposition is important to acquire spectra with sufficient quality at short 
exposure times. 

Measurements on untrimmed fillets gave the overall highest perfor-
mances across the two exposure times. While the fillet trimming did not 
seem to greatly affect the estimations at 4s exposure, there was a 
moderate impact at 2s, with lower R2CV (Table 1). The impact of scan 
path was less discernible. The differences seen between the measure-
ment strategies are at least partly connected to the SNR. The R2CV 
correlated closely with SNR at 2s exposure (r2s = 0.99), but not at 4s 
exposure (r4s = 0.67). This indicated that the signal strength gained from 
measuring on the untrimmed fillets and from choosing the optimal scan 
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path is more important when the scan speed is increased further. 
Correspondingly, it might indicate that at 2s signal accumulation, we are 
approaching a critical limit for spectrum quality, while at 4s signal 
accumulation the Raman scanning approach will likely be more robust 
towards lower fat levels in fillets. One should bear in mind that there are 
more information about pigments and other bulk properties in scans of 
trimmed fillets (e.g. peaks at 1004, 1158, 1342 and 1519 cm− 1). See Fig 
B.9 for easier distinction of Raman peaks between the different mea-
surement strategies. If an in-line system should be coupled with other 
analyses, it is a greater chance of accomplishing this with trimmed 
fillets. 

With respect to exposure time, we overall saw more uniform results 
with respect to R2CV and the number of latent variables included in the 
models at 4s exposure. However, the performances seen at 2s exposure 
time was very encouraging, as they were considerably improved 
compared to what was obtained for homogenized salmon samples in 
previous work [30]. Notably, the SNR in this work was overall compa-
rable to 10s exposure time in the previous work, most likely because the 
fat content of the measured regions were higher in the current work. 

3.4. Implication of sampling strategies for NIR hyperspectral imaging 

For NIR spectral data, it was evident (Fig. 3) that spectra from the 
belly region, particularly for the untrimmed fillets, had less prominent 

baselines than the spectra from regions which included the loin. This 
was seen also in the test set data (Fig.B.8b). The differences in baselines 
were most likely a combination of different tissue structures, which can 
lead to differences in scattering effects, and that high fat areas are 
dominated by fat absorbance. This consequently allows less absorption 
by other interferants such as water, which has broader absorption peaks. 
Additionally, measurements of the belly and whole untrimmed fillets 
had relatively stronger fat signals than the measurements of loin and the 
whole trimmed fillets. Cross validation on the calibration set showed 
that the effect was that measurements of the separate loin region had 
considerably lower performance than the measurements from other re-
gions, similar as for Raman. Differences in R2CV between the rest of the 
ROIs were small, but R2CV increased with fat level of the regions, with 
measurements of untrimmed belly yielding highest performance. SNR 
was naturally not the reason (above 2000), and it might rather be 
because the higher fat signals decreased the relative disturbance from 
interferants. 

3.5. Regression models 

EPA (20:5 n-3) and DHA (22:6 n-3) have 5 and 6 double bonds, 
respectively, and are among the FAs with highest unsaturation. In 
addition they have long carbon chains. Prediction models are expected 
to emphasize spectral features related to these characteristics. Typical 

Fig. 3. Calibration sample spectra from Raman (a) and NIR (b) measurements compared across the respective investigated subset versions, i.e. combinations of 
exposure time, scanning paths and fillet versions for Raman spectra and combinations of ROIs and fillet versions for NIR spectra. The Raman spectra shown are the 2s 
exposure time measurements. 

Table 1 
PLS regression results for EPA + DHA in salmon fillets (% of total fat), using Raman spectra. Cross validated results for the calibration set (CV) and test set validation 
results are shown. For the test set validation, metrics corrected for bias and slope errors are indicated as well (corr).  

