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1 Abbreviations and definitions 

BCS – Body Condition Score 
BLUP – Best Linear Unbiased Prediction 
GBLUP – Genomic Best Linear Unbiased Prediction 
GEBV – Genomic Estimated Breeding Values 
GS – Genomic Selection 
HD – High Density genotypes 
LW3W – Litter Weight at 3 Weeks 
LD – Linkage Disequilibrium 
M3W – Mortality within 3 Weeks 
MCMC – Markov Chain Monte Carlo 
pCADD – pig Combined Annotation Dependent Depletion 
QTL – Quantitative Trait Loci 
STB – total number of Still Born piglets 
SHL – Shoulder Lesions 
SNP – Single Nucleotide Polymorphism 
TNB – Total Number of Born piglets 
WGS – Whole Genome Sequence 
YD – Yield Deviations 
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3 Summary 

The main objective of this thesis was to investigate genomic prediction methods for 
high-density and whole-genome sequence genotypes, with emphasis on traits that 
may have difficulties achieving a high prediction accuracy with pedigree-based 
predictions, such as disease resistance and maternal traits. A Bayesian variable 
selection method that combines a polygenic term through a G-matrix and a BayesC 
term (BayesGC) was compared with Genomic Best Linear Unbiased Prediction 
(GBLUP), and for Paper I and II, it was also compared to BayesC. 
 
Paper I aimed to investigate genomic prediction accuracy for the trait host 
resistance to salmon lice in Atlantic salmon (Salmo salar). Three genomic prediction 
methods (GBLUP, BayesC and BayesGC) were compared using 215K and 750K SNP 
genotypes through both within-family and across-family prediction scenarios. The 
data consisted of 1385 fish with both phenotype- and genotype, and the prediction 
accuracy was determined through five-fold cross-validation. The results showed an 
accuracy of ~0.6 and ~0.61 for across-family prediction with 215K and 750K 
genotypes and ~0.67 for within-family prediction for both genotypes. BayesGC 
showed a slightly higher prediction accuracy than GBLUP and BayesC, especially for 
the across-family predictions, but the differences were insignificant. 
 
Paper II investigated the prediction accuracy of GBLUP, BayesC and BayesGC for six 
maternal traits in Landrace sows. The data consisted of between 10,000 and 15,000 
sows, all genotyped and imputed to a genotype density of 660K SNPs. The effects of 
different priors for the Bayesian variable selection methods were also investigated. 
The ~1,000 youngest sows were used as validation animals to validate the 
prediction accuracy. Results showed a variation in genomic prediction accuracy 
between 0.31 to 0.61 for the different traits. The accuracy did not vary much 
between the different methods and priors within traits. BayesGC had a 9.8 and 3% 
higher accuracy than GBLUP for traits M3W and BCS. However, for the other traits, 
there were minor differences.  
  
For within-breed prediction marker density and sizes of reference populations are 
often sufficient. However, when predicting across breeds, one might need a higher 
density, such as Whole Genome Sequence (WGS), or one could benefit from 



4 

functional markers derived from WGS. Paper III investigates prediction accuracy for 
four maternal traits in two pig populations, a pure-bred Landrace (L) and a 
Synthetic (S) Yorkshire/Large White line. Prediction accuracy was tested with three 
different marker data sets: High-Density (HD), Whole Genome Sequence (WGS) and 
markers derived from WGS based on their pig Combined Annotation Dependent 
Depletion (pCADD) score. Two genomic prediction methods (GBLUP and BayesGC) 
were investigated for across- within- and multi-line predictions. For across- and 
within-line prediction, reference population sizes between 1K and 30K animals 
were analysed for prediction accuracy. In addition, multi-line reference population 
consisting of 1K, 3K or 6K animals for each line in different ratios were tested. The 
results showed that a reference population of 3K-6K animals for within-line 
prediction was usually sufficient to achieve a high prediction accuracy. However, 
increasing to 30K animals in the reference population further increased prediction 
accuracy for two of the traits. A reference population of 30K across-line animals 
achieved a similar accuracy to 1K within-line animals. For multi-line prediction, the 
accuracy was most dependent on the number of within-line animals in the reference 
data. The S-line provided a generally higher prediction accuracy than the L-line. 
Using pCADD scores to reduce the number of markers from WGS data in 
combination with the GBLUP method generally reduced prediction accuracies 
relative to GBLUP_HD analyses. When using BayesGC, prediction accuracies were 
generally similar when using HD, pCADD, or WGS marker data, suggesting that the 
Bayesian method selects a suitable set of markers irrespective of the markers 
provided (HD, pCADD, or WGS). 
 
Overall, these three studies showed that BayesGC seemed to have a slight advantage 
over GBLUP, especially with large datasets, high-density genotypes, and when 
relationships between the reference and validation animals were lower. They also 
showed that the relationship between the animals in the reference and validation 
population, and the size of the reference population, had a more significant impact 
on the prediction accuracy than the prediction method. 
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4 Norsk sammendrag 

Hovedmålet med denne oppgaven var å undersøke genomiske prediksjonsmetoder 
for genotyper med høy markørtetthet og hel-genom sekvens, med vekt på 
egenskaper som kan ha vanskeligheter med å oppnå høy prediksjonsnøyaktighet 
med stamtavlebaserte prediksjoner, som sykdomsresistens og maternale 
egenskaper. En Bayesiansk seleksjonsmetode som kombinerer et polygent element 
via en G-matrise og et BayesC-element (BayesGC) ble sammenlignet med Genomic 
Best Linear Unbiased Prediction (GBLUP), og for Paper I og II ble den også 
sammenlignet med BayesC. 
 
Målet for Artikkel I var å undersøke genomisk prediksjonsnøyaktighet for 
egenskapen «Vertsresistens mot lakselus» hos atlantisk laks (Salmo salar). Tre 
genomiske prediksjonsmetoder (GBLUP, BayesC og BayesGC) ble sammenlignet ved 
bruk av 215K og 750K SNP-genotyper gjennom prediksjonsscenarier både innen-
familie og på tvers av familie. Dataene besto av 1385 fisk med både fenotype- og 
genotypeinformasjon, og prediksjonsnøyaktigheten ble bestemt gjennom fem-folds 
kryssvalidering. Resultatene viste en nøyaktighet på ~0,6 og ~0,61 for tverr-
familieprediksjon med 215K og 750K genotyper, og ~0,67 for innen-
familieprediksjon for begge genotyper. BayesGC viste en litt høyere 
prediksjonsnøyaktighet enn GBLUP og BayesC, spesielt for prediksjoner på tvers av 
familier, men forskjellene var ikke signifikante. 
 
Artikkel II undersøkte prediksjonsnøyaktigheten til GBLUP, BayesC og BayesGC for 
seks maternale egenskaper hos landrasepurker. Dataene besto av mellom 10 000 og 
15 000 purker, alle genotypet med en genotypetetthet på 660K SNP-er. Effektene av 
forskjellige priorer for de Bayesianske seleksjonsmetodene ble også undersøkt. De 
ca. 1000 yngste purkene ble brukt som valideringsdyr for å validere 
prediksjonsnøyaktigheten. Resultatene viste en variasjon i genomisk 
prediksjonsnøyaktighet mellom 0,31 til 0,61 for de forskjellige egenskapene. 
Nøyaktigheten varierte ikke mye mellom de forskjellige metodene og priorene 
innen egenskaper. BayesGC hadde en 9,8 og 3 % høyere nøyaktighet enn GBLUP for 
egenskapene M3W og BCS. For de andre egenskapene var det imidlertid mindre 
forskjeller. 
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Å predikere innenfor rase med tilstrekkelig markørtetthet og størrelse på 
referansepopulasjonen er én ting. Men når man predikerer på tvers av raser, kan 
man trenge en høyere markørtetthet, slik som Hel-genom sekvens (HGS), eller man 
kan dra nytte av funksjonelle markører avledet fra HGS. Artikkel III undersøker 
prediksjonsnøyaktighet for fire morsegenskaper i to grisepopulasjoner, en renraset 
Landrase- (L) og en Syntetisk (S) Yorkshire/Stor Hvit-linje. 
Prediksjonsnøyaktigheten ble testet med tre forskjellige markørdatasett: Høy-
Tetthet (HT), Hel-genom sekvens (HGS) og markører avledet fra HGS basert på 
deres pig Combined Annotation Dependent Depletion (pCADD) score. To genomiske 
prediksjonsmetoder (GBLUP og BayesGC) ble undersøkt for prediksjoner på tvers av 
linjer og kombinasjoner av linjer. For på tvers- og innenfor linje ble 
referansepopulasjonsstørrelser mellom 1K og 30K dyr analysert for 
prediksjonsnøyaktighet. I tillegg ble kombinert-linje referansepopulasjon bestående 
av 1K, 3K eller 6K dyr for hver linje i forskjellige forhold testet. Resultatene viste at 
en referansepopulasjon på 3K-6K dyr for prediksjon innenfor linjen vanligvis var 
nok til å oppnå en høy prediksjonsnøyaktighet. Økning til 30 000 dyr i 
referansepopulasjonen økte imidlertid prediksjonsnøyaktigheten for to egenskaper 
signifikant. En referansepopulasjon på 30 000 dyr på tvers av linjen oppnådde en 
lignende nøyaktighet som 1 000 dyr innenfor linje. For kombinasjons-linje 
prediksjonsnøyaktighet var nøyaktigheten mest avhengig av antall dyr innenfor 
linje i referansedataene. S-linjen ga en generelt høyere prediksjonsnøyaktighet 
sammenlignet med L-linjen. Bruk av pCADD-score for å redusere antall markører fra 
HGS-data i kombinasjon med GBLUP-metoden reduserte generelt 
prediksjonsnøyaktigheten i forhold til GBLUP_HT-analyser. Når du bruker BayesGC, 
var prediksjonsnøyaktigheten generelt like ved bruk av HT-, pCADD- eller HGS-
markørdata, noe som tyder på at den Bayesianske metoden velger et passende sett 
med markører uavhengig av de angitte markørene (HT, pCADD eller HGS). 
 
Totalt sett viste disse tre studiene at BayesGC så ut til å ha en liten fordel fremfor 
GBLUP, spesielt med store datasett, genotyper med høy tetthet og når forholdet 
mellom referanse- og valideringsdyrene var lavere. De viste også at forholdet 
mellom dyrene i referanse- og valideringspopulasjonen, og størrelsen på 
referansepopulasjonen, hadde en mer signifikant innvirkning på 
prediksjonsnøyaktigheten enn prediksjonsmetoden. 
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5 General Introduction 

5.1 Introduction 
From the domestication of animals starting over 10,000 years ago, humans have 
gradually cultivated both animals and plants to suit their needs better. At some 
point, they must have noticed how offspring tended to look like their parents. 
However, the way different traits were inherited was a mystery for a very long time. 
The ancient Greek philosopher Aristotle believed, for example, that the man 
contributed to the “form” of the offspring, while the woman contributed with the 
“matter” (Henry, 2006). Even if we did not know how traits were inherited, 
systematic breeding started in the 18th century, with record-keeping and artificial 
selection introduced through Sir Robert Bakewell. The first herd-book was 
established for the thoroughbred horse in 1871 to keep an overview of the animals’ 
relationships with each other (Oldenbroek and van der Waaij 2015). 
It was not until Gregor Mendel did his pea plant hybridization experiments that we 
got a more systemic knowledge of the heredity of traits. He reported his results in 
1865 on how traits of the peas were passed down through generations in a 
systematic way. He died in 1884, but it was not until the early 20th-century that 
other botanist reported their results and linked them back to his work. Many 
breakthroughs in genetic research followed in the 20th century. Among them was 
the determination of DNA as the material of heredity in 1952, and the discovery of 
the helical structure of DNA in 1953. Furthermore, the Human Genome Project, 
which established the base-pair sequence of the human genome, started in 1990 and 
ended in 2003. (Oldenbroek and van der Waaij 2015). 
As the knowledge of genetics and heredity developed, theories for utilising the laws 
of heredity were soon developed for the breeding of our domesticated animals as 
well. Mendel showed the inheritance for traits affected by a single gene. However, 
the inheritance of traits affected by many genes, for example, height, was more 
challenging to dissect. When Fisher published his paper in 1918, showing how many 
genes could contribute to the variance of the height, where each gene followed 
Mendelian inheritance laws, he laid the foundation for the field of Quantitative 
Genetics (Visscher & Goddard, 2019). Lush published the article “animal breeding 
based on quantitative statistics and genomic information” in 1937. In 1941, a PhD 
student from Lush, Hazel, published the selection index theory, where several traits 
could be weighed to produce an index to rate animals against each other to select 



8 

the best animals for breeding. Henderson developed the Estimated Breeding Values 
(EBVs) and came up with Best Linear Unbiased Prediction (BLUP) in 1950. 
However, the computer power at the time was too low to perform the calculations. 
It was not until the late 1980’s that the computer power became significant enough 
to estimate BLUP breeding values with a complete animal model (Oldenbroek and 
van der Waaij 2015). 
 

5.2 Genomic Selection 
 
When DNA information first became available, the idea of being able to select 
animals for breeding based directly on their DNA was intriguing. As DNA 
information became more widespread, methods were needed to utilise the 
information for breeding value estimation. At first, most animal breeding research 
focused on finding the specific markers that would explain each trait, the 
Quantitative Trait Loci (QTLs), to utilise them in Marker-Assisted Selection. 
However, the results from these methods explained only a small part of the total 
genetic variance (de Koning, 2016). 
In 2001 the paper “Prediction of total genetic value using genome-wide dense 
marker maps” by Meuwissen, Hayes, and Goddard (2001) was published. They used 
a reference population of animals with both known phenotypes and genotypes to 
estimate the marker effects and use them in the breeding value prediction. 
Meuwissen et al. also suggested using Single Nucleotide Polymorphisms (SNPs) as 
the genomic data. As the technology developed, prices of genotyping with SNP 
markers kept going down, which made the method feasible. Genomic selection was 
first implemented in dairy cattle breeding, where it could replace the expensive 
progeny testing scheme while also improving the accuracy of predictions (Schaeffer, 
2006). Today, genomic selection is implemented for most animal and plant species 
and is even used in disease research for humans (de Koning, 2016). 
 

5.3 Accuracy of Genomic Selection 
 
To successfully apply genomic selection, the prediction of the genomic breeding 
values must be accurate. The accuracy of genomic prediction methods depends on 
the proportion of genetic variance captured by the markers and the accuracy with 
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which genetic effects captured by the markers can be estimated (Dekkers, 2007). 
The accuracy of which the effects of markers can be estimated is dependent on the 
genomic prediction method, the size of the reference population, the heritability of 
the phenotypes in the reference dataset and the number of independent QTL that 
affect the trait (Daetwyler, Pong-Wong, Villanueva, & Woolliams, 2010). A critical 
aspect of genomic prediction accuracy is the effective number of chromosome 
segments, 𝑀𝑀𝑒𝑒: if 𝑀𝑀𝑒𝑒  increases, accuracy decreases. When a population is more 
related, 𝑀𝑀𝑒𝑒  is lower, increasing the accuracy (Daetwyler, Calus, Pong-Wong, De Los 
Campos, & Hickey, 2013). The accuracy of genomic prediction also increases with 
the number of phenotypes relative to the population's effective number of genomic 
segments (Daetwyler et al., 2013). In addition, the additive genetic relationship 
between the animals in the reference and validation population is essential, where 
the decay of accuracy with decreasing additive genetic relationship is higher with a 
small reference population (Habier, Tetens, Seefried, Lichtner, & Thaller, 2010).  
 
To capture genetic variance, the genotype data must contain markers in Linkage 
Disequilibrium (LD) with QTL. With a higher density genotype, there is a higher 
chance of markers being in LD with QTL. Across-breed prediction suffers from low 
across population LD compared to within-breed prediction, i.e., across breeds Me is 
larger. Thus, a higher marker density might be needed to predict across breeds 
compared to within-breed. If the number of QTL is smaller than the effective 
number of segments, many segments carry no QTL (Daetwyler et al., 2010). Variable 
selection methods may identify the segments with QTL and concentrate on their 
prediction. Hence, variable selection methods improve prediction accuracy by 
estimating the effects of fewer segments, for example, by a priori assuming many 
segments have no effect. This approach is only effective if there are many segments 
with no effect. Otherwise, the SNP-BLUP prior assumption that all SNPs have an 
effect is justified and yields the most accurate predictions.  

5.4 Genomic data 

5.4.1 Whole Genome Sequence 
 
Whole Genome Sequence data (WGS), in addition to containing Single Nucleotide 
Polymorphism (SNPs), also includes other causes of variations, such as deletions, 
duplications, indels, Copy Number variations (CNVs) and other polymorphisms. 
Thus, WGS data are more likely to include the causative variant or have markers 
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with very close LD with the causative variant. Suppose all the variations of a 
population could be explained. In that case, the predictions are no longer dependent 
on LD between SNPs and QTL, leading to increased accuracy of GP (Meuwissen & 
Goddard, 2010; van Binsbergen et al., 2014). When LD is incomplete, but there is 
high marker density, WGS could improve GS since it does not need to rely on LD 
between flanking markers and QTL, thereby increasing the signal in diverged 
populations, for example across-breed (De Roos, Hayes, & Goddard, 2009; Goddard, 
2009; van Binsbergen et al., 2014). 
 
However, some studies have demonstrated that using WGS data did not increase 
prediction accuracy or increased it only slightly compared to using high-density SNP 
panel genotypes. For example, van Binsbergen et al. (2015) reported that using 
imputed WGS data did not increase the accuracy of GP in Holstein-Friesian cattle 
compared to using HD SNP genotype data. Zhang et al. (2018) also showed that 
increasing marker density did not increase or only slightly increased the accuracy of 
GP of feed efficiency component traits in Duroc pigs. Thus, GP with WGS data could 
be an attractive approach, although to date, the expectation of a higher accuracy has 
not been realized with real WGS data. 
 

5.4.2 Selection of functional polymorphisms 
 
One option is to select functional markers from the WGS that could later be used in 
the prediction method. A common approach has been to select significant markers 
from a genome-wide association study as predictors. However, this approach is 
likely to select false positive markers and ignores markers below the significance 
threshold. Nevertheless, Brøndum et al. (2015) showed that the accuracy of GS 
could be improved by adding several significant QTL that were detected by genome-
wide association studies (GWAS) using WGS data. Another way to find functional 
markers could be through “Combined annotation dependent depletion” (CADD) 
(Rentzsch, Witten, Cooper, Shendure, & Kircher, 2019). The CADD model was first 
developed for humans, and it is a method to capture signals of evolutionary 
selection throughout the genome across many generations and combines this with 
genomic features, epigenetic data, and other predictors to estimate a 
deleteriousness score for a given variant. The method was then further developed 
for pigs, thus named pCADD (Groß et al., 2020). pCADD is a method for prioritizing 
SNPs in the pig genome with respect to their putative deleteriousness, in 
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correspondence with the biological significance of the genomic region where they 
are located. The aim for developing pCADD was to help researchers and breeders to 
evaluate newly observed SNPs, and rank potentially harmful SNPs that are 
propagated by breeding. But it is also a possible way to find markers that are 
functional that could be interesting to fit in a model for animal breeding value 
estimations. 
 

5.4.3 Genotype Imputation 
Most animals that are genotyped today are genotyped with a SNP-chip. A lot of 
breeding companies might have started out with genotyping with lower marker 
densities and density increased as the technology has developed. Imputation of 
genotypes has been widely used to upgrade the animals genotyped with a lower 
density so that they can still be utilised in the breeding evaluations. For all the 
papers in this dissertation, we utilised imputation in order to increase the number 
of animals with HD or WGS genotypes. Although most studies on imputation 
accuracy show quite decent accuracies of imputation on individuals (~.90-.99 for 
some (van Binsbergen et al., 2014), there are also many issues. For example, the 
accuracy for each SNP can vary across the genome, giving very low accuracies in 
certain parts of the genome (Larmer, Sargolzaei, Ventura, & Schenkel, 2011). Many 
of the same factors that affect prediction accuracy of genomic prediction also affects 
the accuracy of imputation, such as the size and constitution of the reference 
animals, and the relationship between the reference animals and the imputed 
animals. The genotype density that is being imputed also matters, where for 
instance imputing from 6K directly to HD gives a lower imputation accuracy 
compared to if you impute first from 6K to 50K and then to HD (van Binsbergen et 
al., 2014). For smaller breeds, not having closely related animals in the reference 
group for imputation is also an issue and generally gives them lower prediction 
accuracy (Ventura et al., 2014).  
 

5.5 Across- and multi- breed prediction 
 
It has been suggested to combine related breeds into one larger reference 
population for small populations. However, some markers may be in high LD with a 
QTL in one population and not in the other, especially for populations that diverged 
many generations ago (Andreescu et al., 2007; de Roos, Hayes, Spelman, & Goddard, 
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2008; Gautier et al., 2007). The allele substitution effects across populations might 
also be different, resulting in a difference in genetic variation. A QTL might also 
segregate in one population and not in the other (Clark, Hickey, Daetwyler, & van 
der Werf, 2012; De Roos et al., 2009; M. E. Goddard & Hayes, 2009; Habier et al., 
2010; Hayes, Bowman, Chamberlain, & Goddard, 2009; Wientjes, Veerkamp, & 
Calus, 2013). For across-breed prediction, where the reference population is from 
one population used to predict breeding values for animals in another population, 
the accuracies reported are zero or close to zero (Erbe et al. 2012; Hozé et al. 2014; 
L Zhou et al. 2014a; L. Zhou et al. 2014b). Using multi-breed populations with 50 or 
777K has only shown minor improvements in prediction accuracy. The use of WGS 
data could improve this. 

5.6 Genomic Prediction methods 
 
Today, 20 years after the introduction of Genomic selection, genotypes with large 
densities have never been more available. Whole Genome Sequencing (WGS) prices 
are still decreasing (Wetterstrand KA, 2021), making it probable that WGS data will 
be more available in the future. This means that there is a need to develop methods 
to predict genomic breeding values that can optimise the use of high-density 
genotypes and whole genome sequence data (WGS). For linear methods, such as 
Genomic Best Linear Unbiased Prediction (GBLUP), all markers have equal weight in 
the prediction. There is not necessarily a significant increase in accuracy when 
increasing prediction accuracy from medium- to high-density genotypes and WGS 
when using GBLUP (van Binsbergen et al., 2014; VanRaden et al., 2012). 
Bayesian methods try to differentiate SNPs relative to their importance, giving 
markers in high LD with causal mutations a higher relative weight ( Meuwissen et 
al., 2001; Verbyla, Bowman, Hayes, & Goddard, 2010). The non-linear Bayesian GS 
methods are often referred to as the “Bayesian Alphabet” (Gianola, 2013; Gianola, 
De Los Campos, Hill, Manfredi, & Fernando, 2009). Some of the (many) proposed 
methods are BayesA and BayesB (Meuwissen et al. 2001), BayesC (Habier, 
Fernando, Kizilkaya, & Garrick, 2011), BayesR (Erbe et al., 2012) and BayesGC ( 
Meuwissen, Berg, & Goddard, 2021). The main differences between the methods are 
the type of distributions and the number of distributions for the SNP effects. For 
example, BayesA uses one t-distribution for SNP-effects, while BayesB has two 
distributions: one t-distribution with probability p of a SNP having an effect, and one 
with probability 1-p with 0 effect, i.e., giving many SNPs a null effect. BayesC is 
similar to BayesB, as both have two distributions, where one has a null effect. 
However, BayesC uses a normal distribution instead of a t-distribution for SNPs with 
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effect and assumes a common variance for all these SNPs, while BayesB assumes 
SNP-specific variances. BayesR uses four normal distributions, where one of them 
has a null effect. BayesGC fits a polygenic effect through a G-matrix and a BayesC 
term. Hence, BayesGC fits many SNPs with a small effect through the G-matrix and a 
group of SNPs selected by the model with more significant effects through the 
BayesC term. 
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6 Aim and outline of the thesis 
 
The main aim is to investigate alternative ways to make best use of high-density 
genotypes and WGS data in genomic prediction under different scenarios. The 
detailed aims are:  
 
1) To compare alternative methods of genomic prediction for the trait host 
resistance to salmon lice in Atlantic salmon for prediction accuracies of the GEBVs 
based on a 215 K SNP genotypes and imputed 750 K SNP panels. 
 
2) To determine the prediction accuracy of maternal traits in Landrace sows using a 
panel of 660K SNP markers and a9 - 15K reference population and compare the 
prediction accuracies of alternative methods of genomic prediction. 
 
3) To compare prediction accuracy using a pCADD derived marker panel, a high 
density (HD) SNP-chip marker panel, and a Whole Genome Sequence (WGS) marker 
panel, using both a linear prediction method (GBLUP) and a Bayesian variable 
selection method (BayesGC).  
 
4) To compare the effect of within-, across- and multi-breed genomic predictions at 
different sizes of reference populations. 
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7 Brief summary of papers 
 

7.1 Paper I 
 
Accuracy of genomic prediction of host resistance to salmon lice in Atlantic 
salmon (Salmo salar) using imputed high-density genotypes  
 
Improving resistance towards the parasite in farmed Atlantic salmon could decrease 
the need for treatments, increase the welfare of the fish, as well as reduce the 
infection pressure on wild populations. Phenotypic resistance can be recorded in 
controlled challenge-tests and has been found to be moderately heritable. The aim 
of the study was to compare three different genomic selection models with respect 
to within- and across-family prediction accuracy with both moderate and high SNP-
chip densities (215 K and imputed 750 K). The models tested were: Genomic Best 
Linear Unbiased Prediction (GBLUP), BayesC and a model combining a polygenic 
term and a BayesC term (BayesGC). Predictive abilities of the models were 
compared using five-fold cross-validation.  
 
Main results 
The BayesGC model had a slight advantage over the GBLUP and BayesC models, 
however this difference was not significant. For within-family prediction there was 
no advantage from increasing the SNP density from 215 K to 750 K genotype 
density. However, for across-family prediction a slight improvement in predictive 
ability was observed at the higher density compared to the lower. 
 
Conclusions 
When using Genomic Prediction within-families, a SNP-density of 215 K was 
sufficient to achieve a good prediction accuracy. However, if one wants to predict 
across-family one might benefit from a higher density genotype, although, if 
genotype imputation is required to achieve the higher density, imputation errors 
might reduce the benefits. Host resistance to salmon lice behaved as a highly 
polygenic trait in our data with no major QTL regions and there was no benefit in 
fitting a BayesC term for this trait since the GBLUP, BayesC and BayesGC yielded 
very similar accuracies. 
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7.2 Paper II 
Accuracy of genomic prediction of maternal traits in pigs using Bayesian 
variable selection methods. 
 
Maternal traits in sows are often more difficult to record and have low heritabilities. 
Thus, new methods to increase the prediction accuracy such as genomic prediction 
are of interest. The aim of this study was to compare three methods of genomic 
prediction: GBLUP, BayesC and BayesGC for genomic prediction of six maternal 
traits in Landrace sows using a panel of 660K SNPs. The effect of different priors for 
the Bayesian methods were also investigated. GBLUP does not take the genetic 
architecture into account as all SNPs are assumed to have equally sized effects and 
relies heavily on the relationships between the animals for accurate predictions. 
Bayesian approaches rely on both fitting SNPs that describe relationships between 
animals in addition to fitting single SNP effects directly. Both the relationship 
between the animals and single SNP effects are important for accurate predictions. 
 
Main results 
The accuracy of genomic prediction on six maternal traits in landrace pigs varied 
greatly ranging from 0.31 to 0.61. The prediction accuracies did not vary much 
between the different genomic prediction methods. The two traits Mortality within 
three weeks (M3W) and Body Condition Score (BCS) could benefit from using a 
BayesGC approach with a 9.8 and 3.0% increase in accuracy respectively, while the 
remaining traits only showed minor improvements. 
 
Conclusions 
Although GBLUP, BayesC and BayesGC all yielded similar genomic prediction 
accuracies, the accuracy of BayesGC was always as high as or higher than that of 
GBLUP. Within the BayesGC method the accuracies could vary depending on the 
prior distributions. The models were more sensitive to how many markers were 
fitted in the model through varying the fraction of the total genetic variance 
explained by a single marker (Fr) compared to the amount of total genetic variance 
explained by marker effects as a whole (BayesGC_10, BayesGC_50 or BayesGC_90), 
but overall, most traits were robust against varying the prior distributions.  
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7.3 Paper III 
Whole-genome sequence and pCADD marker-based genomic prediction for 
maternal traits in two pig lines. 
 
The aim of this study was to investigate prediction accuracy for three different 
marker data sets (High-Density, pCADD, and Whole Genome Sequence (WGS)) and 
two different genomic prediction methods (GBLUP and BayesGC) on four maternal 
traits in pigs. The data consisted of two nucleus pig populations, one pure-bred 
Landrace (L) and one Synthetic (S) Yorkshire/Large White line. All animals had 
records on maternal traits and were genotyped, with up to 30K animals in each line. 
We investigated the necessary size of reference population needed to obtain a 
sufficient prediction accuracy within- and across-line and the effect of using a multi-
line reference population with both a high ratio of within-line and a high ratio of 
across-line animals in the reference population. 
 
Main Results 
A reference population of 3K-6K animals for within-line prediction was sufficient to 
achieve a high prediction accuracy. However, increasing to 30K animals in the 
reference population significantly increased prediction accuracy for two traits. A 
reference population of 30K across-line animals achieved a similar accuracy to 1K 
within-line animals. For multi-line prediction accuracy, the accuracy was most 
dependent on the number of within-line animals in the reference data. The S-line 
provided a generally higher prediction accuracy compared to the L-line. Using 
pCADD scores to reduce the number of markers from WGS data in combination with 
the GBLUP method generally reduced prediction accuracies relative to GBLUP_HD 
analyses. When using BayesGC, prediction accuracies were generally similar when 
using HD, pCADD, or WGS marker data, suggesting that the Bayesian method selects 
a suitable set of markers irrespective of the markers provided (HD, pCADD, or WGS). 
 
Conclusions 
A large reference population size can help accuracy for both within- and across-line 
predictions. For multi-line prediction, adding more within-line animals are more 
important than a larger number of across-line animals. The BayesGC method 
benefited from a large reference population and was less dependent on the different 
genotype marker datasets to achieve a high prediction accuracy. 
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8 General discussion 

Genomic prediction is a method that is still under constant development even 20 
years after it was proposed. The technological advancement in both computer 
science, molecular biology and bioinformatics has great potential to propel the 
development of animal breeding and selection. This thesis explores ways of utilising 
these advances in genomic selection for traits that traditionally have difficulty 
obtaining a high prediction accuracy, especially compared to traditional pedigree 
predictions. 
 
Paper I explored the accuracy of genomic prediction for host resistance to salmon 
lice in Atlantic salmon with three methods; GBLUP, BayesC and BayesGC, where 
BayesGC were found to have a slight advantage over GBLUP and a higher density 
genotype had a slight advantage when predicting across families, but not within 
families. In Paper II, the accuracy of genomic prediction for GBLUP, BayesC and 
BayesGC was explored for six maternal traits in pigs. The priors used for Bayesian 
variable selection were also explored, showing that BayesGC had a slight advantage 
and that the priors used are relatively stable for prediction accuracy, but that it 
could give a potential increase in accuracy of 9.2% when ~100 markers were fitted 
with a high variance attributed to each marker. Paper III explored the impact of 
reference population size for within-, across- and multi-breed prediction for up to 
30K animals. In addition to looking at the effect of different marker data sets (HD, 
pCADD and WGS). Paper III showed that increasing the reference population 
substantially affected prediction accuracy. With 30K across-line animals, one could 
achieve prediction accuracies comparable to 1K within-line animals. There was also 
a benefit of a multi-line reference population. However, too many animals of a 
different line in a multi-line reference population could decrease the accuracy, and 
the value of adding within-line animals to the reference population is much higher 
than many across-line animals.  
 
This general discussion will address some of the possibilities of utilising large 
marker densities such as WGS data for animal breeding and other measures to 
improve prediction accuracy for genomic selection. 
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8.1 Utilisation of high-density and WGS genotype marker data 
 
As genotyping costs are likely to reduce, we will likely have breeding programs that 
routinely use whole genome sequencing instead of SNP-chip genotyping. One thing 
is to consider the cost of WGS genotyping, and another factor is the benefit it could 
give to a breeding program. WGS is supposed to contain all causative variants and 
thus be able to explain all variations in a trait and not be dependent on having 
markers in LD with QTL, as it should contain the causative markers. However, when 
comparing simulation studies of WGS with studies on actual data, the results have 
been ambiguous so far. 
A few things that might be good to note about the current way of utilising WGS data 
are that 1) it is often based on genotype imputation, 2) it is often pruned based on 
Minor Allele Frequencies and LD, and 3) it does not necessarily contain all structural 
variation and 4) it is more prone to genotyping errors compared to SNP-chip 
genotyping. 
 
Ad 1) In Paper I, we concluded that part of why increasing the accuracy to a higher 
density did not increase the prediction accuracy could be due to imputation errors. 
Many of the same factors that affect genomic prediction accuracy also affect 
imputation accuracy. The reference population may be too small, or the relationship 
between the reference animals and the animals to be imputed is low. In that case, 
imputation accuracy will be reduced (Ventura et al., 2014). Imputing from a low to a 
high marker density will also be more prone to errors than when the difference in 
marker densities are smaller (Larmer et al., 2011; van Binsbergen et al., 2014). 
 
Ad 2) One of the arguments for WGS is that it contains all the causative mutations. 
However, the raw WGS is massive with millions of markers, which is 
computationally challenging to handle. The markers are usually pruned through, 
e.g., LD, MAF and other quality control measures, so that the final set of markers is 
reduced. However, the pruning could potentially remove some of the causative 
mutations without us realising this.  
 
Ad 3) That not all structural variates are included. WGS used in studies for breeding 
value estimations has gone through a pipeline of quality checks to make the data 
more like the other genotypes, meaning that CNVs, indels, deletions, etc., are mostly 
excluded.  
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Ad 4) The technology for Whole Genome Sequencing is more fragile than SNP-chip 
genotyping and more prone to genotyping errors. It also requires a good and stable 
DNA quality for extractions so that the DNA strands stay long and are not 
fragmented in the genotyping process  (Pérez-Enciso, Rincón, & Legarra, 2015; 
Taylor et al., 2016) 
 
Does this mean that WGS is unsuitable for animal breeding programs? Absolutely 
not. Nevertheless, it does mean that there is room for improvement. One thing is 
that if the cost of WGS goes down, the need for imputation would also be reduced, 
and the imputation accuracy would be higher with more reference animals. We 
could also develop new pipelines and software better adapted to WGS to ensure we 
can get better information from the data and include all the polymorphisms. In 
addition, it shows that the breeding programs should have a plan for optimising the 
use of the WGS information and ensure high quality DNA samples when going 
towards the use of WGS data.  
In Paper III, for instance, one could not find a big difference between the WGS and 
the other two high-density genotype marker data when the BayesGC method was 
applied. However, WGS seemed to slightly benefit from the use of large reference 
populations compared to the other marker data, suggesting that we need extensive 
reference data sets to best use WGS data. One issue with WGS data is the significant 
number of markers even after pruning with QC. How do we distinguish the markers 
that affect the traits and those that do not? In paper III, we investigated the use of 
pCADD scores, a relatively new way of ranking Single Nucleotide Variants (SNVs) 
based on their putative deleteriousness. In Paper III, we used a pCADD score of 
about 11, a score selected to have a similar number of SNPs compared to the High-
Density genotype (~400K). If the SNPs with a higher pCADD score were more likely 
to be in biologically active regions, they should be more likely to be close to 
causative mutations. However, the results in paper III showed hardly any difference 
in accuracy between pCADD and HD SNPs. Even when paired with a linear model 
such as GBLUP, the pCADD SNPs had a lower prediction accuracy than the High-
Density genotypes. Further research in pCADD scores could use fewer SNPs with a 
higher pCADD score to find the deleterious variants and then pair these with a set of 
densely and evenly distributed markers across the genome. The other marker set 
would account for other potential causative mutations not captured through pCADD 
but through markers in high LD with QTL.  
One option that could have been interesting to explore further with WGS is the 
Posterior probabilities of a SNP having an effect or not provided by the Bayesian 
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methods. These posterior probabilities showcase which markers were utilised in the 
model and could have great potential for QTL discoveries (Irene van den Berg, Fritz, 
& Boichard, 2013).  
 

8.2 Factors affecting the accuracy of genomic prediction 

8.2.1 Marker density 
Decent prediction accuracies have been found for marker panels as low as 2K 
(Kriaridou, Tsairidou, Houston, & Robledo, 2019). However, prediction accuracy 
increases until about 50K marker panels, which are common in, for instance, 
commercial cattle and pig breeding. The results have not shown as much increase in 
prediction accuracy when further increasing the marker density to high-density (Su 
et al., 2012) and WGS marker panels (Van Binsbergen et al., 2015). One of the 
reasons for this could be that for GBLUP when constructing a genomic relationship 
matrix, 50K markers are often enough to accurately model the relationship between 
the animals on a genomic level. Paper I saw a slight increase in prediction accuracy 
when increasing from 200 to 700K markers only for the across-family reference 
population. Hence, prediction over more considerable genetic distances requires 
higher marker densities. Paper III did not find a big difference in accuracy between 
HD and WGS marker densities for across, multi or within line reference populations. 
 

8.2.2 Relationship between animals 
The relationship between the reference population and the validation population is 
significant for prediction accuracy (Clark et al., 2012; D. Habier, R.L. Fernando, & 
J.C.M. Dekkers, 2007). Paper I shows this effect on the within vs across family 
reference populations. Having one full-sib in the reference population positively 
affected the prediction accuracy, exceeding the effects of marker density and 
prediction method. When the relationship between the reference and validation 
animals is low, for instance, when predicting across lines, there is evidence that one 
needs a higher marker density and a more extensive reference population size to get 
a sufficient prediction accuracy (van den Berg, Meuwissen, MacLeod, & Goddard, 
2019). Paper III shows that a reference population of 30K animals from across-line 
animals was needed to achieve accuracy close to that of a within-line reference 
population size of 1K. In this case, the value of 1 within-line animal could be 
equivalent to 30 or more across-line animals in terms of contribution to prediction 
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accuracy, showing that constructing a relevant reference population is essential, not 
just the number of animals. 
 
Some issues with prediction across lines are that QTLs might segregate differently in 
the different populations. Either the QTLs do not segregate at all, or the markers 
have a different LD to the QTL in one line compared to another. Here the genetic 
constitution of the different populations could also have an effect. For a line with 
recent high inbreeding, the genomic segments in common between the animals 
would be large. This means that a smaller number of markers would be required to 
estimate the genomic segments of the population. For a more admixed population, 
however, more markers would be necessary, and, in turn, a larger number of 
animals would be needed to estimate the marker effects. Paper III saw that the two 
lines, L and S, had a different effect when used as the across-line reference 
population. The S-line generally had a higher within-line prediction accuracy than L 
and added more accuracy when used in multi-line predictions. The S-line is a 
synthetic breed where several lines have been crossed, possibly showing more 
considerable contrasts between haplotypes. The L-line, however, has been a 
purebred line for many generations. As our data had a high SNP-density and a high 
number of animals, the large population size with more chromosomal segments 
could give more information for prediction across-breed. Nevertheless, the L-line 
might not have enough variation between haplotypes to be a valuable reference for 
the more admixed S-line. 
 