Sampling method Calibration set Test set Corrected test set 

Exp. Fillet version Scan LVa R2CV RMSECV SNRb R2 RMSEP Bias Slope STDpooled
c R2corr RMSEcorr 

4s – S1 3 0.77 0.77 41.2 – – – – – – – 
4s untrimmed S2 3 0.95 0.34 66.8 0.94 0.66 − 0.14 1.20 0.20 0.99 0.31 
4s untrimmed S3 3 0.96 0.33 68.0 0.95 0.60 − 0.21 1.17 0.14 0.99 0.29 
4s trimmed S2 3 0.95 0.36 60.8 0.91 0.79 − 0.44 1.18 0.23 0.98 0.37 
4s trimmed S3 3 0.95 0.36 63.0 0.95 0.60 − 0.29 1.11 0.25 0.98 0.38 

2s – S1 2 0.56 1.05 32.2 – – – – – – – 
2s untrimmed S2 2 0.95 0.35 58.5 0.87 0.98 − 0.33 1.31 0.18 0.99 0.29 
2s untrimmed S3 3 0.96 0.33 60.5 0.96 0.52 − 0.24 1.11 0.18 0.99 0.32 
2s trimmed S2 1 0.91 0.47 51.0 0.93 0.71 − 0.35 1.14 0.40 0.98 0.41 
2s trimmed S3 3 0.93 0.42 53.6 0.88 0.95 − 0.54 1.24 0.27 0.98 0.36  

a Latent variables. 
b Signal to noise ratio for calibration set. 
c Pooled standard deviation (repeatability). 
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Raman regression coefficients (Fig. 4) showed that the main positively 
correlated peaks were at 926, 1261 and 1666 cm− 1, which can all be 
associated with unsaturated modes, as discussed in section 3.2. The 
main negatively correlated peaks were at 1012, 1084 and 1442 cm− 1, 
which indicated that there were some indirect modelling of proteins and 
saturated fatty acids. These are the same characteristics as in previous 
work on %EPA + DHA estimation in homogenized salmon samples [30, 
33]. For the NIR models, the positions around 1701–1706 nm and 1160 
nm stood out with high positive weights. The positive weighting around 
1701–1706 nm in combination with the negative weighting at 1723 
suggested that a shift in the peak around 1723 towards lower wave-
lengths was important for the model. These characteristics are in 
accordance with high unsaturation [25,49]. 

3.6. Raman versus NIR hyperspectral imaging 

3.6.1. Performance and robustness 
The feasibility of in-line estimation of %EPA + DHA using Raman 

and NIR spectroscopy, as well as the robustness of the established 
models, were indicated by the cross validation on the calibration set and 
the test set performances. These results are summarized in Tables 1 and 
2. We show also test set performances when predictions are corrected for 
bias-and-slope errors. Such errors are oftentimes acceptable for 
deployment in the industry because models can be recalibrated when 
new sample types are introduced. However, in certain applications (e.g. 
genetics studies), performance on new samples should be high without 
the need of a recalibration. Therefore both uncorrected and corrected 
test set metrics are relevant to consider. Based on the cross validation on 
the calibration set, results were excellent for both NIR and Raman. This 
showed that both methods are viable options for estimation of fatty acid 
features in salmon fillets at high speeds and indicate that both can 
handle variations in total fat levels and variations in the ratio between 
EPA and DHA. Overall, the Raman models needed considerably lower 
numbers of latent variables than the NIR models to reach similar per-
formances. This is in accordance with observations by Afseth et al. [33] 

for homogenized salmon and, as they discuss, can be regarded a testi-
mony of the chemical specificity of the Raman spectral features. This 
makes models more interpretable and might make models less sensitive 
to interferants. Examples of relevant interferants were signals from 
water, bone, blood remnants or protein content in fillets, which have 
more overlapping signals in NIR than for Raman, due to their different 
nature. 

The question was how sensitive these models were to interferants 
and how dependent they were on conserved correlations between FA 
parameters in the salmon fillets. This was elucidated by the test set. 
Predictions on test set samples were generally much less biased for 
Raman models than the NIR models for which biases were several times 
higher and varied considerably between different sampling strategies. 
There was a certain trend (Table 2) that measurements of low fat regions 
(i.e loin and trimmed fillets) had high biases, while the measurements of 
high fat regions had lower biases (i.e untrimmed fillets), again rein-
forcing the impression that higher fat signals decreased the relative 
spectrum disturbances. The large biases led to odd R2 and RMSEP 
values. In comparison, biases for the Raman predictions were low and 
stable for all sampling strategies. In addition, the repeatibility of pre-
dictions from NIR were overall lower than for Raman, which was re-
flected by the higher pooled standard deviation of the predictions. For 
Raman, the repeatability among the different sampling strategies 
correlated clearly with SNR, and more clearly at 2s exposure time than 
at 4s (r4s = − 0.83 and r2s = − 0.94), which again emphasized the 
importance of SNR for Raman. 