8.2.3 Genetic architecture 
The genetic architecture can determine the best ways of predicting the trait. Paper 
I found the trait Host resistance to Lice to be highly polygenic. For this trait, a 
method like GBLUP, where all markers are set to have an equally small effect, seems 
sufficient and most of the Me effective segments defined by Daetwyler et al. contain 
QTL. Hence, not much is gained from using a Bayesian variable selection method. 
The accuracy of Bayesian methods has been shown to be affected by the number 
and size of QTL for the trait, since with an increasing number of QTL more of the Me 
effective segments will contain QTL (Clark, Hickey, & Van Der Werf, 2011).  Paper 
II shows that using a different prior for polygenic and SNP effects could improve the 
prediction accuracy of some traits. These traits could have QTLs that the model 
detected, and thus the more considerable emphasis on these QTL in the model 
helped improve the accuracy of prediction. 
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8.2.4 Genomic prediction methods 
 

This thesis compared GBLUP with BayesGC (Paper III) and BayesC (Paper I and II). 
GBLUP is one of the most universally accepted GS methods. It is relatively easy to 
comprehend and use. The difference between GBLUP and regular pedigree BLUP is 
using a Covariance matrix based on genomic relationships instead of the pedigree 
relationships. Genomic information makes it possible to distinguish relationships 
between animals in full-sib families, such as those used in Atlantic Salmon breeding. 
In Paper I, we had both within-family and across-family predictions. In the past, 
Salmon breeding for disease traits was dependent on challenge testing, and the 
breeders could not perform challenge tests on animals that were selection 
candidates. They were dependent on using sibling performance of full-sib families to 
estimate breeding values and perform the selection. With GS, challenge tests on the 
selection candidates can still not be performed, but breeding value estimates for the 
selection candidate have a higher prediction accuracy of up to 100% (Ødegård et al., 
2014).  
 
Another standard method of predicting breeding values is ssGBLUP (Christensen & 
Lund, 2010), which is used when not all animals are genotyped. For ssGBLUP, the 
covariance matrix is a combination of pedigree and genotypes, referred to as an H-
matrix (Legarra, Aguilar, & Misztal, 2009). There have been issues with biases of 
ssGBLUP (Nordbø, Gjuvsland, Eikje, & Meuwissen, 2019). However, for populations 
where many animals are not genotyped, ssGBLUP can yield genomic breeding value 
estimates for all animals and not just the genotyped animals. Most of the increase in 
accuracy from GBLUP and ssGBLUP is from a better estimation of the covariance 
matrix, i.e., the relationship matrix between the animals, compared to the pedigree 
relationship matrix, A. 
 Bayesian methods differentiate the markers and try to fit markers with effects and 
down-weigh markers that do not have an effect. BayesGC (Meuwissen, van den Berg, 
& Goddard, 2021) fits both a polygenic effect through a covariance matrix (G-
matrix) and single SNP effects through a BayesC term. This could further increase 
the prediction accuracy for traits that have QTL with significant effects. Paper II 
showed that M3W had 9.2% higher accuracy than GBLUP when using BayesGC with 
few markers fitted together with a polygenic term. Most of the traits did not 
significantly increase prediction accuracy when using BayesGC compared to GBLUP. 
However, BayesGC usually performed slightly better than the other methods. 
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So far, we only tested single trait prediction, but we could expand BayesGC to multi-
trait prediction. It could be relatively straightforward if the assumption is that one 
SNP with a significant effect would have a large effect on all traits (Karaman, Lund, & 
Su, 2019; Kemper, Bowman, Hayes, Visscher, & Goddard, 2018). However, if one 
cannot assume this, the modelling would require sampling which combinations of 
traits are affected by each SNP, which could give many combinations, especially with 
many traits. 
Other possible developments of Bayesian variable selection methods would be to 
expand the model to include non-genotyped animals. Then the challenge would be 
how to infer genotypes on non-genotyped animals. There are methods for imputing 
these genotypes using MCMC methods (Fernando, Dekkers, & Garrick, 2014). It 
would also be possible to exchange the covariance matrix in BayesGC with an H-
matrix instead of using a G-matrix to fit the polygenic trait. One of the most 
significant drawbacks of Bayesian variable selection methods today is the 
computational demand of running MCMC chains. Further research into developing 
even more efficient algorithms and parallel computations could further reduce this 
and increase computer power efficiency as the computer technology develops. 
 

8.3 Further developments 
 
Animal breeding has always been a field that has been adjacent to other fields of 
science. From botanist Mendel and statistician Fisher to molecular biology, 
computer science and bioinformatics that we are relying more and more on today. 
So far, we have just scratched the surface of the underlying genetics of complex 
traits. Areas where modelling is under development are, for example, Epigenetics 
(How the environment can affect the genes) and Epistasis (How the genes interact 
with each other). The more we learn about DNA and bioinformatics, the more 
accurate genomic predictions will be. Currently, we are estimating markers as if 
they have two options: either they affect a trait or not. And then, we try to quantify 
how much of the trait variance the marker explains. We learn from molecular 
genetics studies that a marker is not necessarily as simple as that. For example, a 
gene might be a protein that is part of a process in the body, but we also have genes 
that regulate other genes, turning them on and off (Watson et al., 2008). Epigenetic 
effects may imply that an animal has a QTL present in the genome, but the gene the 
QTL may not be expressed in a particular animal. This, of course, is making QTL 
detection and mapping quite hard, as results are not consistent. 
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 In the long run, it might not be feasible that all QTLs and markers and their effects 
are known on a molecular level. It is hard to imagine having a statistical model that 
could take all main effects and interactions into account. Nevertheless, we still need 
to develop methods that can consider all the available information as the 
bioinformatics field is developing. Using large reference populations and Whole 
Genome Sequence data to detect QTLs combined with, for instance, Bayesian 
variable selection applied to all these interactions could be an exciting way forward. 
Other methods to consider for WGS data could be Machine learning methods 
(although Bayesian methods are a form of Machine Learning). With the large 
amount of data produced from WGS, it could be an option to detect patterns and 
connections that humans would not be able to detect but machine learning methods 
do detect. 
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9 General Conclusions 

When predicting Genomic EBVs using high-density or WGS genomic data: 
 

 A large reference population size can help accuracy for both within- and 
across-line predictions.  

 
 For multi-line prediction, adding more within-line animals is more 

important than a larger number of across-line animals.  
 
 Although GBLUP, BayesC and BayesGC all yielded similar genomic 

prediction accuracies, the accuracy of BayesGC was generally as high as or 
higher than that of GBLUP.  

 
 Within the BayesGC method the accuracies could vary depending on the 

prior distributions and the genetic architecture of the trait. 
 

 The BayesGC method benefited from a large reference population and was 
less dependent on the different genotype marker datasets to achieve a high 
prediction accuracy. 
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A B S T R A C T

Salmon lice (Lepeophtheirus salmonis) is a marine ectoparasite responsible for major losses to the salmon farming
industry each year. Salmonids are the primary hosts of the parasite, including the widely farmed species Atlantic
salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Improving resistance towards the parasite in
farmed Atlantic salmon could decrease the need for treatments, increase the welfare of the fish, as well as reduce
the infection pressure on wild populations. Phenotypic resistance can be recorded in controlled challenge-tests
and has been found to be moderately heritable. The aim of the study was to compare three different genomic
selection models with respect to within- and across-family prediction accuracy with both moderate and high
SNP-chip densities (215 K and imputed 750 K). The models tested were: Genomic Best Linear Unbiased
Prediction (GBLUP), BayesC and a model combining a polygenic term and a BayesC term (BayesGC). Predictive
abilities of the models were compared using five-fold cross-validation.

The trait was found to be highly polygenic. All three models had a similar predictive ability. The BayesGC
model had a slight advantage over the GBLUP and BayesC models, however this difference was not significant.
For within-family prediction there was no advantage from increasing the SNP density from 215 K to 750 K
genotype density. However, for across-family prediction a slight improvement in predictive ability was observed
at the higher density compared to the lower.

1. Introduction

Genomic Prediction (GP) is being adopted in the fields of plant,
animal and aquaculture breeding and human genetics. GP links data on
individual phenotypes with genomic data from genome-wide dense
marker maps, using a reference population of both genotyped- and
phenotyped individuals to predict a population with only genotyped
individuals (Meuwissen et al., 2001). The accuracy of GP is dependent
on the heritability of the trait, the size and quality of the reference
population and the genetic relationships between the reference popu-
lation and the predicted population (Calus and Veerkamp, 2007;
Meuwissen et al., 2001).

Salmon louse (Lepeophtheirus salmonis) is a naturally occurring ec-
toparasitic copepod that is found on most salmonid species in the
Salmo, Onchorhynchus and Salvelinus genera, such as Atlantic salmon
(Salmo salar), Sea trout (Salmo trutta), Pink salmon (Oncorhynchus gor-
buscha) and Rainbow trout (Onchorhynchu mykiss) (Torrissen et al.,
2013). The parasite causes large welfare- and economic problems for
the Atlantic salmon and rainbow trout farming industries. In 2011, the

losses due to the parasite in the Norwegian fish farming industry were
estimated to 436 million US dollars (Abolofia et al., 2017), and the
losses have increased markedly since then (Overton et al., 2018). The
parasite also poses a threat to wild populations, as salmon louse co-
pepods from farmed fish may infect wild salmonids. To reduce impact
on wild stocks, treatment of farmed fish is mandatory at low infestation
levels in Norway. The treatment costs, rather than damages caused by
the parasite itself, are the major problems for the industry. Treatments
are performed frequently, have high mortality rates, and cause stress for
the fish. In addition, salmon lice are developing resistance to some of
the drugs used for treatment (Overton et al., 2018). The effects of
salmon lice infestations from fish farms to wild salmon population are
hard to quantify but there are definitely sizable negative effects to wild
stocks (Torrissen et al., 2013).

Genetic variability in host-resistance to Lepeophtheirus salmonis is
found in multiple studies (e.g. Gjerde et al., 2011), (H. Y. Tsai et al.,
2016) & (Ødegård et al., 2014). The heritability estimates of the trait
depend on the recording conditions. In a natural disease outbreak, the
heritability estimates range between 0.02 ± 0.02 and 0.14 ± 0.02
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(Kolstad et al., 2005). For challenge tests in sea cages the estimates are
around 0.14 ± 0.03 (Ødegård et al., 2014), and for challenge tests in
land-based tank conditions a heritability of 0.33 ± 0.05 is found
(Gjerde et al., 2011). There are also naturally differences in the sus-
ceptibility of different salmonid species, seen especially in the Pacific
salmons (Oncorhynchus spp.) where the Coho- (Oncorhynchus kisutch)
and Pink salmon (Oncorhynchus gorbuscha) reject the lice more rapidly
than the Chinook (Oncorhynchus tshawytscha) (Torrissen et al., 2013).

Selective breeding for disease resistance is often dependent on
challenge tests performed on siblings for phenotypic data. It can also be
performed on disease data collected in the field environment. For
challenge tests, the tested individuals are, due to regulative restrictions,
excluded as selection candidates when tested fish are not allowed to re-
enter the breeding nucleus after being exposed to potential pathogens.
Estimates of Breeding Values (EBVs) are predicted for the elite breeding
candidates based on the information from their challenge tested full
sibs. Because the EBVs are predicted for animals without phenotype
data, prediction is mainly based on family information (full- and half-
sib). This implies that only the between family component of the EBV
can be predicted by traditional Best Linear Unbiased Prediction (BLUP),
which reduces both the intensity of selection and the accuracy because
there is no information on the within family deviation, which en-
compasses half of the genetic variation (Gjerde et al., 2011).

When using genomic data and genomic selection, within family
deviations can be predicted based on the DNA data (Sonesson and
Meuwissen, 2009), and this increases the prediction accuracy as more
of the genetic variation can be explained. Ødegård et al. (2014) found
that using genomic prediction methods gave a higher reliability than
using only pedigree information. However, Sonesson and Meuwissen
(2009) found in their simulation study that the accuracy of selection
dropped when the challenge test was done only every other generation
or only in one generation when using the GBLUP method. This implies
that it would be necessary to challenge test every generation to get
accurate predictions.

The accuracy of genomic predictions increases with the number of
phenotypes relative to the effective number of genomic segments of the
population (Daetwyler et al., 2010). Bayesian variable selection
methods (Meuwissen et al., 2001; Verbyla et al., 2010) attempt to in-
crease the relative weight of markers being in LD with casual mutation
and remove markers that are not linked to causal loci (i.e., not useful
for prediction), and thereby reduce the number of marker effects to
estimate.

Bayesian selection approaches such as Bayes (A/B/C/R) have been
found to have a higher predictive ability in simulation studies, but
differences were smaller in studies using real data (Neves et al., 2012).
One of the biggest differences between the Bayesian methods and
GBLUP is that GBLUP assumes that genetic variance is evenly dis-
tributed over SNPs, whilst the Bayesian methods try to differentiate
SNPs with respect to their relative importance. In the current study we
investigate the BayesC (Habier et al., 2011), and BayesGC models
(Iheshiulor et al., 2017). In BayesGC, a polygenic effect and a Bayesian
term are fitted simultaneously, so that we account for both numerous
SNPs of small effect, as well as a smaller group of SNPs with a poten-
tially larger effect. In contrast to Iheshiulor et al. (2017), who used an
iterative conditional expectation (ICE) algorithm for the BayesGC
model, we fitted this model using a Gibbs-sampling approach.

The aim of this study was to compare three methods of genomic
prediction: Genomic Best Linear Unbiased Prediction (GBLUP), using a
genomic relationship matrix, two Bayesian variable selection methods
BayesGC and BayesC for the trait host resistance to salmon lice in
Atlantic salmon, measured as number of lice per fish. Furthermore,
prediction accuracies of the GEBVs based on a 215 K SNP genotypes and
imputed 750 K SNP panels were compared using both within-family and
across-family prediction scenarios.

2. Methods

The data came from an admixed population of Atlantic salmon (S.
salar) that were genotyped and challenge tested for susceptibility to L.
salmonis. The challenge test was conducted by adding L. salmonis in the
water of sea-net cages closed off with tarpaulins. After 10–15 days the
number of lice were manually counted. The fish were from the
2011 year-class from the AquaGen population as described in (Ødegård
et al., 2014). The total number of challenge-tested fish was 2850 from
the test conducted in the period July 16–18, 2012. The challenge test is
thoroughly described in (Ødegård et al., 2014) and was approved by the
Norwegian Animal Research Authority (S-2012/148773).

From the challenge-tested fish, 1385 fish were genotyped and their
data was used here. The 1385 phenotyped- and genotyped fish be-
longed to 99 full-sib families and were offspring from 68 sires and 69
dams. The smallest family consisted of 7 individuals and the largest 21
with a mean size of 14. Lice resistance was recorded as the number of
lice counted from each fish (LC). However, this trait was highly skewed
and thus the trait was log-transformed and called logLC (Ødegård et al.,
2014).

All 1385 fish were genotyped with a 220 K Affymetrix genome-wide
SNP-chip. The total number of SNPs after quality control was 215,610.
A group of parents (n=59) was genotyped with a high-density SNP-
chip with 990 K SNPs from a custom SNP-chip used by AquaGen. After
quality control there was a total 745,998 SNPs remaining.

Our 1385 phenotyped and genotyped fish were imputed to 750 K
using the FImpute software (Sargolzaei et al., 2014). FImpute is a rule-
based, deterministic method for genotype imputation and phasing
(Wang et al., 2016). The parental fish had not been challenge-tested,
and were only used as reference animals for the imputation and
phasing.

Both the original 215 K and the 750 K imputed genotypes were used
to construct two genomic relationship matrices (G-matrix; one using
215 K and one using 750 K), using own software based on VanRaden
method 1 (VanRaden, 2008);

= =G MM
p p

M x p’
2 (1 )

, 2
j j

ij ij j

where xij is the genotype of fish i for SNP j, with xij= 0,1 or 2 for the
reference homozygote, heterozygote and opposite homozygote, re-
spectively, and pjis the allele frequency of the alternative allele of SNP j
for all fish. The G-matrices were then used in the genomic predictions
described below.

2.1. Calculation of yield deviations

LogLC was corrected for fixed effects by calculating Yield Deviations
(YD), since the Bayesian variable selection approach models used here
could not handle complicated modelling of fixed effects. The model
was:

= + +y Xb Zu e

where y is a vector of logLC phenotypes, b is a vector of fixed effect of
overall mean, person counting the lice, the day of count, and a fixed
regression on the weight of the fish measured on the day of the count
(correcting for the fact that bigger fish may contain more lice due to a
larger surface area). Z is a design matrix linking individuals to the
phenotype. u is the random effect of the individual fish (u~N(0,Aσa2)
where A is the pedigree relationship matrix; e is the residual effect,
where (e~N(0,Iσe2), where I is an identity matrix. This model was
analyzed using DMU (Madsen and Jensen, 2013). The DMUAI module
was used to estimate the variance components and the DMU4 model to
produce individual Yield Deviations (YD) that were used in the further
analysis.
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2.2. GBLUP

The YD were first analyzed by the GBLUP model:

= + +YD 1 Zu eµ

where YD is a vector of the Yield Deviation of LogLC, μ= overall mean,
Z=design matrix linking individuals to the YD, u=vector of random
effects of the individual fish (u~N(0,Gσu2), where G is the genomic
relationship matrix, and e=vector of random residuals with variance e
~N(0, Iσe2) and Identity matrix I.

2.3. BayesC

The model for BayesC (Habier et al., 2011) was as follows:

= + +YD 1 X eµ I sii i i

where YD=Yield Deviation, 1 is a vector of ones, μ is overall mean, Xi

is a vector of genotypes for SNP i containing 0 for homozygote in-
dividuals, 1 for heterozygotes, and 2 for the alternative homozygote
genotype. Ii is an indicator of whether the SNP i is in the model in a
particular MCMC-cycle or not (0/1). si is the SNP effect, where if the
SNP i is in the model: si ~N(0, σm2) and e is the residual with variance e
~N(0, Iσe2) where I is an identity matrix. The MCMC – chain was run
for 20,000 Gibbs-cycles using 4000 burn-in cycles, in two distinct
chains. The prior probability of Ii= 1 is π. If the SNP i is in the model: si
~N(0, σu2/1000). e is the residual, where e ~N(0, Iσe2) and I is an
identity matrix.

2.4. BayesGC

The BayesGC model fits a polygenic effect and a BayesC term si-
multaneously. The polygenic effect is fitted using the genomic re-
lationship matrix (G) as in the GBLUP model. The BayesC term assumes
SNPs to have normally distributed effects with probability (π) or an
effect of 0 with probability (1-π). The BayesC method is the same as the
one used in (Iheshiulor et al., 2017), except that we use a Monte Carlo
Markov Chain (MCMC) algorithm for estimation of SNP effects and the
polygenic effect whereas they use an iterative conditional expectation
(ICE) algorithm to approximate the results from such an MCMC ana-
lysis.

Here we describe how the total genetic variance σu2 is partitioned
over the fitted SNPs and the polygenic effect. For the Bayes C method;

= Fr
HETm

u2
2

where σm2 is the genetic variance explained by a single SNP,
Fr= the fraction of the total genetic variance explained by a single

fitted SNP, i.e. 1/1000 because we assume each SNP explain 1/1000th
of the genetic variance.

= =HET
p p

N
average heterozygosity

2 (1 )i i

loci

For a Bayes C model, this would mean using prior probability of
fitting a SNP of:

=
N
1000

c
loci

Such that = N HETu c loci m
2 2

For the BayesGC method we both have a polygenic effect and fitted
SNP effects. Again, we also assume that each fitted SNP explains 0.1%
of the total genetic variance.

In addition, the total genetic variance σu2 should not be affected by
the partitioning of the variance across the SNPs and the polygenic ef-
fect. Let q be the fraction of σu2 explained by SNPs, then the variance
explained by the polygenic effect is σpol2 =(1-q) σu2. Hence,

= + q loci HETu pol m
2 2 2

It follows that:
= qgc c

where πgc is the π value used for the BayesGC model. Four different
values of q were tested for BayesGC, q=0.05, 0.25, 0.5 and 0.75
corresponding to SNPs explaining 5%, 25%, 50% and 75% of the total
genetic variance (denoted BayesGC_05, BayesGC_25, BayesGC_50,
BayesGC_75, respectively).

The BayesGC model is thus as follows:

= + + +YD 1 Zu X eµ I s
i i i i

where YD is a vector of the Yield Deviations of LogLC, 1 is a vector of
ones, μ is overall mean, Z is a design matrix that links individuals to the
YD, u=random polygenic effect with variance V(u)=Gσpol2. Xi =
vector of genotypes for SNP i containing 0 for homozygote individuals,
1 for heterozygots, and 2 for the alternative homozygote genotype. Ii is
an indicator of whether SNP i is in the model in a MCMC-cycle or not
(0/1) and the prior probability of Ii = 1 is π. si is the SNP effect, where
if the SNP i is in the model: si ~N(0, σm2). e is the residual with variance
e ~N(0, Iσe2) where I is an identity matrix. The MCMC – chain was run
for 4000 burn-in cycles and a total of 20,000 Gibbs-cycles. The EBVs
from the two Gibbs-chains had a correlation of> 0.9999 and thus the
EBVs were assumed to be converged, and the results presented for both
BayesC and BayesGC is the average of two Gibbs-chains.

2.5. Cross validation

We compared the three methods of genomic prediction for their
predictive ability obtained from a 5-fold-crossvalidation design. There
were two alternative scenarios (see below) and all models and scenarios
were analyzed using two different SNP densities (215 K and imputed
750 K). The cross-validation for each scenario was performed by ran-
domly splitting the data set (with some restrictions depending on the
scenario; see below) into five separate subsets. In each “fold” the phe-
notypes of the corresponding data set were set to missing (masked),
while phenotypes of the remaining four subsets were included in the
analysis. This way the animals with phenotype included was set as the
reference population (training-set) and the animals with missing phe-
notype were used as a validation population whose phenotypes were
predicted (validation-set). Each fish was once included in the validation
set over the five folds, i.e. there was no overlap between the validation
sets. There were six replications of the five-fold cross-validation. Each
five-fold cross-validation produced two Gibbs-chains and thus the re-
sults within each replicate is the result of two Gibbs-chains and the
results shown is the average of these chains over the six replicates.

We analyzed two different cross-validation scenarios:
Within-family scenario: Evenly distributing the fish within each full-

sib group across the five subsets, so all fish have full-sibs in the training
data when its own phenotype is masked.

Across-family scenario: Entire full-sib families are allocated at
random to one of the subsets, masking entire families at the same time.
Half-siblings may still be present in training and validation sets. The
analysis (either BayesC, GBLUP or BayesGC) was then performed for
each fold and we extracted the GEBVs from the animals whose records
were masked (the records of each individual were masked in one of the
5 folds). The accuracy of prediction was estimated as:

=r cor YD
h

(GEBV, )
pred 2

where h2 is estimated using a pedigree-based model.

2.6. Significance test

To test the models for significant differences in prediction accuracy
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we used a bootstrapping procedure (Efron and Tibishirani, 1994) to test
the correlation between GEBV and YD in each model following (Iversen
et al., 2019). Two models at a time were compared to find which pre-
dicted the YDs best by randomly bootstrap sampling data points triplets
(EBVs for each of the two models and the corresponding YD) with re-
placement. 10,000 bootstrap samples were constructed for each pair-
wise comparison. We determined which model yielded a higher cor-
relation with the YD for each bootstrap sample. The models were
considered significantly different if one of the models had a higher
correlation in at least 97.5% of the bootstrap samples (equals a p-value
of 5% due to the two-sidedness of the test).

3. Results

The estimates of the variance components of LogLC were
σe2= 0.414 and σu2= 0.069 resulting in a heritability of h2= 0.14
estimated using the pedigree relationship matrix. For the 215 K SNP-
chip and the within-family scenario (Table 1) the highest prediction
accuracy was 0.675 which was achieved by BayesGC_05 and
BayesGC_25. The accuracy of GBLUP and BayesC was 0.671 and 0.672
respectively.

In the 215 K SNPchip and across-family scenario (Table 2), the
highest prediction accuracy was for BayesGC_05 at 0.602 Followed by
BayesGC_25 and BayesGC_50 with an accuracy of 0.601. BayesC and
GBLUP followed at 0.599 and 0.596 respectively. There were no sig-
nificant differences between any of the models using 215 K genotypes
neither within- nor across-family. For the 750 K SNPchip and within-
family scenario (Table 3). BayesGC_25 had the highest accuracy of

0.673 followed by BayesGC_05 with an accuracy of 0.673. GBLUP and
BayesC had an accuracy of 0.669 and 0.670 respectively. The differ-
ences between the methods were not significant in the within-family
scenario. For the 750 K across-family scenario (Table 4), the highest
accuracy was obtained from BayesC and BayesGC_75 with an accuracy
of 0.611. GBLUP had an accuracy of 0.607 and BayesGC_05 and
BayesGC_50 had an accuracy of 0.605, but none of the differences were
statistically significant.

Increasing genotype density from 215 K to 750 K within family
(Tables 1 and 3) had no effect on the accuracy of prediction. However,
between the 215 K and 750 K genotype densities for the across family
scenarios (Tables 2 and 4), we can see a slightly higher accuracy all of
the methods. For GBLUP: 0.596 versus 0.607, for BayesGC_05: 0.602
versus 0.605, for BayesGC_25 0.601 versus 0.610 and for BayesC 0.599
versus 0.611 using genotype densities 215 K and 750 K respectively.
However, there were no significant differences in prediction accuracy
between different genotype densities in the across family scenario.

3.1. Regression coefficient

The slopes for the within-family scenarios are 1.1 and for the across-
family the slope is 1.2. There were no differences in estimates of the
slopes between the methods. A too high slope indicates that the spread
of the EBVs is too small. Possibly the estimated genetic variance is too
small. The estimated variance is based on a pedigree relationship ma-
trix, while we are using a genomic relationship matrix in our predic-
tions.

Table 1
Results from the within-family predictions using 215 K genotype density.

acc SE(acc) b π σpol2 σm2 nmrk

GBLUP 0.671 0.011 1.08 0 0.069 0 0
BayesGC_05 0.675 0.011 1.09 0.0002 0.065 0.00017 50
BayesGC_25 0.675 0.011 1.09 0.0012 0.052 0.00017 250
BayesGC_50 0.674 0.011 1.09 0.0023 0.034 0.00017 500
BayesGC_75 0.673 0.011 1.09 0.0035 0.017 0.00017 750
BayesC 0.672 0.011 1.09 0.0046 0 0.00017 1000

acc is accuracy of prediction (Pearson correlation between estimated and true
breeding value divided by the square root of the heritability).
SE(acc) is the standard error of the means of the accuracy for each replication.
b is the regression coefficient. π is the prior probability of a SNP having an
effect or not.
σpol2 is the variance attributed to the polygenic effect.
σm2 is the variance assumed for a single SNP effect (if fitted in the model).
nmrk is the estimated number of markers fitted in the model based on the π
value multiplied by the total number of markers.

Table 2
Results from the across-family predictions using 215 K genotype density.

acc SE(acc) b π σpol2 σm2 nmrk

GBLUP 0.596 0.012 1.18 0 0.069 0 0
BayesGC_05 0.602 0.014 1.23 0.0002 0.065 0.00017 50
BayesGC_25 0.601 0.013 1.19 0.0012 0.052 0.00017 250
BayesGC_50 0.601 0.013 1.19 0.0023 0.034 0.00017 500
BayesGC_75 0.600 0.013 1.19 0.0035 0.017 0.00017 750
BayesC 0.599 0.013 1.19 0.0046 0 0.00017 1000

acc is accuracy of prediction (Pearson correlation between estimated and true
breeding value divided by the square root of the heritability).
SE(acc) is the standard error of the means of the accuracy for each replication.
b is the regression coefficient. π is the prior probability of a SNP having an
effect or not.
σpol2 is the variance attributed to the polygenic effect.
σm2 is the variance assumed for a single SNP effect (if fitted in the model).
nmrk is the estimated number of markers fitted in the model based on the π
value multiplied by the total number of markers.

Table 3
Results from the within-family predictions using 750 K genotype density.

acc SE(acc) b π σpol2 σm2 nmrk

GBLUP 0.669 0.010 1.09 0 0.069 0 0
BayesGC_05 0.673 0.011 1.10 0.00007 0.065 0.00027 50
BayesGC_25 0.676 0.012 1.03 0.00034 0.052 0.00027 250
BayesGC_50 0.672 0.010 1.10 0.00067 0.034 0.00027 500
BayesGC_75 0.671 0.011 1.10 0.00101 0.017 0.00027 750
BayesC 0.670 0.011 1.10 0.00134 0 0.00027 1000

acc is accuracy of prediction (Pearson correlation between estimated and true
breeding value divided by the square root of the heritability).
SE(acc) is the standard error of the means of the accuracy for each replication.
b is the regression coefficient. π is the prior probability of a SNP having an
effect or not.
σpol2 is the variance attributed to the polygenic effect.
σm2 is the variance assumed for a single SNP effect (if fitted in the model).
nmrk is the estimated number of markers fitted in the model based on the π
value multiplied by the total number of markers.

Table 4
Results from the across-family predictions using 750 K genotype density.

acc SE(acc) b π σpol2 σm2 nmrk

GBLUP 0.607 0.009 1.21 0 0.069 0 0
BayesGC_05 0.605 0.012 1.24 0.00007 0.065 0.00027 50
BayesGC_25 0.610 0.013 1.16 0.00034 0.052 0.00027 250
BayesGC_50 0.605 0.012 1.24 0.00067 0.034 0.00027 500
BayesGC_75 0.611 0.009 1.23 0.00101 0.017 0.00027 750
BayesC 0.611 0.009 1.23 0.00134 0 0.00027 1000

acc is accuracy of prediction (Pearson correlation between estimated and true
breeding value divided by the square root of the heritability).
SE(acc) is the standard error of the means of the accuracy for each replication.
b is the regression coefficient. π is the prior probability of a SNP having an
effect or not.
σpol2 is the variance attributed to the polygenic effect.
σm2 is the variance assumed for a single SNP effect (if fitted in the model).
nmrk is the estimated number of markers fitted in the model based on the π
value multiplied by the total number of markers.
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3.2. Posterior probabilities

A brief analysis of our posterior probabilities was conducted
(Appendix A), and no SNPs with posterior probability higher than 0.02
were detected. Hence, we could not detect any QTLs for the trait, but
there was some regions with elevated posterior probabilities, which
might indicate that some regions are more associated with the trait than
others.

4. Discussion

The accuracy of genomic predictions of host resistance to salmon
lice (Lepeophtheirus salmonis) was substantial and varied between 0.59
and 0.68. Within-family predictions yielded higher accuracies than
across-family predictions. This was expected as there will be a higher
genetic relationship between the test- and training animals in the
within-family prediction scenario, and a higher genetic relationship
between test- and training set is often connected to a higher prediction
reliability (Wu et al., 2015). Although the across-family scenario does
not contain full-sibs in a training set for any animals in the validation
set, half-sibs may still be present, and so the relationship between an-
imals in the across-family scenario is lower than for the within-family,
but cannot be regarded as very distant. It would be interesting to see if
there is a larger difference between the models when the relationship
between the animals in a training set and test set is more distant, as the
predictions would need to rely more on the LD between markers and
not so much the family relationships Unfortunately, the family structure
of our data does not allow to test at lower genetic relationships.

Sonesson (2007) studied the decay of prediction accuracy as the
relationship between the reference population in a sib-testing scheme
decreases over generations. Within a generation, the markers that only
explain family effects could be used for the prediction of family means,
whereas across generations, the family effects decay and the SNPs that
explain the trait variance become more important. Hence, higher SNP
density and accounting for single SNP effects in BayesGC is expected to
become more important at more distant genetic relationships between
training and validation sets.

The main differences between the three models in our study lie in
how they model the genetic variance of the SNPs. The GBLUP method
explains the variance by assuming all SNPs have an equal variance, and
all SNPs are fitted jointly through the G-matrix. The BayesC model
assumes that the genetic variance is explained by a relatively small
fraction of the SNPs and fits those SNPs explicitly in the model.
BayesGC fits all SNPs through the G-matrix, and at the same time fits a
few SNPs that explain substantially more genetic variance than the
others. The different BayesGC versions differentiate in how the total
genetic variance is divided between the G-matrix or the SNP-markers.
This is one of the reasons we had hoped to see a bigger difference be-
tween the models for the across-family prediction scenario.

Other studies showed promising results for a BayesGC type of
method. Solberg et al. (2009) fit a polygenic effect using pedigree in-
formation and the Bayes B method from Meuwissen et al. (2001) to fit
SNP effects. They conclude that fitting a polygenic effect has a small
impact on the accuracy of genome-wide EBVs in the generation im-
mediately following phenotyping, but as the generations progress, the
predictions with a polygenic effect retain a higher accuracy, and that
this persistence in accuracy is significant for higher marker densities.
Calus and Veerkamp (2007) found an increase in the prediction accu-
racy when including a polygenic effect when the SNP density and
heritability was high. Calus et al. did not predict over generations and
generally had a smaller genome size and lower marker densities than
Solberg et al. (2009). Hence, it is expected that including a BayesC and
polygenic term increases prediction accuracies, especially as the genetic
relationships between the training and evaluation animals decrease.
However, both these studies are simulation studies. We found from our
study with real data, that there was no significant difference between

our models in the across-family scenario compared to the within-family
scenario at either genotypic densities.

Ma et al. (2019) found that using a Bayesian model including known
QTLs increased the reliability of prediction accuracy regardless of the
genetic distance between the reference population and the predicted
population. They found that the Bayesian methods had a larger ad-
vantage for traits linked to major genes such as milk yield and fat
compared to fertility and mastitis that had almost no effect. They also
saw that a small reference population (< 1000 individuals) could affect
the reliability of the prediction. As we have both a relatively small
reference population (~1000 individuals) in addition to a highly
polygenic trait, this might have had an impact on why the Bayesian
methods did not outperform GBLUP.

Iheshiulor et al. (2017) compared the Bayes GC method with GBLUP
and BayesC on real data from cattle. Their BayesGC method used an
iterative conditional expectation (ICE) algorithm to fit their BayesC
term while we used a Gibbs sampling algorithm. They found that the
BayesGC performed marginally better than GBLUP and BayesC for all
their traits and for one trait the difference was significant. Iheshiulor
et al. (2017) finds that BayesC always performs between GBLUP and
BayesGC. Our results showed that the BayesC method performed either
the same or worse than BayesGC and the same or slightly better than
GBLUP. In other words, the BayesC term did not add prediction accu-
racy compared with the GBLUP model, which may explain why the
BayesGC model did not have an advantage over GBLUP. Moreover, the
performance of the Bayesian methods may be affected by the assump-
tion that each SNP explains 0.1% of the genetic variance, which limits
the number of SNPs fitted. However, fitting more SNPs would make the
use of fitting both a polygenic trait and a Bayes C term redundant, as
fitting many small SNPs would be practically the same as fitting poly-
genic effects. On the other hand, fitting fewer and larger SNPs would
not agree with the polygenic nature of the trait. We did, however, test
different assumptions for the BayesC method, assuming that each SNP
explain 1

500
, 1

2000
and 1

10000
of genetic variance. None of these assumptions

yielded a significantly different accuracy for the BayesC prediction
accuracy and thus the results were not included here.

Increasing marked densities increased the accuracy slightly for
across-family prediction for all methods, but for within family, the ac-
curacy was the same for both marker densities or could even seem
slightly lower for the high-density genotype. For highly polygenic traits
such as lice resistance, most of the accuracy comes from information on
close relatives. Studies have found that these relationships are accu-
rately predicted with marker panels as low as 1000 SNPs across genome
(Kriaridou et al., 2020). We had 215 K SNPs at our lowest density and
so the relationships are expected to be accurately fitted by a 215 K
marker panel, and thus there is limited effect of increasing the SNP
density even more. Still, a small increase in accuracy for across-family
predictions may be expected for the higher genotype density, as across-
family predictions relies more on LD between markers and causative
mutations. However, the benefits of higher density might be reduced
due to imputation errors. Our 750 K genotypes were imputed, whereas
the 215 K genotypes were recorded. Our reference population for the
imputation was small (59 parents) and did not include all the parents of
the animals in our dataset. This means that some of the families were
imputed based on parental animals from other families. Close relatives
share long haplotypes, which likely results in similar imputation, and
possibly similar imputation errors, within the haplotype. Incorrect im-
putation may thus be more likely to cause bias in across-family than
within-family prediction (within-family relationships are still accu-
rately captured by the imputed SNPs). As BayesGC fits a polygenic term
in addition to the BayesC term, it could be more robust than BayesC
towards these kinds of errors, however differences in accuracy were
small and not statistically significant in our study.
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4.1. Posterior probabilities

When fitting the BayesC-term we have both a prior and a posterior
probability of whether a SNP should be fitted in the model or not. The
prior probability is an input parameter, and the posterior probability is
determined by the model from the Gibbs-sampling and data. The pos-
terior probability is the probability of how often the SNP was fitted in
the model for all the Gibbs samples. If one SNP explains more variance
than another it should have a higher posterior probability of inclusion.
It is feasible to detect QTLs using the posterior probabilities from Bayes
C (van den Berg et al., 2013). However, in order to detect QTLs, the
recommendation is to use large datasets and highly heritable traits. For
our study, the sample size is limited (n=1385), and the heritability is
low to moderate. Tsai et al. (2016) did a GWAS analysis for the trait
host resistance to salmon lice (Lepeophtheirus salmonis) but did not find
any QTL for the trait. However, Rochus et al., (2018) found 2 QTL, on
chromosome 1 and 23 respectively using a mixed linear model GWAS,
and 70 SNPs using a forward multiple linear regression model that did
not correct for population stratification and relatedness, and thus many
of the 70 SNPs may be due to population structure. A few small QTL
have also been found for sea lice more prevalent in the southern
hemisphere (Caligus rogercresseyi). Among these, Cáceres et al. (2019)
found 7 windows explaining up to 3% of the genetic variance for
Atlantic salmon. The regions were associated with immune responses,
cytoskeletal factors and cell migrations. Robledo et al. (2019) also
found 3 single QTLs that explained approximately 4% of the genetic
variance each. 3 QTL regions of 3–5Mb explaining between 7.8 and
13.4% of the genetic variance of sea lice density for the C. rogercresseyi
lice. However, it is known that estimates of QTL variances coming from
the same data in which they were detected are overestimated by the
Beavis effect (Xu, 2003). Hence, some QTL for sea lice resistance were
found in the literature, however the genetics and heritability of lice
resistance has also been found to depend on the recording metho-
dology.