From the bias-and-slope corrected test set predictions, variance er-
rors were identifiable. For both methods, corrected performances were 
overall excellent. This showed that as long as we assume that slope and 
bias errors can be corrected during model deployment, NIR is a good 
option as well. Considering both corrected and uncorrected perfor-
mances, the best case NIR results were obtained from measurements on 
untrimmed whole fillets, which stood out with high R2corr values, low 
bias and the highest repeatability (Table 2). For Raman, the best case 
result was obtained for line scan on the untrimmed belly, which gave 
high R2corr values, high repeatability and lowest bias and slope errors 
(Table 1). For comparison between methods, the Raman measurements 
at 2s exposure time is most relevant due to the most similar scanning 
speed as the NIR measuremements. In Fig. 5 we compared the best case 
test set validation results for NIR and Raman at 2s exposure time. For 
NIR, R2corr was high for all number of components above 5, but it was 
evident that some PLS components in the NIR model were particularly 
disturbing with respect to bias, indicating a more unstable situation than 
for Raman. In comparison, Raman had high R2corr levels and low bias 
which were both stable across all components. In addition, there were 
higher variance errors in the NIR predictions, particularly at low %EPA 
+ DHA levels. This reinforces the importance of high FA signals for NIR. 
Analysis of variance on the squared test set residuals showed that the 
best case performance for Raman measurements were significantly 
higher than NIR at 1% significance level (p = 0.000013) when slope- 
and-bias errors were not corrected, but not significant when residuals 
were slope-and-bias corrected (p = 0.28). 

One should keep in mind that, for NIR measurements, differences in 
water loss due to small deviations in the calibration and test set thawing 
procedure or differences in sample temperatures might have occurred 
and influenced results. The repair and recalibration of the NIR instru-
ment between the calibration and test set acquisition could also have an 
impact. Therefore, any clear conclusion on the comparability of Raman 
and NIR with respect to robustness of fast in-line %EPA + DHA esti-
mation can not be made. However, this study indicated, in accordance 
with the nature of the narrow Raman bands versus the broader NIR 
bands, that Raman is more robust. 

3.6.2. Prediction of other fatty acid features 
For a broader comparison of the Raman and NIR measurement 

methods, Fig. C.10 shows predictions of many other FA parameters for 

Fig. 4. Standardized regression vectors for the different subsets of Raman data 
(a) and NIR data (b), as calculated from the calibration set and applied on the 
test set measurements. For Raman, regression coefficients are shown for both 4s 
and 2s exposure measurements. 
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the calibration set. Interpretation of the additional models was out of 
scope for this article, but it should be noted that predictions for most FAs 
were high. Covariance between EPA + DHA and other fatty acids or 
chemical components in the salmon fillets can be an issue if the corre-
lations are different in future samples. In literature, model dependence 
on conserved correlations has been termed the cage of covariance, and 
challenges related to this issue for estimation of specific FAs have been 

demonstrated by Eskildsen et al. and others [21,33,35]. In our calibra-
tion samples, the strongest correlations with %EPA + DHA were found 
for the sum of saturated FAs (r = 0.92), sum of monoenoic FAs (r =
− 0.91) and the fatty acid 18:3 n-3 (r = − 0.94). The correlation with 
total fat in the samples was low (- 0.17). Furthermore, the correlation 
between EPA and DHA was moderate (r = 0.74), which showed that they 
to some extent vary independently across different feeding regimes (Fig. 

Table 2 
PLS regression results for EPA + DHA in salmon fillets (% of total fat), using NIR hyperspectral images. Cross validated results for the calibration set (CV) and test set 
validation results are shown. For the test set validation, metrics corrected for bias and slope errors are indicated as well (corr).  