5. Concluding remarks

When using Genomic Prediction within-families, a SNP-density of
215 K seems to be more than sufficient to achieve a good prediction
accuracy. However, if one want to predict across-family one might
benefit from a higher density genotype, although, if genotype imputa-
tion is required to achieve the higher density, imputation errors might
reduce the benefits. Host resistance to salmon lice behaved as a highly
polygenic trait in our data with no major QTL regions and there seems
to be virtually no benefit in fitting a BayesC term for this trait since the
GBLUP, BayesC and BayesGC yielded very similar accuracies.
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Appendix A 

Supplementary Figure 1. Posterior probability distributions of SNPs from method BayesGC_05 at 
215K genotype density.

 

Supplementary Figure 2. Posterior probability distributions of SNPs from method BayesGC_05 at 
750K genotype density. 



Supplementary Figure 3. Posterior probability distributions of SNPs from method BayesGC_25 at 
215K genotype density.

 

 

Supplementary Figure 4. Posterior probability distributions of SNPs from method 

BayesGC_25 at 750K genotype density 

 



Supplementary Figure 5. Posterior probability distributions of SNPs from method 

BayesGC_50 at 215K genotype density.

 

 

Supplementary Figure 6. Posterior probability distributions of SNPs from method BayesGC_50 using 
750K genotype density. 

 

 



Supplementary Figure 7. Posterior probability distributions of SNPs from method BayesGC_75 using 
215K genotype density. 

 

Supplementary Figure 8. Posterior probability distributions of SNPs from method BayesGC_75 using 
215K genotype density. 

 



Supplementary Figure 9. Posterior probability distributions of SNPs from method BayesC using 215K 
genotype density. 

 

 

Supplementary Figure 10. Posterior probability distributions of SNPs from method BayesC using 
750K genotype density. 
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Summary 
The aim of this study was to compare three methods of genomic prediction: GBLUP, 
BayesC and BayesGC for genomic prediction of six maternal traits in Landrace sows 
using a panel of 660K SNPs. The effect of different priors for the Bayesian methods 
were also investigated. GBLUP does not take the genetic architecture into account as all 
SNPs are assumed to have equally sized effects and relies heavily on the relationships 
between the animals for accurate predictions. Bayesian approaches rely on both fitting 
SNPs that describe relationships between animals in addition to fitting single SNP 
effects directly. Both the relationship between the animals and single SNP effects are 
important for accurate predictions. Maternal traits in sows are often more difficult to 
record and have lower heritabilities. BayesGC was generally the method with the higher 
accuracy, although its accuracy was for some traits matched by that of GBLUP and for 
others by that of BayesC. For piglet mortality within 3 weeks, BayesGC achieved up to 
9.2% higher accuracy. For many of the traits however, the methods did not show 
significant differences in accuracies.  
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Bayesian genomic prediction, genomic prediction accuracy, genomic selection, maternal 
traits 
 

  



1 INTRODUCTION 

Genomic Prediction (GP) (Meuwissen, Hayes, & Goddard, 2001) is a method to predict 

breeding values (GEBVs) in animal and plant breeding. GP predicts the GEBVs by using a 

reference population of animals with both phenotype and marker information to 

estimate marker effects. Meuwissen et al. proposed three methods for genomic 

prediction: two Bayesian variable selection methods (BayesA and B) and a linear marker 

effects model estimating marker effects from Single Nucleotide Polymorphisms (SNPs) 

using Best Linear Unbiased Prediction (BLUP), referred to as SNP-BLUP. An alternative 

method of SNP-BLUP is to use a marker-derived genomic relationship matrix (often 

called a G-matrix) as a covariance matrix when solving Mixed Model Equations 

(MME) (VanRaden, 2008) referred to as Genomic Best Linear Unbiased Predictions 

(GBLUP). The two methods, SNP-BLUP and GBLUP, are mathematically equivalent 

(Strandén & Garrick, 2009; VanRaden, 2008).  

 

All markers are assumed to have equal weight in the prediction for the linear models, 

while Bayesian methods try to differentiate SNPs relative to their importance. Markers 

associated with causal mutations get a higher relative weight, and markers not linked to 

causal loci are down-weighted, thus only giving weights to the most important SNPs 

(Meuwissen, Hayes, & Goddard, 2001; Verbyla, Bowman, Hayes, & Goddard, 2010). 

Several alternative Bayesian variable selection methods are proposed, often referred to 

as the “Bayesian Alphabet” (Gianola, De Los Campos, Hill, Manfredi, & Fernando, 2009). 

Differences between the methods are the prior distributions used for the estimation of 

SNP effects. For example, BayesA uses one t-distribution for SNP-effects, while BayesB 



has a mixture of a t-distribution with probability π, and a null-effect with probability 1-π. 

BayesC  (Habier, Fernando, Kizilkaya, & Garrick, 2011). is similar to BayesB, as both have 

a mixture distribution prior, where one has a null effect. However, BayesC uses a 

normal distribution instead of a t-distribution and assumes a common variance for all 

SNPs, while BayesB assumes SNP-specific variances. BayesR uses four normal 

distributions, where one of them has a null effect (Erbe et al., 2012). The recently 

proposed BayesGC method (Meuwissen, van den Berg, & Goddard, 2021), fits a 

polygenic effect through a G-matrix in addition to a BayesC term. Hence, BayesGC fits 

many SNPs with a small effect through the G-matrix and a group of SNPs selected by 

the model with more significant effects through the BayesC term. 

 

In this paper we look at genomic prediction of maternal traits in landrace pigs which are 

considered complex traits with a low to moderate heritability and explore the effect of 

the genetic architecture on the prediction accuracy. Specifically, we look at the traits; 

total number of born piglets (TNB), number of stillborn piglets (STB), piglet mortality 

within 3 weeks, i.e., number of piglets dead after birth and until 3 weeks (M3W), total 

litter weight at 3 weeks (LW3W), sow shoulder lesions (SHL) and the sow’s body 

condition score (BCS). These maternal traits were included in the breeding goal for 

Topigs Norsvin at the time of recording (Eriksen, 2018). 

 

Maternal traits in pigs are related to the sow's ability to produce and raise offspring. 

Maternal traits are essential for efficiency in pig production, the economy, and animal 

welfare (Ocepek & Andersen, 2017). An ideal sow produces a litter of piglets 



corresponding to the number of functional teats available, and all the piglets born 

survive until weaning. Furthermore, the piglets should grow evenly, and the sow should 

not spend all her resources on the litter, implying that she maintains a good body 

condition score and does not develop shoulder lesions.  

 

Simulation studies have shown great potential of using genomic prediction methods to 

predict maternal traits in pigs (Lillehammer, Meuwissen, & Sonesson, 2011, 2013). 

Although few studies have reported genomic prediction accuracies for maternal traits in 

pigs (Tan et al., 2017), there are very few that have reported prediction accuracies for 

Bayesian genomic prediction methods for maternal traits. Some have looked at 

Bayesian methods in growth and reproduction traits (Song et al., 2017) and slaughter 

traits (Salek Ardestani, Jafarikia, Sargolzaei, Sullivan, & Miar, 2021). Although the basis of 

inheritance and breeding is the same across livestock species, their differences in 

breeding structure, genetic architecture and trait biology make it important to study the 

different prediction methods across the species (Samorè & Fontanesi, 2016).  

 

This study aimed to determine the prediction accuracy of six maternal traits in Landrace 

sows using a panel of 660k SNP markers and a large reference population (9-15 

thousand reference animals). The study also compares three methods of genomic 

prediction: GBLUP (VanRaden, 2008), BayesC (Habier et al., 2011) and BayesGC 

(Meuwissen, van den Berg, & Goddard, 2021). 

 

  



2 MATERIAL AND METHODS 

2.1 Phenotypic data 

The phenotypic data consisted of records from 15,703 unique individual Landrace sows 

with at least one record for one of the six traits; total number of born piglets (TNB), 

number of stillborn piglets (STB), piglet mortality within 3 weeks, i.e., number of piglets 

dead after birth and until 3 weeks (M3W), total litter weight at 3 weeks (LW3W), sow 

shoulder lesions (SHL) and the sow’s body condition score (BCS). Of the 15,703 sows, 

10,306 had records for all six traits. The traits were recorded between 2008 and 2019. 

Each of the different traits had between 10,611-15,690 phenotypic records (see Table 1).  

 

Table 1. Number (n) of animals with records for each trait and partition into the reference and 
validation population, and mean (m) number of parity records in each trait. 
Trait1 Total n n reference n validation m parity 
TNB 15,690 14,513 1,177 2.5 
STB 15,690 14,513 1,177 2.5 
M3W 10,611 9,466 1,145 1.7 
LW3W 10,804 9,656 1,148 1.7 
SHL 15,084 13,934 1,150 2.2 
BCS 15,084 13,933 1,151 2.2 

1Total number born (TNB), number of stillborn piglets (STB), piglet mortality within 3 weeks, i.e., 
number of piglets dead after birth and until 3 weeks (M3W), total litter weight at 3 weeks (LW3W), 
sow shoulder lesions (SHL) and the sow’s body condition score (BCS). 
 

Yield Deviations (VanRaden & Wiggans, 1991) for the six traits were derived from the 

commercial breeding value evaluations from Topigs Norsvin. There were multiple 

records for each trait, as we had one YD for each parity. The maximum number of 

parities recorded for each trait were 6, and the mean number of parities recorded for 

each trait is shown in Table 1. Because the software used for the Bayesian variable 



selection models (Meuwissen et al., 2021) could not handle multiple records per 

animals, we used the average YD for each sow, with a weighting of each record 

corresponding to the effective number of records calculated by the formula 𝑛𝑛∗(1+λ) 
(𝑛𝑛+ λ)

 

where λ is σe2/σpe2  and n is the number of records for each individual, σe2 is the residual 

variance and σpe2  is the permanent environmental variance (λ was obtained from Topigs 

Norsvin’s breeding value evaluation). 

 

2.2 Genotype data 

The sows were genotyped with varying SNP densities and imputed to a 660K-genotype 

density. Of the 15703 sows, 526 were genotyped on a 10K chip (GGP Porcine LD), and 

the rest were genotyped on medium density chips: Illumina PorcineSNP60 (60K) and 

two Illumina GeneSeek custom chips (80K and 50K). All genotypes were imputed using 

Fimpute v2.2 (Sargolzaei, Chesnais, & Schenkel, 2014), first to the 50K chip, and then to 

the 660K Axiom Porcine Genotyping Array with reference genotypes from 467 Landrace 

animals. After quality control, the 660K High-Density genotype data had a total of 429, 

403 SNPs with MAF>0.01. 

 

2.3 Validation and reference data 

The ~1,000 youngest sows were used for validation of the predictions, in order to 

imitate a typical genomic breeding program where one wishes to predict the breeding 

values of young animals before they have their own recorded traits. This was done by 

masking their phenotypic records in the analysis and using them for validation. The 



number of validation sows was between 1,145 and 1,177 (Table 1). The rest of the 

animals was used as the reference data with both phenotypic and genotype records. 

Our smallest reference dataset consisted of 9,466 animals for the trait M3W, and the 

largest of 14,513 animals for traits TNB and STB (Table 1). 

 

2.4 Prediction accuracy and regression coefficients 

The accuracy of prediction for all methods was estimated as: 

 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑐𝑐𝑐𝑐𝑝𝑝(GEBV , 𝑌𝑌𝑌𝑌)
√ℎ2

 

And the bias (coefficient of regression) was the calculated slope (b) of the linear 

regression Y = a + bX where a is the intercept, Y is the Yield Deviation (YD) and X is the 

Genomic Estimated Breeding Value (GEBV) of the sows in the validation datasets, 

estimated with only marker information and not phenotypic records. h2 is the 

heritability of the trait and was estimated on the full dataset. 

 

2.5 Variance components and GBLUP 

We estimated variance components for each trait using the pedigree relationship matrix 

and the DMUAI package from the DMU software (Madsen & Jensen, 2013). The variance 

components were estimated on the full dataset (i.e., both the reference and validation 

animals). The model for the variance component estimations were as follows: 

y = 1µ + Zu + e 

where y is a vector of the average YD of a sow, 1 is a vector of ones corresponding to 

the size of y, µ is the mean, Z is a design matrix linking individuals to the phenotype, u is 



the random effect of the individual animal (u~N(0, Aσu
2), where A is the pedigree 

relationship matrix and e = the residual effect (e~N(0, Dσe
2)), where D is a diagonal 

matrix where the diagonals are the inverses of the effective number of records. The 

same model was used for the GBLUP analyses except that the individual animal effect 

was modelled as (u~N(0, Gσu
2)). The variance components used were from the above 

pedigree-based estimates. The G-matrix was calculated using the VanRaden method 1 

(VanRaden, 2007). 

 

2.6 BayesC 

The model for BayesC (Habier et al., 2011) was: 

 y = 1μ + ∑ Ii𝐱𝐱isii + 𝐞𝐞     

where y = a vector of Yield Deviations, 1 is a vector of ones, μ is overall mean, 𝐱𝐱𝑖𝑖 is a 

vector of genotypes for SNP i containing -2pi for homozygote individuals, 1-2pi for 

heterozygotes, and 2-2pi for the alternative homozygote genotype with pi being the 

allele-frequency of SNP i, and I𝑖𝑖 is an indicator of whether the SNP i  is in the model in a 

particular MCMC-cycle or not (0/1), where the prior probability of I𝑖𝑖 being equal to 1 is 

denoted by π (values in Table 2), si is the SNP effect, where if the SNP i is in the model: si 

~N(0, σm2 ), e is the residual with variance e ~N(0 Dσe
2)) where D is an diagonal matrix 

where the diagonals are the inverses of the effective number of records and σe
2 is the 

residual variance estimated from the variance component estimations (Table 5). The 

Markov Chain Monte Carlo (MCMC) – chain was run for 20,000 Gibbs-cycles using 4,000 

burn-in cycles, in two distinct chains. 

 



We used the same variance components as for the GBLUP analyses, however the total 

genetic variance 𝜎𝜎𝑢𝑢2 was partitioned. In the following, we describe how the total genetic 

variance 𝜎𝜎𝑢𝑢2 (see Table 4) is partitioned over the fitted SNPs for the Bayes C method: 

𝜎𝜎𝑚𝑚2  = 𝐹𝐹𝑝𝑝∗𝜎𝜎𝑢𝑢
2

𝐻𝐻𝐻𝐻𝐻𝐻������  

where 𝜎𝜎𝑚𝑚2  is the genetic variance explained by a single SNP, 

Fr is the fraction of the total genetic variance explained by a single fitted SNP, i.e., 

1/1,000 when we assume each SNP explains 1/1,000th of the genetic variance. We test 

different values of Fr, namely 1/100, 1/500, 1/1,000, 1/5,000 and 1/10,000 respectively.  

𝐻𝐻𝐻𝐻𝐻𝐻������ = average heterozygosity =  2∑𝑝𝑝𝑖𝑖 (1−𝑝𝑝𝑖𝑖)
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖

 

Where pi is the allele frequency of locus i and 𝑁𝑁𝑙𝑙𝑐𝑐𝑐𝑐𝑖𝑖 is the total number of loci. 

For a Bayes C model, this would mean using a prior probability of fitting a SNP of: 

𝜋𝜋𝑐𝑐 = 1/𝐹𝐹𝑝𝑝
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖

  

Such that the total genetic variance is  𝜎𝜎𝑢𝑢2 = 𝜋𝜋𝑐𝑐  ∙ 𝑁𝑁𝑙𝑙𝑐𝑐𝑐𝑐𝑖𝑖 ∙  𝐻𝐻𝐻𝐻𝐻𝐻������  ∙  𝜎𝜎𝑚𝑚2  . 

 

Table 2. π values used for BayesC and BayesGC methods at different fraction of total genetic 
variance explained by a single fitted SNP (Fr). 
Fr BayesGC_101 BayesGC_502 BayesGC_903 BayesC 
1/100 0.00002 0.00012 0.00021 0.0002 
1/500 0.00012 0.00058 0.00105 0.0012 
1/1,000 0.00023 0.00116 0.00210 0.0023 
1/5,000 0.00116 0.00582 0.01048 0.0116 
1/10,000 0.00233 0.01164 0.02096 0.0233 

1BayesGC_10 is Bayes_GC with 10% marker variance and 90% polygenic variance. 
2BayesGC_50 has 50% marker variance and 50% polygenic variance. 
3BayesGC_90 has 90% marker variance and 10% polygenic variance. 

2.7 BayesGC 

The BayesGC model is as follows: 



 y = 1μ + Zu + ∑ I𝑖𝑖𝐱𝐱𝑖𝑖s𝑖𝑖𝑖𝑖 + 𝐞𝐞    

where y is a vector of the Yield Deviations, 1 is a vector of ones, μ is overall mean, Z is a 

design matrix that links individuals to the y, u is a vector of random polygenic effects 

with variance V(u) = Gσpol2 , 𝐱𝐱𝑖𝑖 is the vector of genotypes for SNP i coded as for BayesC. Ii 

is an indicator of whether SNP i is in the model in a MCMC-cycle or not (0/1) and the 

prior probability of I𝑖𝑖 being equal to 1 is π (listed in Table 2), si is the SNP effect, where if 

the SNP i is in the model: si ~N(0, σm2 ), e is the residual with variance e ~N(0, Dσe
2) where 

D is an diagonal matrix where the diagonals are the inverses of the effective number of 

records and σe
2 is the residual variance estimated from the variance component 

estimations (Table 5). The MCMC – chain was run for 4,000 burn-in cycles and a total of 

20,000 Gibbs-cycles for two independent chains. The EBVs from the two Gibbs-chains 

for both BayesC and BayesGC had a correlation of >0.9999 and thus the EBVs were 

assumed to be converged, and the results presented for both BayesC and BayesGC is 

the average of two Gibbs-chains.  

 

Table 3. priors of variance of a single marker (σm2  ) used in the BayesC and BayesGC methods 
under the different priors for the fraction of total genetic variance explained by a single fitted 

SNP (Fr) where 𝜎𝜎𝑚𝑚2  = 𝐹𝐹𝑝𝑝∗𝜎𝜎𝑢𝑢
2

𝐻𝐻𝐻𝐻𝐻𝐻������   for each trait. 

Fr 
σm2  

TNB1 STB1 M3W1 LW3W1 SHL1 BCS1 

1/100 0.03196 0.00509 0.00518 0.53802 0.00259 0.00274 
1/500 0.00639 0.00102 0.00104 0.10760 0.00052 0.00055 
1/1,000 0.00320 0.00051 0.00052 0.05380 0.00026 0.00027 
1/5,000 0.00064 0.00010 0.00010 0.01076 0.00005 0.00005 
1/10,000 0.00032 0.00005 0.00005 0.00538 0.00003 0.00003 

1Total number born (TNB), number of stillborn piglets (STB), piglet mortality within 3 weeks, i.e., 
number of piglets dead after birth and until 3 weeks (M3W), total litter weight at 3 weeks (LW3W), 
sow shoulder lesions (SHL) and the sow’s body condition score (BCS). 
 



The BayesGC model basically fits the previous two models (GBLUP and BayesC) 

simultaneously, i.e., it fits a polygenic and a BayesC term. The polygenic effect is fitted 

using the genomic relationship matrix (G) as in the GBLUP model. The BayesC term 

assumes SNPs to have normally distributed effects with probability (π) or an effect of 0 

with probability (1-π).  

 

Table 4. priors for variance attributed to the polygenic effect for the different traits for the 
different BayesGC methods. 
 Trait BayesGC_101 BayesGC_502 BayesGC_903 

σpol2  

TNB 0.944 0.525 0.105 
STB 0.150 0.084 0.017 
M3W 0.153 0.085 0.017 
LW3W 15.89 8.830 1.766 
SHL 0.077 0.043 0.009 
BCS 0.081 0.045 0.009 

1BayesGC_10 is BayesGC with 10% marker variance and 90% polygenic variance. 
2BayesGC_50 has 50% marker variance and 50% polygenic variance.  
3BayesGC_90 has 90% marker variance and 10% polygenic variance. 
 

In the following we describe how the total genetic variance 𝜎𝜎𝑢𝑢2 is partitioned over the 

fitted SNPs and the polygenic effect. For BayesGC, we need an assumption on the 

fraction of the variance that is explained by the individually fitted SNPs in the BayesC 

term of the model. In addition, the total genetic variance 𝜎𝜎𝑢𝑢2 should not be affected by 

the partitioning of the variance across the SNPs and the polygenic effect. Let q be the 

fraction of 𝜎𝜎𝑢𝑢2 explained by the BayesC term, then the variance explained by the 

polygenic effect is 𝜎𝜎𝑝𝑝𝑐𝑐𝑙𝑙 2  = (1-q) 𝜎𝜎𝑢𝑢2. Hence, 

𝜎𝜎𝑢𝑢2  = 𝜎𝜎𝑝𝑝𝑐𝑐𝑙𝑙2 + 𝑞𝑞 ∙ 𝜋𝜋 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∙  𝐻𝐻𝐻𝐻𝐻𝐻������ ∙ 𝜎𝜎𝑚𝑚2  

It follows that:  

𝜋𝜋𝑔𝑔𝑐𝑐 = 𝑞𝑞 ∗  𝜋𝜋𝑐𝑐   



Where 𝜋𝜋𝑔𝑔𝑐𝑐 is the 𝜋𝜋 value used for the BayesGC method. Four different values of q were 

tested for BayesGC, q = 0.1, 0.5 and 0.9 corresponding to the BayesC term with fitted 

marker effects explaining  10%, 50% or 90% of the total genetic variance (denoted 

BayesGC_10, BayesGC_50, BayesGC_90, respectively), with the rest of the variance 1-q 

explained by the polygenic effect through the G-matrix. The values of σm2  used are 

shown in table 3 and the values of 𝜎𝜎𝑝𝑝𝑐𝑐𝑙𝑙 2  are shown in Table 4. 

 

3 RESULTS 

The heritabilities of the traits ranged from 0.09 (M3W) to 0.34 (SHL) (Table 5). M3W had 

the lowest heritability of 0.09, followed by STB and TNB with moderate heritabilities of 

0.13 and 0.19. LW3W, BCS, and SHL had the highest heritabilities with  0.31, 0.31 and 

0.34 respectively (Table 5).  

Table 5. The estimated total genetic variance (𝝈𝝈𝒖𝒖𝟐𝟐) , residual variance (𝝈𝝈𝒆𝒆𝟐𝟐) and heritabilities (𝒉𝒉𝟐𝟐) for 
the six maternal traits. 

Trait1 𝝈𝝈𝒖𝒖𝟐𝟐 𝝈𝝈𝒆𝒆𝟐𝟐 𝒉𝒉𝟐𝟐 
TNB 1.049 4.490 0.189 

STB 0.167 1.125 0.130 

M3W 0.170 1.791 0.087 

LW3W 17.66 39.99 0.306 

SHL 0.085 0.163 0.343 

BCS 0.090 0.203 0.307 

1total number born (TNB), number of stillborn piglets (STB), piglet mortality within 3 weeks, i.e., 
number of piglets dead after birth and until 3 weeks (M3W), total litter weight at 3 weeks (LW3W), 
sow shoulder lesions (SHL) and the sow’s body condition score (BCS). 



For the trait Total Number Born (TNB) the highest accuracy was achieved at 0.610-0.611 

for GBLUP and BayesGC_10 (Table 6) and the method giving the lowest prediction 

accuracy is BayesC (Fr 1/100) (Figure 1) which achieved an accuracy of 0.515 for TNB. For 

all the Bayesian methods (BayesGC_10, BayesGC_50, BayesGC_90 and BayesC), fitting 

more SNPs (Fr = 1/10000) gave the highest accuracy of prediction for the trait TNB. The 

accuracy of prediction for Stillborn (STB) (Figure 2), is lower than the other traits. 

 
Figure 1. The accuracy of prediction for the trait TNB, from the different prediction methods at 
the different priors for fraction of variance explained by a single SNP (bars denote standard 
errors). 
 

For STB, there were also minor, but not significant differences in accuracy between the 

methods, with the highest accuracy achieved by BayesGC_10 (Fr 1/5,000) and GBLUP at 

0.318 and the lowest accuracy for STB was BayesC (Fr 1/100) at 0.272 (see Figure 2). 

M3W (Figure 3) is the trait with the largest differences between the methods. GBLUP 

and BayesC (Fr 1/500) had an accuracy of 0.441 and 0.464 respectively, while the highest 

accuracy from the BayesGC methods was achieved by BayesGC_50 (Fr 1/100) with an 

accuracy of 0.484 (Table 6), making a difference of 9.8% between GBLUP and BayesGC. 



However, the difference was not significant. For the trait LW3W (Figure 4) all the 

methods had high accuracies of 0.717, 0.722 and 0.718 for the methods GBLUP, 

BayesGC_90 (Fr 1/10,000) and BayesC (Fr 1/10,000) respectively. 

 
Figure 2. The accuracy of prediction for the trait STB, from the different prediction methods at 
the different priors for fraction of variance explained by a single SNP (bars denote standard 
errors). 

 
Figure 3. The accuracy of prediction for the trait M3W, from the different prediction methods at 
the different priors for fraction of variance explained by a single SNP (bars denote standard 
errors). 
 

Shoulder Lesions (SHL) (Figure 5) showed a prediction accuracy of 0.406 and 0.409 for 

GBLUP and BayesC while the highest accuracy for BayesGC was 0.418 for BayesGC_50 



(Fr1/100). Trait BCS (Figure 6) also had minor differences between the methods and 

obtained the highest accuracy from the BayesC and BayesGC_90 (Fr 1/10,000) methods 

with an accuracy of 0.518 for both methods, while GBLUP obtained an accuracy of 

0.511.  

 
Figure 4. The accuracy of prediction for the trait LW3W, from the different prediction methods at 
the different priors for fraction of variance explained by a single SNP (bars denote standard 
errors). 

 
Figure 5. The accuracy of prediction for the trait SHL, from the different prediction methods at 
the different priors for fraction of variance explained by a single SNP (bars denote standard 
errors). 
 



 
Figure 6. The accuracy of prediction for the trait BCS, from the different prediction methods at 
the different priors for fraction of variance explained by a single SNP (bars denote standard 
errors). 
 

The regression coefficients for the method yielding the highest accuracy were also the 

highest regression coefficient for all the traits. L3W3 was the only trait with a regression 

coefficient above 1. TNB was the trait with a regression coefficient closest to 1 with a 

regression coefficient of 0.966 while SHL was the trait with a regression coefficient 

furthest from 1 at 0.436 (see Table 6), implying that the variance of the GEBV for SHL 

was inflated. 

  



Table 6. Accuracy, standard error (SE) and regression coefficients (b) for each trait from the 
method and fraction of the total genetic variance explained by a single fitted SNP (Fr) yielding the 
highest accuracy for each trait. 

Trait1 Method Fr Accuracy SE b 

TNB 

BayesGC_102 1/10,000 0.610 0.07 0.97 

BayesC 1/10,000 0.607 0.07 0.95 

GBLUP - 0.611 0.07 0.98 

STB 

BayesGC_102 1/5,000 0.318 
 

0.08 0.50 

BayesC 1/5,000 0.311 0.08 0.49 

GBLUP - 0.318 0.08 0.50 

M3W 

BayesGC_503 1/100 0.484 0.10 0.79 

BayesC 1/500 0.464 0.10 0.74 

GBLUP - 0.441 0.10 0.74 

LW3W 

BayesGC_904 1/10,000 0.722 0.05 1.17 

BayesC 1/10,000 0.718 0.05 1.04 

GBLUP - 0.717 0.05 1.04 

SHL 

BayesGC_503 1/100 0.418 0.05 0.44 

BayesC 1/5,000 0.409 0.05 0.41 

GBLUP - 0.406 0.05 0.41 

BCS 

BayesGC_503 1/5,000 0.518 0.05 0.70 

BayesC 1/5,000 0.518 0.05 0.70 

GBLUP - 0.511 0.05 0.70 
1Total number born (TNB), number of stillborn piglets (STB), piglet mortality within 3 weeks, i.e., 
number of piglets dead after birth and until 3 weeks (M3W), total litter weight at 3 weeks 
(LW3W), sow shoulder lesions (SHL) and the sow’s body condition score (BCS). 
2BayesGC_10 is BayesGC with 10% marker variance and 90% polygenic variance. 
3BayesGC_50 has 50% marker variance and 50% polygenic variance.  
4BayesGC_90 has 90% marker variance and 10% polygenic variance. 
 

  



4 DISCUSSION 

4.1 Genomic prediction methods 

We have compared GBLUP, BayesGC and BayesC for six maternal traits with different 

priors for BayesC and BayesGC. In general, for all traits, one of the BayesGC methods 

yielded the highest prediction accuracy (Table 6), although its accuracy was often, but 

not always, matched by GBLUP and for one trait (BCS) by BayesC. This implies that 

fitting a combination of individual SNPs with large effects and a polygenic effect often 

yielded the highest prediction accuracy, however the differences were not significant. 

The traits M3W and SHL yielded a 9.8% and 3.0% increase in accuracy when moving 

from GBLUP to BayesGC_50 (Fr1/100) (Table 6). The trait BCS had a somewhat increased 

accuracy of prediction (1.4% higher than GBLUP) when fitting either BayesC (Fr 1/5,000) 

or BayesGC_50 (Fr 1/5,000). The trait LW3W had a 0.7% higher accuracy for BayesGC_90 

(Fr 1/10,000) than GBLUP. The traits TNB and STB showed no benefit of fitting Bayesian 

variable selection methods compared to GBLUP.  

 

A limited increase in accuracy when going from GBLUP to BayesGC could be because 

the accuracy of prediction for the trait using GBLUP already is quite high. Our reference 

population was quite large (9-15,000 animals). A reference population of 7-11,000 

animals were sufficient to obtain GEBV prediction accuracies comparable to the EBVs 

obtained with progeny testing for Japanese Black cattle (Takeda et al., 2021). TNB and 

LW3W with an accuracy of ~0.6 and ~0.7 for GBLUP respectively, might not have as 

much potential for increasing their accuracy as M3W, with a much lower general 



accuracy of prediction (~0.44 for GBLUP). However, the trait STB showing the least 

benefit of fitting a Bayesian model also has the lowest general prediction accuracy of 

~0.3. This could mean that there are other factors impacting the possible prediction 

accuracy of STB. For example, there could be fewer or no major QTL for the trait STB, 

lower linkage disequilibrium between markers and QTL, or low minor allele frequency 

of QTL for STB. 

 

4.2 Genetic architecture 

The accuracy of GP depends on the proportion of genetic variance captured by the 

markers, the size of the reference population, the additive genetic relationship between 

the animals in the reference and the validation population, the heritability of the trait, 

the number of independent QTL and the effective number of chromosome segments 

(Habier, Fernando, & Dekkers, 2007; Daetwyler, Calus, Pong-Wong, de los Campos, & 

Hickey, 2013; Daetwyler, Pong-Wong, Villanueva, & Woolliams, 2010; Habier, Tetens, 

Seefried, Lichtner, & Thaller, 2010; Wientjes, Veerkamp, & Calus, 2013). Most individuals 

have records for all traits in our current data, which implies that the genetic 

relationships between the reference and validation populations are approximately the 

same over the six traits. However, some individuals have missing records for some 

traits, resulting in reduced reference population size. M3W and LW3W have ~10K 

reference animals, while the other traits have ~15K reference populations. LW3W, SHL, 

and BCS have the highest heritability, implying more informative reference data (Table 

1). Thus, it seems that the main differences between the traits in our study are the 



genetic architectures of the traits. I.e., how much genetic variance is captured by the 

markers and the size and number of major QTLs present for each trait. 

 

While the traits are all considered to be complex and polygenic, some of the traits might 

have major genes and SNPs in close linkage disequilibrium that explain a substantial 

part of the genetic variance. However, if there happen to be many SNPs with substantial 

LD to a major gene, e.g., due to high genetic drift in the region, the GBLUP method may 

still perform well, since it can use many SNPs to explain the major gene effect. Also, for 

some traits, genomic predictions may have been over larger genetic distances, i.e., 

reduced relationships between reference and validation animals, which favors variable 

selection genomic prediction methods since they focus on SNPs that are in close LD 

with the QTL (Meuwissen and Goddard, 2010; Solberg et al., 2009). 

 

The QTL database (Pig QTLDdb; Hu, Park, & Reecy, 2022) for each trait shows that there 

were 228 detected QTL for “Total number born alive” (TNB) and 138 QTL for “Number of 

stillborn” (STB). The trait “Piglet mortality within 3 weeks” (M3W) did not exist in the 

database. However, 10 QTL were found for the trait “Piglet Mortality”. There was also no 

trait in the database defined as “Total litter weight within 3 weeks” (LW3W), but 1 QTL 

was listed for “Total litter weight at weaning” (He et al., 2021). There was also no QTL 

listed for Body Condition Score (BCS) or Shoulder Lesions (SHL). However, the published 

QTL listed in the database do not only reflect the genetic architecture of the traits but 

serve also as indicators for which traits that are more or less investigated. 

 



QTL markers identified by GWAS on sequence data may be included in 50k marker 

panels for genomic prediction. In Holstein cattle (Brøndum et al., 2015), this method 

showed increased reliability of genomic prediction, especially when the QTL are 

included as a separate variance component, as it allows for extra emphasis on the QTL. 

If large QTL included in the prediction model can help increase the prediction accuracy, 

why not just include the QTL directly in the linear model? This, however, requires a two-

step approach, where one first finds the QTL associated with the trait, and then includes 

them into the genomic prediction model. The BayesGC method fits both the polygenic 

trait and the important SNPs in one analysis. Both approaches do however show that 

there is room for improvement in prediction accuracy by including important SNPs with 

higher emphasis in a genomic prediction model. Bayesian variable selection methods 

also have the potential to find the functional SNPs to include in a linear model 

(Meuwissen et al., 2021; van den Berg, Fritz, & Boichard, 2013). 

 

4.3 Prior distributions 

Bayesian variable selection methods use priors, which need to be carefully chosen or 

hyper-parameters of the priors estimated as part of the prediction method. The latter 

would extend the number of MCMC cycles substantially, as these hyper-parameters 

converge much slower to their equilibrium distribution than GEBVs. In our study we 

tried a range of different priors, varying both the number of SNPs to be included in the 

model through Fr , the emphasis of each SNP through the variance explained by 

markers (σm2 ) and the ratio between variance explained by markers and variance 

explained by the polygenic effect (𝜎𝜎𝑝𝑝𝑐𝑐𝑙𝑙 2 ), where with BayesGC_10, 10% of the total genetic 



variance is fitted with markers ( 𝜎𝜎m2) and 90% with the polygenic effect (𝜎𝜎𝑝𝑝𝑐𝑐𝑙𝑙 2 ), 

BayesGC_50 the variance is split 50/50 and with BayesGC_90, 90% of the total genetic 

variance is fitted with markers and 10% with the polygenic effect. For the Bayesian 

methods, the priors on the fraction of variance explained by a single SNP (Fr) seems 

more important than how much genetic variance is explained by either polygenic effect 

(σpol2) or the marker effects ( 𝜎𝜎m2), i.e., there are more differences within the methods 

BayesGC_10, BayesGC_50 or BayesGC_90 than between them.  

 

M3W (Figure 3) showed the largest differences in accuracy between GBLUP and 

BayesGC and it seems the accuracy increases gradually as Fr becomes larger (fewer 

SNPs fitted) but only when the ratio between σm2  and 𝜎𝜎𝑝𝑝𝑐𝑐𝑙𝑙 2  is favoring 𝜎𝜎𝑝𝑝𝑐𝑐𝑙𝑙 2  in such a way 

that the model fits 50-90% of the genetic variance as 𝜎𝜎𝑝𝑝𝑐𝑐𝑙𝑙 2  and the remaining variance is 

fitted with very few SNPs that in turn get fitted with a relatively high emphasis through 

Fr. The traits SHL and BCS (Figure 5 and 6) show a similar pattern, i.e., fitting a few SNPs 

is not improving the overall prediction accuracy unless it is also accompanied by a high 

emphasis on 𝜎𝜎𝑝𝑝𝑐𝑐𝑙𝑙 2 . This could indicate that finding QTL and fitting them on their own is 

not sufficient to obtain high prediction accuracy. One also needs the support of a 

polygenic effect through e.g., a genomic relationship matrix. However, when fitting 

many SNPs through the BayesC term, the Bayesian variable selection method would 

also fit many SNPs with a small effect – similar to GBLUP. The benefit of a Bayesian 

variable selection method compared to GBLUP is thus expected to be lower for the 

methods with a higher π-value, like the Fr 1/5,000 and 1/10,000. 

 



4.4 Further developments 

A further development of the BayesGC would be to expand to the model to include -

non-genotyped animals in the estimation of breeding values through e.g. single-step 

genomic prediction (Legarra et al., 2009; Christensen and Lund, 2010; Fernando et al. 

2014). The challenge of including non-genotyped animals with genomic prediction is the 

need to impute genotypes. With linear methods there are methods such as ssGBLUP 

(Aguilar et al., 2010; Christensen & Lund, 2010; Legarra, Aguilar, & Misztal, 2009; Misztal, 

Legarra, & Aguilar, 2009) where an additive relationship matrix H is combining 

information from both pedigree and SNP data. Bayesian methods for combining 

genotyped and non-genotyped animals have been developed that could be adapted to 

this model by imputing genotypes for non-genotyped animals using MCMC methods 

that could be used with whole-genome data (Fernando, Dekkers, & Garrick, 2014). 

BayesGC includes a polygenic effect in the form of a G-matrix which could also be 

exchanged with an H-matrix to include non-genotyped animals, and the marker-model-

based single step approach of Fernando et al. (2014) could be used for the additional 

SNPs fitted by the BayesGC model. Other options for using BayesGC results in routine 

genomic evaluations would be to use the analysis of genotyped animals to find SNPs 

that need extra weight. In a regular GBLUP /ssGBLUP analysis these SNPs would thus 

attain extra weights when constructing G, and implicitly the H-matrix. The information 

on SNP variance from a Bayesian analysis could thus be used to improve the genomic 

relationship matrix for GBLUP or ssGBLUP analyses. 

 



Another way to improve BayesGC could be to expand the software towards multi trait 

analyses as many routine breeding evaluations today are based on multi-trait models. 

Expanding the BayesGC model towards multi-trait analyses is relatively straightforward 

if one assumes that a SNP with a large effect, is affecting all the (related) traits 

(Karaman, Lund, & Su, 2019; Kemper, Bowman, Hayes, Visscher, & Goddard, 2018). In 

situations where we cannot assume this, multi-trait variable selection modelling 

requires to sample which combination of traits is affected by each of the SNPs. If there 

are many traits, there are many such combinations. Applying the BayesGC results to 

multi-trait routine evaluations may be by giving extra weight to some SNP genotypes, 

resulting in a different G matrix for each of the traits, and consequently also for 

different pairs of traits (since the G matrix modelling covariances between traits i and j 

is constructed as the cross-product of the SNP genotypes weighted for trait i and those 

weighted for trait j). Modifications of routine software packages may be needed to 

accommodate these per trait alternative G matrices. 