Sampling method Calibration set Test set Corrected test set 

Fillet version Region of interest LVa R2CV RMSECV R2 RMSEP Bias Slope STDpooled
b R2corr RMSEcorr 

– Loin 13 0.87 0.58 − 19.80 12.26 12.19 1.00 0.70 0.80 1.20 
untrimmed Whole 14 0.95 0.37 0.90 0.86 − 0.22 1.21 0.19 0.97 0.49 
untrimmed Belly 14 0.97 0.28 − 0.08 2.80 − 2.72 1.12 0.40 0.97 0.47 
trimmed Whole 16 0.94 0.40 − 8.27 8.19 8.15 1.03 0.50 0.93 0.73 
trimmed Belly 15 0.96 0.32 − 4.36 6.23 − 6.18 1.12 0.51 0.95 0.61  

a Latent variables. 
b Pooled standard deviation (repeatability). 

Fig. 5. Overview of the best case results from PLS regression for prediction of %EPA + DHA from Raman measurements at 2s exposure time (a–b) and NIR mea-
surements (c–d). The highest Raman performance was obtained from belly line scans of untrimmed fillet. For NIR, highest performance was obtained for the whole 
untrimmed fillet. The predicted versus measured EPA + DHA concentrations (a,c) for the test set (blue) is included, and compared with the calibration set (grey). The 
performances on the test set as a function of latent variables in the models are shown (b,d), including bias and R2 corrected for the bias-and-slope errors. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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A.6). In the test set samples, the correlations between the FA properties 
were overall considerably higher than in the calibration samples 
(Fig. A.6). Predictions on the calibration set (Fig.C.10) showed that 
separate DHA models were also excellent for both Raman and NIR, but 
separate EPA models were less successful (albeit not significantly). 
However, taking into account the high spectral similarity between these 
two fatty acids [33] and the moderate correlation between them in the 
calibration set, we cannot expect them to be predicted independently. 
Predicting the EPA and DHA as a joint concentration value is a good 
compromise, keeping also in mind that both have been related to posi-
tive health effects. 

Berhe et al. [35] found that estimation of specific fatty acids in pork 
backfat from Raman spectra were indirect and to a large degree 
dependent on the total FA parameters (i.e Iodine value and total PUFA). 
In our case, the cross validated IV model and total PUFA model showed 
poor performances for both Raman and NIR (Fig. C.10), which makes it 
unlikely that %EPA + DHA was indirectly modelled based on total 
unsaturation (number of double bonds) or total PUFA content. This 
corresponds to results recently shown by Afseth et al. [33] for homog-
enized salmon and illustrates that such issues are dependent on the 
samples and the variations in the calibration set. It can, however, be 
noted that the salmon in the work of Afseth et al. [33] were all from the 
same population and were fed a specific diet, and hence represented a 
sample set with variations of different origin than the sample set used in 
our work. Interestingly, slope-and-bias-corrected performances on our 
test set showed that prediction of IV and total PUFA was considerably 
improved in comparison to the calibration set (Fig. C.11). This is most 
likely related to the higher correlations with the individual FAs in the 
test set samples (Fig.A.6). This suggests that IV and PUFA models were 
based on correlations with specific FAs. In this work, we successfully 
removed the issue of indirect modelling on total fat content by a com-
bination of estimating the %EPA + DHA content as percentage of total 
fat, by the sampling method and by normalising spectra by the EMSC 
pre-processing. This can be seen by the abysmal cross validated per-
formance of total fat estimation for both Raman and NIR (Fig. C.10). The 
strategy of estimating the %EPA + DHA content as percentage of total 
fat was also followed by Berhe et al. [35]. 

Indirect modelling on other chemical components might be an issue 
as well. There were few samples within each farming location (i.e feed 
group) and therefore low variance within each group. This increases the 
risk that models might rely on other dissimilarities between the groups, 
such as different fillet structures, composition or water content. Band 
regions related to proteins were weighted negatively in Raman regres-
sion coefficients (i.e. phenylalanine), which might suggest that such 
indirect modelling on protein content come in to play. For Raman, this 
region can be removed. For NIR, overlapping bands make such solutions 
harder to find. 