 

Bayesian variable selection methods have a lot of potential for further development to 

be used in routine breeding value estimations. One of the biggest drawbacks today is 

the high computational costs of running the MCMC chains. However, computational 

power has historically increased and will most likely continue to increase, in addition to 

further research developing into more efficient algorithms using parallel computations. 

 

  



5 CONCLUSIONS 

The accuracy of genomic prediction on six maternal traits in landrace pigs varied greatly 

ranging from 0.31 to 0.61. The prediction accuracies did not vary much between the 

different genomic prediction methods. The two traits M3W and BCS could benefit from 

using a BayesGC approach with a 9.8 and 3.0% increase in accuracy respectively, while 

TNB, STB, LW3W, and SHL showed only minor improvements. Although GBLUP, BayesC 

and BayesGC all yielded similar genomic prediction accuracies, the accuracy of BayesGC 

was always as high as or higher than that of GBLUP. Within the BayesGC method the 

accuracies could vary depending on the prior distributions. The models were more 

sensitive to how many markers were fitted in the model through varying the fraction of 

the total genetic variance explained by a single marker (Fr) compared to the amount of 

total genetic variance explained by marker effects as a whole (BayesGC_10, BayesGC_50 

or BayesGC_90), but overall, most traits were robust against varying the prior 

distributions.  
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Abstract  

Background 
In this study, we investigate several factors affecting the prediction accuracy of genomic selection. 
The data consists of two nucleus pig populations, one pure-bred Landrace (L) and one Synthetic (S) 
Yorkshire/Large White line. All animals have records on maternal traits and are genotyped, with up 
to 30K animals in each line. Our aim was to investigate the reference population size required to 
obtain substantial prediction accuracy within- and across-lines and the effect of using a multi-line 
reference population with both a high ratio of within-line and a high ratio of across-line animals in 
the reference population. Prediction accuracy was tested with three different marker data sets: High-
Density, pCADD, and Whole Genome Sequence (WGS). Also, two different genomic prediction 
methods (GBLUP and BayesGC) were compared for four maternal traits in pigs. 

Results 
A reference population of 3K-6K animals for within-line prediction was generally sufficient to 
achieve high prediction accuracy. However, increasing to 30K animals in the reference population 
significantly increased prediction accuracy for two traits. A reference population of 30K across-line 
animals achieved a similar accuracy to 1K within-line animals. For multi-line prediction accuracy, 
the accuracy was most dependent on the number of within-line animals in the reference data. The S-
line provided a generally higher prediction accuracy compared to the L-line. Using pCADD scores 
to reduce the number of markers from WGS data in combination with the GBLUP method generally 
reduced prediction accuracies relative to GBLUP_HD analyses. When using BayesGC, prediction 
accuracies were generally similar when using HD, pCADD, or WGS marker data, suggesting that 
the BayesGC method selects a suitable set of markers irrespective of the markers provided (HD, 
pCADD, or WGS). 

Conclusions 
A large reference population size can help accuracy for both within- and across-line predictions. For 
multi-line prediction, adding more within-line animals is more important than a larger number of 
across-line animals. There were few differences between the different marker data sets and methods 
regarding prediction accuracy. The BayesGC method benefited from a large reference population 
and was less dependent on the different genotype marker datasets to achieve a high prediction 
accuracy. 
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Background 
Maternal traits are related to the sow's ability to produce large litters of healthy piglets that survive 

past weaning (Ocepek and Andersen 2017). For pig production, the maternal traits are of high 

economic importance. One disadvantage of breeding for maternal traits is that the traits can only be 

recorded directly on sows. For the selection of boars for maternal traits, we depend on records from 

relatives, which can be challenging for achieving a high prediction accuracy. New methods to 

increase prediction accuracy are required to improve the prediction accuracy for maternal traits in 

pigs.  

 

Genomic Selection (GS) (Meuwissen, Hayes, & Goddard, 2001) is a method for predicting breeding 

values that is beneficial for traits where one cannot produce records directly on selection candidates. 

Many factors could affect the prediction accuracy of GS. Some of the factors are the size of the 

reference population, the relationship between the reference and the validation population, the 

heritability of the trait, the effective population size (Ne), the marker density, the number of QTL, 

the linkage disequilibrium (LD) between markers and QTL, and the minor allele frequencies of 

causative mutations (Clark et al. 2012; Clark, Hickey, and Van Der Werf 2011; Daetwyler et al. 

2010; Druet, Macleod, and Hayes 2014; Goddard 2009; Habier et al. 2010; Hayes et al. 2009; 

Wientjes, Veerkamp, and Calus 2013). 

 

For smaller breeds or lines, or breeding systems where the budgets are small, it could be difficult to 

obtain a large enough reference population to achieve high prediction accuracy. Using a reference 

population with animals from a different population could be tempting. However, the results so far 

report zero or close to zero accuracies (Kachman et al. 2013). Several studies have also attempted to 

combine genotyped animals from different populations in the reference data (Erbe et al. 2012; Hozé 
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et al. 2014; L Zhou et al. 2014; L. Zhou et al. 2014). The accuracies using e.g., 50K or 770K marker 

density genotype has only slightly improved prediction accuracies so far, with the biggest advantage 

coming from large reference populations. 

 

A low across population prediction accuracy is consistent with a large effective number of genomic 

segments (𝑀𝑀𝑒𝑒) to estimate (van den Berg et al. 2019). For across population predictions, the 

Linkage Disequilibrium (LD) between markers and QTL may not persist. The relationships between 

the animals across populations are tiny, there could be differences in the allele substitution effects 

across populations, and QTL that segregate in one population may not segregate in the other 

population (De Roos, Hayes, and Goddard 2009). 

 

The advantage of WGS is that it has a high chance of including SNPs that are causative mutations 

or are in high linkage disequilibrium (LD) with causative mutations which is consistent across 

populations. There have been some successful applications using WGS data for multi-breed 

genomic prediction (Van Binsbergen et al. 2015). However, to maximise the effect of using WGS, 

the size of the reference population should be large (Iheshiulor et al. 2016; De Roos et al. 2009). 

WGS may contain information about Structural Variants (SVs) or Copy Number Variants (CNVs) 

in addition to the Single Nucleotide Polymorphisms (SNPs), in contrast to the more common SNP 

arrays ("SNP-chips"), which only include SNPs. The costs for WGS continue to reduce 

(Wetterstrand, 2021), which will make WGS data even more commonly available in the future.  

 

One of the major drawbacks of utilising WGS is the sheer size of the genotype datasets. With 

millions of markers, the computational power needed to process a large dataset with many animals 

is very demanding. One option is to derive functional markers from WGS and use a reduced set of 
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markers in the prediction. Many methods for reducing the number of markers has been used, such 

as removing markers in high LD with each other and removing markers with low Minor Allele 

Frequencies (MAF). However, by doing this, we risk losing one of the most significant advantages 

of WGS, namely that WGS includes the causative mutations. 

 

Combined annotation dependent depletion for pigs (pCADD) is a method for prioritizing single 

nucleotide variants (SNVs) in the pig genome for their putative deleteriousness by the biological 

significance of the genomic location (Groß et al. 2020). The combined annotation dependent 

depletion model (CADD) was first developed for human populations and is designed to capture 

signals of evolutionary selection across many generations and combines this with genomic features, 

epigenetic data, and other predictors to estimate a deleteriousness score for a given variant. pCADD 

was developed to help researchers and breeders to evaluate newly observed SNVs, and rank 

potentially harmful SNVs that are propagated by breeding. The pCADD score is a log-rank score 

that ranges from ~95 to 0, with the higher scores indicating a higher probability for a deleterious 

SNV. The top 1% and 0.1% highest scored SNVs have a pCADD score higher than 20 and 30, 

respectively, and thus the more deleterious variants are differentiated from the likely neutral ones. 

This study investigates the prediction accuracy of a marker data set derived from WGS, based on 

their pCADD score. 

 

Genomic Best Linear Unbiased Prediction (GBLUP) is a widely used and accepted method for 

predicting genomic breeding values, which does not account for the variation from markers that 

have a greater effect on the trait, such as the Quantitative Trait Loci (QTL). GBLUP assumes that 

all markers explain the same variance across the genome. Bayesian variable selection methods are a 

way to differentiate between individual SNPs so that markers with larger effects are fitted in the 
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model, and others are down-weighted. Many different Bayesian methods have been proposed, such 

as A, B, C and R, and are often referred to as the “Bayesian alphabet” (Gianola 2013). The 

downside of the Bayesian methods is that they are computationally costly. 

 

In this paper, we use the BayesGC method (Meuwissen, van den Berg, and Goddard 2021), which 

fits both a BayesC marker term with a prior distribution that is a mixture of the normal distribution 

and a zero-effects distribution, in addition to fitting a polygenic term through a Genomic 

Relationship Matrix (“G-matrix”). The method was to utilise high-density and whole-genome 

sequence data, where the polygenic term accounted for the many SNPs with small effects, and the 

BayesC term will fit the few SNPs with a large effect (Meuwissen et al. 2021). Thus, BayesGC 

combines the positives of a GBLUP model using a G-matrix to fit all the markers with a small 

effect computationally efficiently, with the positive effect of adding individual markers with large 

effects through the BayesC term. 

 

This study aims to, firstly, compare a pCADD derived marker panel, a high density (HD) SNP-chip 

set, and Whole Genome Sequence (WGS) marker data, using both a linear prediction method 

(GBLUP) and a Bayesian variable selection method (BayesGC). Secondly, we compare the effect 

of within-, across- and multi-breed genomic predictions at different sizes of reference populations, 

using alternative prediction methods (GBLUP and BayesGC) and genome marker sets (HD, 

pCADD and WGS). 
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Methods 

Dataset 

The data consisted of two commercial pig populations; a pure-bred Landrace and a Synthetic Large 

White/Yorkshire line, denoted as the L- and S-line respectively. All data were obtained from herds 

owned by Norsvin and Topigs Norsvin (www.topigsnorsvin.com). There were phenotypic records 

of four traits: Total Number Born piglets (TNB), Total Number of Stillborn piglets (STB), Shoulder 

Lesion Score (SHL) and Body Condition Score (BCS). All traits are measured on sows. Because a 

lot of animals had records on more than one of the traits, the traits were grouped into two trait 

groups, where all animals had records on both traits in their group. The two trait groups are denoted 

as A-traits; consisting of animals with records on both TNB and STB, and B-Traits; consisting of 

animals with records on both SHL and BCS. Only 332 A-trait and 329 B-trait animals were 

removed because they did not have records for both traits. Combining the traits highly reduced 

computer times for the analyses as the two traits in the trait group share genotype datasets. The A-

traits set consisted of 31751 animals of the L-line and 30356 animals of the S-line. The B-traits 

consisted of 27456 and 6840 animals from the L- and S-line respectively (Table 1). 

Table 1. Number of animals for each trait group and line. 
Line Trait Total n Val n Ref 1K Ref 3K Ref 6K Ref 15K Ref 30K 
L A 31751 1247 1436 3691 6114 15054 30504 
S A 30256 1259 1444 3321 5874 15533 29097 
L B 27456 1089 1286 3681 6523 15392 26367 
S B 6804 1202 1088 3277 5638 - - 

Line indicates which line of pig the animals are from, and Trait indicates which trait group the animals in the dataset 
has phenotypic records of. Total n is the total number of animals for that line and trait group. Val n is the number of 
animals used for validation.  
Ref 1K, Ref 3K, Ref 6K, Ref 15K and Ref 30K is the number of animals used for within-line reference data in the sub-
datasets corresponding to the number of animals in the reference data set, where K indicates numbers in 1,000. 
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Three genotype marker data sets were used in the study; High-Density (HD), Whole Genome 

Sequence (WGS) and pig combined annotation dependent depletion (pCADD) markers derived 

from WGS. The animals were genotyped with varying SNP densities, but all were imputed to a HD 

660K genotype density using FImpute v2.2 (Sargolzaei, Chesnais, and Schenkel 2014) through the 

routine imputation process of Topigs Norsvin. After quality control, the 660K High-Density 

genotype data had a total of 433,451 SNPs with MAF>0.01 in both breeds.  

 

The 660K genotypes were imputed to a reference panel of 756 sequenced animals for 25,9 million 

sequence variants, using Eagle 2.4.1 (Loh et al. 2016) for phasing and Minimac4 (Das et al. 2016) 

for imputation. After imputation we filtered out variants with low MAF in one or both breeds, 

keeping 11.3 million variants with MAF>0.01 in both breeds which were used to create the WGS 

and pCADD datasets. The WGS dataset was created by LD-pruning with the option “–indep-

pairwise” in PLINK 1.9 (Chang et al. 2015; Purcell and Chang 2019) using an 𝑟𝑟2 threshold of >0.99 

and a window size of 10K variants. After pruning we were left with a total of 1,946,188 variants. 

For the pCADD dataset the variant were ranked by pCADD-score. We used markers with a pCADD 

score >11 giving a total of 416,828 SNPs, which is comparable to the number of markers on the 

High-Density SNP-chip. 

 

Table 2. The designs of the sub-datasets that are compared for the different traits and lines. 

Traits A-Traits B-Traits 
Validation data L-Line S-Line L-Line S-Line 

Across Reference data 

S1 L1 S1 L1 
S3 L3 S3 L3 
S6 L6 S6 L6 

S15 L15 - L15 
S30 L30 - L30 

Within reference data L1 S1 L1 S1 
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L3 S3 L3 S3 
L6 S6 L6 S6 

L15 S15 L15 - 
L30 S30 L30 - 

Multi-line reference data 

L1_S1 S1_L1 L1_S1 S1_L1 
L1_S3 S1_L3 L1_S3 S1_L3 
L1_S6 S1_L6 L1_S6 S1_L6 
L3_S1 S3_L1 L3_S1 S3_L1 
L3_S3 S3_L3 L3_S3 S3_L3 
L3_S6 S3_L6 L3_S6 S3_L6 
L6_S1 S6_L1 L6_S1 S6_L1 
L6_S3 S6_L3 L6_S3 S6_L3 
L6_S6 S6_L6 L6_S6 S6_L6 

Traits indicates which trait group the dataset is for; A or B. Validation data indicates which line the validation is from, L 
or S. Across Reference data indicates that the reference data is a different line than the validation data. Within reference 
data is the datasets of which the validation and reference data are from the same line. The Multi-line reference data 
contains animals from both lines in the reference data. The first letter indicates the line of which the data is from (L or 
S). The number indicates the number of animals in the reference data. For the multi-line reference data, it is indicated 
the size of each reference data from each line, e.g., L1_S3 indicates 1000 animals from the L-line and 3000 animals 
from the S-line. 

 

Validation and sub-datasets 

To compare the methods for different sizes and types of reference populations, the animals were 

divided into sub-datasets. The sub-datasets were set up both for pure within-, across-, and multi-line 

reference sets. The animals were divided into reference animals and validation animals. The 

reference animals consisted of animals with both phenotypic and genotypic records. For the 

validation animals, the phenotypic records were masked to validate the prediction accuracy of the 

genomic prediction method.  

 

The validation animals were the same for all analyses: approximately the 1000 youngest animals for 

each Trait and Line. In-total there were 4 validation sets (Table 1). For the A-traits we had sub-

datasets with reference sets of approximately 1K, 3K, 6K, 15K and full 30K animals for both the L- 

and S-line, denoted Lx or Sx where x denotes the size of the reference population (in thousands). 
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For the B-traits of the S-line there were reference sets consisting of 1K, 3K and 6K animals, while 

the L-line had reference sets up to 30K animals. An overview of the sub-datasets is shown in Table 

2. Note that for the within-line predictions, the youngest animals were chosen in the reference data, 

which avoids the inclusion of progeny of the validation animals in the reference data.  Moreover, 

these forward predictions are most relevant for breeding schemes. To avoid splitting animals that 

were born at the same day (potential siblings), we found a cut-off date that gave a reference 

population size close to the desired size. However, for the across-line predictions forward prediction 

was not seen as an important factor and thus the animals for the reference population were chosen at 

random. Table 1 shows an overview of the exact number of animals for each Reference set for 

within-line prediction. For the across-line reference data sets, as random selection was used to select 

the individuals, the number of animals is exact (i.e., for a 3K size reference data set there are 

exactly 3,000 animals). The accuracy of prediction for all methods were corrected for the trait-

heritability as: 

 𝑟𝑟𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 =  𝑐𝑐𝑐𝑐𝑝𝑝(GEBV , 𝑌𝑌𝑌𝑌)
√ℎ2

 

Table 3. Estimated variance components and variance priors used in the BayesGC method for the traits TNB, STB, SHL 
and BCS. 
 TNB STB SHL BCS 

𝜎𝜎𝑢𝑢2 0.644 0.020 0.104 0.167 

𝜎𝜎𝑒𝑒2 6.870 0.227 0.073 0.188 

ℎ2 0.086 0.080 0.590 0.471 
𝜎𝜎𝑝𝑝𝑐𝑐𝑝𝑝2  0.322 0.010 0.052 0.084 

𝜎𝜎𝑚𝑚2  HD 0.00079 0.00002 0.00013 0.00020 

𝜎𝜎𝑚𝑚2   pCADD 0.00088 0.00003 0.00014 0.00023 

𝜎𝜎𝑚𝑚2  WGS 0.00088 0.00003 0.00014 0.00023 

TNB is Total Number Born. STB is Stillborn. SHL is Shoulder Lesions. BCS is Body Condition Score. 
𝜎𝜎𝑢𝑢2 is the total genetic variance. 𝜎𝜎𝑒𝑒2 is the error variance. ℎ2 is the heritability. 𝜎𝜎𝑝𝑝𝑐𝑐𝑝𝑝2  is the variance prior for the polygenic 
term in the BayesGC method. 𝜎𝜎𝑚𝑚2  HD is the marker variance prior for the high density (HD) genotype data. 𝜎𝜎𝑚𝑚2   pCADD 
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is the marker variance prior for the pCADD genotype data. 𝜎𝜎𝑚𝑚2  WGS is the marker variance prior for the whole genome 
sequence (WGS) genotype data. 

 

Model for analysis 

Yield Deviations (VanRaden & Wiggans, 1991) for the four traits were derived from the 

commercial breeding value evaluations from Topigs Norsvin, using a traditional (pedigree-based) 

animal model. There were multiple records for each trait, as we had one YD for each parity. 

Because the software used for the Bayesian variable selection models (Meuwissen, van den Berg, & 

Goddard, 2021) could not handle multiple records per animals, we used the average YD for each 

sow, with a weighting of each record corresponding to the effective number of records calculated as 

𝑛𝑛∗(1+λ) 
(𝑛𝑛+ λ)

 where λ is σe2/σpe2  and n is the number of records for each individual, σe2 is the residual 

variance and σpe2  is the permanent environmental variance. These variance components were 

obtained from commercial Topigs Norsvin breeding value evaluations. 

The variance components of the yield deviations (incl. their weights) were estimated for each trait 

using the pedigree relationship matrix and the DMUAI package from the DMU software (Madsen 

and Jensen 2013). The following model was used: 

Y = 1µ + Zu + e 

where Y is the phenotypic record of a sow. 1 is a vector of ones corresponding to the size of Y. µ is 

the mean, Z is a design matrix linking individuals to the phenotype. u is the random effect of the 

individual animal (u~N(0, Au
2) where A is the pedigree relationship matrix. e = residual effect 

(e~N(0, De
2)), and D is a diagonal matrix where the diagonals are the inverses of the weights of the 

records. The resulting estimated variance components are presented in Table 3. 