3.6.3. Other practical considerations 
Choosing Raman or NIR relies also on practical considerations. The 

scope of possible applications might be different for the two methods. 
For example, one is often interested in the total fat content in the fillet 
and not only the composition of the fat. Estimation of total fat content is 
undoubtedly possible with NIR [22,23] and have already been imple-
mented in the industry. Raman has been used to measure total fat con-
tent previously and showed reasonable laboratory results for 
heterogeneous salmon by-products [53]. However, it could be more 
challenging with the indicated Raman scanning procedures in this study, 
since the whole salmon fillet is not covered and heterogeneity is a 
challenge. Therefore, a system combining total fat analyses with 
compositional analyses might be harder to achieve with Raman. 

Another practical challenge is sample variations over time. During 
the seasons, the balance between phospholipids and triglycerides 
(TAGs) of the fillets can vary due to variation in total fat content, with 
autumn being the main period for fat deposition and spring the main 
period for fat burning [54–57]. While the phospholipids are quite stable 

and high in EPA + DHA composition, the composition of the TAGs are to 
a large extent dependent on the feed [11,58]. Therefore seasonal vari-
ations in the total fat level can still affect the FA composition. This means 
that fatty fillets may have lower EPA + DHA percentage than lean fillets, 
when measured as % of total fats, while the quantitative EPA + DHA 
levels could in fact be higher [59]. This should be taken into account in 
future strategy developments. 

With respect to the practical measurements, the SNR was important 
for Raman. SNR variations across the different subsets correlated 
considerably with the corresponding estimation errors, suggesting that 
SNR is the main motivator in choice of measurement strategy. The re-
sults indicated that at high conveyor belt speeds, low fat deposition 
regions of the fillet (i.e the loin) should be avoided during signal accu-
mulation in order to optimize SNR. In practice, this could be achieved by 
employing robotic control of the probe to target high fat regions of the 
fillet (i.e the belly). This presents further system development and 
additional cost for Raman employment in the industry. Furthermore, it 
is important to investigate the heterogeneity of the salmon fillets more 
thoroughly. While we know that total fat levels vary over the fillet [52], 
uncertainty still remains about how much the composition of the fat 
vary within a fillet. In the study of Nanton et al. [52] examples (N = 3) of 
moderate differences in EPA and DHA composition in different parts of 
salmon fillets were seen. Such spatial variations could potentially 
challenge the Raman measurements. To the author’s knowledge, larger 
studies on compositional variations over a fillet is lacking in the litera-
ture and should be conducted. 

4. Conclusion 

This work showed that a Raman scanning strategy and NIR hyper-
spectral imaging are both viable methods for in-line measurements of 
EPA + DHA concentrations in intact salmon fillets. This study indicated 
that Raman might be more robust towards matrix effects, which likely 
means a reduced need for calibration maintenance in comparison to 
NIR. For Raman, the loin scans exhibited too low SNR and resulted in 
poor performances. Therefore a robotic solution for Raman measure-
ments in the industry might be needed in order to target high fat areas on 
the fillet during signal accumulation. In addition, there were indications 
that reducing the exposure time below 2s might be challenging with 
respect to spectrum quality. This suggested that at this point in time, 
Raman might be best suited for fast at-line measurements in applications 
where robustness is important. NIR hyperspectral imaging is currently 
best suited for industrial employment, but must likely be followed up 
more closely with calibration maintenance. 
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Appendix A. Correlations and variation in reference measurements
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Fig. A.7. Sample distributions of total fat (a), %EPA + DHA (b) and the DHA/EPA ratio, compared between calibration and test set.  

Appendix B. Additional spectral data

Fig. B.8. Pre-processed Raman test set data (a) and NIR test set data (b).  

Fig. B.9. Raman measurements of calibration set samples, with introduced offset for clarity.  
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Appendix C. Modelling additional fatty acid parameters

Fig. C.10. Cross validated performances on calibration set for the most important fatty acids parameters, comparing the Raman belly line scans of untrimmed fillet at 
2s exposure with the NIR measurements on whole untrimmed fillets. These measurement methods were considered the best case results with respect to %EPA +
DHA estimation.  
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Fig. C.11. Test set performances for estimation of the most important fatty acids parameters, comparing the Raman belly line scans of untrimmed fillet at 2s 
exposure with the NIR measurements on whole untrimmed fillets. These measurement methods were considered the best case results with respect to %EPA +
DHA estimation. 
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