Two methods were used for genomic prediction: GBLUP and BayesGC. 
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The GBLUP method used the model: 

Y = 1µ + Zu + e 

where Y is a vector of the average YD of a sow. 1 is a vector of ones corresponding to the size of Y. 

µ is the mean, Z is a design matrix linking individuals to the phenotype. u is the random effect of 

the individual animal (u~N(0, Gu
2) where G is the genomic relationship matrix. e = residual effect 

(e~N(0, De
2)), and D is a diagonal matrix where the diagonals are the inverses of the weights of the 

records.  

And the BayesGC model was: 

 Y = 1μ + Zu + ∑ I𝑖𝑖𝐗𝐗𝑖𝑖s𝑖𝑖𝑖𝑖 + 𝐞𝐞    

where Y is a vector of the Yield Deviations. 1 is a vector of ones. μ is an overall mean. Z is a design 

matrix that links individuals to the Y. u = random polygenic effect with variance V(u) = Gσpol2  

where G is a genomic relationship matrix. 𝐗𝐗𝐢𝐢 = vector of genotypes for SNP i containing 0 for 

homozygote individuals, 1 for heterozygous, and 2 for the alternative homozygote genotype.  Ii is 

an indicator of whether SNP i is in the model in a MCMC-cycle or not (0/1). The prior probability 

of I𝑖𝑖 = 1 is π. si is the SNP effect, where if the SNP i is in the model: si ~N(0, σm2 ). e is the residual 

with variance e ~N(0, Dσe2), and D is an diagonal matrix where the diagonals are the inverses of the 

weights of the records. The MCMC – chain was run for 2000 burn-in cycles and a total of 12000 

Gibbs-cycles for twenty independent chains. The EBVs from the twenty Gibbs-chains had 

correlations of ~0.99 and thus the EBVs were assumed to be converged, and the results presented is 

the average of twenty Gibbs-chains. 

The Genomic Relationship Matrices (G-matrix) were calculated using the VanRaden method 1 

(VanRaden 2007) for both the HD and pCADD SNP-data sets. One G-matrix was calculated for 
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each sub-dataset so that the relationships were based only on the genotypes of the animals present in 

each sub-dataset. For the WGS analyses using BayesGC, the G-matrix used for the variance of the 

polygenic effect V(u) was made using the HD genotypes. 

For the BayesGC model, the total genetic variance 𝜎𝜎𝑢𝑢2  was partitioned into a variance over the 

markers 𝜎𝜎𝑚𝑚2  explained by the BayesC term of the model and variance over the polygenic effect 𝜎𝜎𝑝𝑝𝑐𝑐𝑝𝑝2 . 

Let q be the fraction of 𝜎𝜎𝑢𝑢2 explained by the BayesC term, then the variance explained by the 

polygenic effect is 𝜎𝜎𝑝𝑝𝑐𝑐𝑝𝑝 2  = (1-q) 𝜎𝜎𝑢𝑢2. Hence, 

𝜎𝜎𝑢𝑢2  = 𝜎𝜎𝑝𝑝𝑐𝑐𝑝𝑝2 + 𝑞𝑞 ∙ 𝜋𝜋 ∙ N𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖 ∙  𝐻𝐻𝐻𝐻𝐻𝐻������ ∙ 𝜎𝜎𝑚𝑚2  

Where 𝐻𝐻𝐻𝐻𝐻𝐻������ = average heterozygosity =  2∑𝑝𝑝𝑖𝑖 (1−𝑝𝑝𝑖𝑖)
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖

, 

p is the allele frequency of a single loci and 𝑁𝑁𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖 is the total number of loci. 

𝜎𝜎𝑚𝑚2  = 𝐹𝐹𝑝𝑝∗𝜎𝜎𝑢𝑢
2

𝐻𝐻𝐻𝐻𝐻𝐻������  

Where 𝜎𝜎𝑚𝑚2  is the genetic variance explained by a single SNP, 

Fr = the fraction of the total genetic variance explained by a single fitted SNP, i.e., 1/1000 when we 

assume each SNP explains 1/1000th of the genetic variance. 

𝜋𝜋 is the prior probability of a SNP I𝑖𝑖 = 1, indicating whether a SNP i is in the model in a particular 

MCMC-cycle or not (0/1). 

For a Bayes C model, this would mean using a prior probability of fitting a SNP of: 

𝜋𝜋𝑐𝑐 = 1/𝐹𝐹𝑝𝑝
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖
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Such that the total genetic variance is  𝜎𝜎𝑢𝑢2 = 𝜋𝜋𝑐𝑐  ∙ 𝑁𝑁𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖 ∙  𝐻𝐻𝐻𝐻𝐻𝐻������  ∙  𝜎𝜎𝑚𝑚2  . 

For the partitioned model of BayesGC, it follows that 

𝜋𝜋𝑔𝑔𝑐𝑐 = 𝑞𝑞 ∗  𝜋𝜋𝑐𝑐  

Based on a previous study (Kjetså et al. 2022, submitted manuscript) the fraction of the partitioning 

(q) does not have a great effect on the accuracy and the optimum seem to be to split the variance 

50/50 between the polygenic 𝜎𝜎𝑝𝑝𝑐𝑐𝑝𝑝2  and the marker 𝜎𝜎𝑚𝑚2  variance, giving a q=0.5. 

The Fr could have a greater effect on the accuracy and thus the 𝜋𝜋 in our study was estimated, using 

a 𝜋𝜋 based on an Fr = 1/1000 as the starting value.  

For the different genotypes used this meant a starting value for π of 0.0023, 0.0024 and 0.0005 for 

HD, pCADD and Sequence genotypes respectively. 

The priors used for BayesGC for each trait can be found in Table 3 in addition to the estimated 

variance components. The 𝐻𝐻𝐻𝐻𝐻𝐻������ depended on the genotypes and was not trait specific and was 

calculated to be 0.41, 0.37 and 0.37 for the HD, pCADD and WGS genotypes respectively. 

Significance testing 

The accuracy differences between two alternative methods were tested for their significance using a 

bootstrapping procedure (Efron, B. Tibishirani 1994). From datasets consisting of triplets (two 

EBVs (one from each of the models compared) and the corresponding YD of a validation animal), 

bootstrap samples were randomly sampled by sampling these triplets with replacement (following 

Iversen et al., 2019). 10,000 bootstrap samples were constructed for each pairwise comparison of 

models, and the model which yielded the higher correlation with the YD for each bootstrap sample 

was determined. The models were considered significantly different if one of the models had a 
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higher correlation in at least 97.5% of the bootstrap samples (resulting in a p-value of 0.05 due to 

the two-sidedness of the test). 

Results 
For the L-line animals in Figure 1a, the accuracy of prediction for the different reference 

populations for within population (L1, L3, L6, L15 and L30) ranged from 0.32 (L3 BGC_HD and 

BGC_WGS) to 0.73 (L30 BGC_HD, BGC_PCADD and BGC_WGS). For across-line predictions 

of L-Line validation animals for TNB (Figure 1a), BGC_WGS had an accuracy of 0.19, 0.21, 0.0, 

0.26 and 0.29 for S1, S3, S15 and S30 respectively, giving a gradual increase in prediction accuracy 

with a larger reference population size (except for S6 where predictions did not achieve any 

accuracy). For the largest reference population across-line with 30,000 animals (S30) the accuracies 

were 0.20, 0.28, 0.29, 0.29 and 0,32 for the GBLUP_PCADD, GBLUP_HD, BGC_PCADD, 

BGC_WGS and BGC_HD respectively. This is comparable to accuracies obtained with a small 

within-line reference populations of 1,000-3,000 animals where accuracies ranged from 0.33-0.36. 

The prediction accuracy of the S-line animals for the TNB trait (Figure 1b) seems to give slightly 

higher prediction accuracy compared to the general accuracies of the L-line animals (Figure 1a). 

For within-line predictions the accuracies ranged from 0.47 for S1 (BGC_WGS and BGC_HD) to 

0.83 for S30 (BGC_WGS). For the across-line predictions (Figure 1b) the accuracies ranged from 

0.08 for L3 (GBLUP_PCADD) to 0.34 for L30 (BGC_WGS and GBLUP_HD).  

For the multi-breed reference population predicting on L-line (Figure 1a), L1_S1 containing 1,000 

L-line animals and 1,000 S-line animals obtained accuracies of 0.36-0.37 for all methods. For 

L1_S3 the accuracies increased ranging between 0.37-0.39 across the methods. For L1_S6 however, 

where the number of S-line animals were increased to 6,000, the accuracies decreased again and 

ranged from 0.34-0.36. L3 and S6 seem to be outlier data sets, resulting in poor predictions. 
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The multi-line prediction accuracies (Figure 1b) yielded the same or slightly higher accuracies than 

those of within-line predictions with the same amount of within-line reference animals. In contrast 

to the L-line (Figure 1a), the multi-line prediction in the S-line had a consistent increase of 

prediction accuracy when adding more animals from the opposite line. Adding just 1000 animals to 

the reference data of L-animals seems to give the same or slightly higher prediction accuracies 

compared to the pure within S-line predictions. 
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Figure 1. Accuracy of prediction for the trait Total Number Born (TNB) with validation animals 
from a) L-line animals and b) S-line animals, for different reference populations1 and Methods2. 
Bars denote the Standard Error of the accuracy (SE). 

1The name of the reference population refers to the line of the animals from the reference population, and the number of 
animals of that line, e.g., L1 is with a reference population with 1000 L-line animals, and S1_L3 is a reference 
population of 1000 S-line and 3000 L-line animals. 
2GBLUP_HD is the results for the GBLUP method using the HD genotype data, GBLUP_PCADD is the GBLUP 
method using the pCADD genotype data, BGC_HD is the BayesGC method using HD genotype data, BGC_PCADD is 
the BayesGC method using pCADD data and BGC_WGS is the BayesGC method using Whole Genome Sequence data. 
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Figure 2. Accuracy of prediction for the trait Number of Stillborn (STB) with validation animals 
from a) L-line animals and b) S-line animals, for different reference populations1 and Methods2. 
Bars denote the Standard Error of the accuracy (SE). 

1The name of the reference population refers to the line of the animals from the reference population, and the number of 
animals of that line, e.g., L1 is with a reference population with 1000 L-line animals, and S1_L3 is a reference 
population of 1000 S-line and 3000 L-line animals. 
2GBLUP_HD is the results for the GBLUP method using the HD genotype data, GBLUP_PCADD is the GBLUP 
method using the pCADD genotype data, BGC_HD is the BayesGC method using HD genotype data, BGC_PCADD is 
the BayesGC method using pCADD data and BGC_WGS is the BayesGC method using Whole Genome Sequence data. 
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Stillborn (STB) prediction accuracies ranged from 0.22 for L1 (GBLUP_PCADD) to 0.82 for L30 

(GBLUP_HD, BGC_HD, BGC_PCADD, PGC_WGS) for the within-line prediction of L-line 

animals (Figure 2a). For across-line predictions the accuracies ranged from 0.19 for S1 

(GBLUP_PCADD) to 0.35 for S15 (GBLUP_PXADD, BGC_HD and BGC_PCADD and 

BGC_WGS) and S30 (GBLUP_HD and BGC_HD). 

Prediction accuracies for S-line validation animals for the STB trait (Figure 2b) ranged from 0.55 

(S1, GBLUP_PCADD) to 1.03 for L30 (BGC_HD) for within-line predictions, from -0.20 (L1, 

GBLUP_HD) to 0.27 (L30, BGC_PCADD) for across-line predictions and from 0.50 (S1_L1, 

GBLUP_PCADD) to 0.78 (S6_L3, BGC_HD and BGC_PCADD) for multi-line predictions. An 

accuracy greater than 1 denotes a high prediction accuracy that is somewhat over-estimated, which 

is possible here since our estimator of the prediction accuracy is not bounded to the 0 – 1 interval. 

In general, the accuracies for across-line prediction of S-animals for STB were low. For L1 all 

accuracies were negative, which showed again that accuracy estimates are not bound to the 0-1 

interval. The highest prediction accuracies were obtained with the L30 dataset with accuracies 

ranging between 0.24 and 0.27. In comparison the prediction accuracy for within-line predictions 

were between 0.55-0.57 for S1. 

The prediction accuracies for the multi-line reference data for L-line animals (Figure 2a) range from 

0.28 for L1_S3 (BGC_PCADD and L1_S6 (BGC_PCADD and BGC_HD) to 0.66 for L6_S6 

(BGC_WGS). Accuracies are slightly higher when including 1,000-3,000 animals from the S-line 

compared to within-line predictions. However, increasing the within-line proportion increases the 

accuracy more. When predicting on S-line animals using multi-line reference populations (Figure 

2b), the accuracies range from 0.51-0.57 for S1_L1-L6, from 0.58-0.63 for S3_L1-L6 and from 

0.73-0.78 for S6_L1-L6. 
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Figure 3. Accuracy of prediction for the trait Shoulder Lesions (SHL) with validation animals from 
a) L-line animals and b) S-line animals, for different reference populations1 and Methods2. Bars 
denote the Standard Error of the accuracy (SE). 

1The name of the reference population refers to the line of the animals from the reference population, and the number of 
animals of that line, e.g., L1 is with a reference population with 1000 L-line animals, and S1_L3 is a reference 
population of 1000 S-line and 3000 L-line animals. 
2GBLUP_HD is the results for the GBLUP method using the HD genotype data, GBLUP_PCADD is the GBLUP 
method using the pCADD genotype data, BGC_HD is the BayesGC method using HD genotype data, BGC_PCADD is 
the BayesGC method using pCADD data and BGC_WGS is the BayesGC method using Whole Genome Sequence data. 
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Figure 4. Accuracy of prediction for the trait Body Condition Score (BCS) with validation animals 
from a) L-line animals and b) S-line animals, for different reference populations1 and Methods2. 
Bars denote the Standard Error of the accuracy (SE). 
1The name of the reference population refers to the line of the animals from the reference population, and the number of 
animals of that line, e.g., L1 is with a reference population with 1000 L-line animals, and S1_L3 is a reference 
population of 1000 S-line and 3000 L-line animals. 
2GBLUP_HD is the results for the GBLUP method using the HD genotype data, GBLUP_PCADD is the GBLUP 
method using the pCADD genotype data, BGC_HD is the BayesGC method using HD genotype data, BGC_PCADD is 
the BayesGC method using pCADD data and BGC_WGS is the BayesGC method using Whole Genome Sequence data. 
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The accuracies for within-line predictions for shoulder lesions (SHL) for L-line ranged from 0.09 

for L1 (GBLUP_HD) to 0.26 (L15 GBLUP_HD and BGC_HD and L30 GBLUP_HD, BGC_HD 

and BGC_WGS) (Figure 3a). For across-line predictions, the accuracies ranged from -0.07 (S1 

GBLUP_HD and GBLUP_PCADD) to 0.14 (BGC_PCADD) and for multi-line prediction the 

accuracies ranged from 0.10 (L1_S1 GBLUP_HD) to 0.20 (L6_S1 GBLUP_HD and L6_S3+L6_S6 

GBLUP_HD and GBLUP_PCADD). Within-line prediction accuracies for SHL on S-line animals 

ranged from 0.01 (L1 GBLUP_HD and BGC_HD) to 0.57 (S6 GBLUP_HD) (Figure 3b). For 

across-line predictions the accuracies ranged from -0.01 (L3 BGC_WGS) to 0.14 (L6 

GBLUP_HD). The multi-line prediction accuracies ranged from 0.21 (S1_L3 BGC_HD) to 0.56 

(S6_L6 GBLUP_HD, BGC_HD and BGC_WGS, S6_L1 GBLUP_HD). The accuracies for within-

line predictions with only 1,000 animals (S1) were rather low (0.01-0.30), but it improved greatly 

for S3 and S6 with a prediction accuracy of 0.5-0.56. 

Prediction accuracies for Body Condition Score (BCS) for L-line animals (Figure 4a) ranged from 

0.21 (L1 GBLUP_HD) to 0.4 (L30 GBLUP_HD) for within-line prediction, from -0.08 (S1 

BGC_PCADD) to 0.15 (S1 GBLUP_HD and GBLUP_PCADD) for across-line prediction and from 

0.18 (L1_S1 GBLUP_PCADD) to 0.37 (L6_S6 BGC_WGS) for multi-line prediction. The 

prediction accuracies for S-line animals for BCS (Figure 4b) ranged from -0.03 (S1 GBLUP_HD to 

0.84 (S6 GBLUP_HD, BGC_HD, BGC_PCADD and BGC_WGS) for within-line predictions, from 

-0.05 (L1 GBLUP_HD) to 0.33 (L6 BGC_HD) for across-line predictions and from 0.56 (S1_L1 

GBLUP_PCADD) to 0.84 (S6_L1 BGC_WGS) for multi-line predictions. 
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Figure 5. Mean prediction accuracy for all four traits, with validation animals from a) L-line 
animals and b) S-line animals, for different reference populations1 and Methods2. Bars denote 
Standard Deviation (SD) of the accuracy of the four traits. 
1The name of the reference population refers to the line of the animals from the reference population, and the number of 
animals of that line, e.g., L1 is with a reference population with 1000 L-line animals, and S1_L3 is a reference 
population of 1000 S-line and 3000 L-line animals. 
2GBLUP_HD is the results for the GBLUP method using the HD genotype data, GBLUP_PCADD is the GBLUP 
method using the pCADD genotype data, BGC_HD is the BayesGC method using HD genotype data, BGC_PCADD is 
the BayesGC method using pCADD data and BGC_WGS is the BayesGC method using Whole Genome Sequence data. 
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Comparing genomic prediction methods 

Significant differences between methods are shown in the supplementary tables 1-8. In general, for 

TNB, the GBLUP methods performed numerically but not significantly better than the BayesGC 

method for L1 and L3. For L6, GBLUP_HD, GBLUP_PCADD and BGC_PCADD performed 

significantly better than BGC_HD and BGC_WGS. However, for the larger reference data, L15 and 

L30, the BayesGC methods had a significantly higher accuracy compared to the GBLUP methods 

(Supplementary Table 1). For S15, (across) the accuracy obtained with BGC_HD was significantly 

higher than GBLUP_PCADD, and for S30, both BGC_HD and BGC_PCADD were significantly 

higher than GBLUP_PCADD. For prediction on TNB on S-line animals, for all except the S1 data 

set, the BayesGC methods were slightly but not significantly more accurate than the GBLUP 

methods for within-line prediction. For across-line prediction: the BGC_WGS analysis yielded 

consistently higher accuracies except for L15 where BGC_PCADD yielded the highest accuracy. 

However, none of the differences between methods for the across-line prediction analysis were 

significant. For multi-line prediction, the BayesGC methods perform better than both GBLUP 

methods for S3_L1-L6 and S6_L1-L6 (Supplementary Table 2). 

For prediction on STB on L-line there was no significant difference between the methods for 

within-line or across-line predictions. For multi-line however, the methods BGC_HD, 

BGC_PCADD and BGC_WGS all had a significantly higher accuracy compared to 

GBLUP_PCADD for L1_S3. BGC_HD had also a higher prediction accuracy compared to 

GBLUP_HD and BGC_PCADD, while BGC_WGS also had a significantly higher accuracy than 

BGC_PCADD. For L3_S3 and L6_S3 all methods were significantly more accurate than 

GBLUP_PCADD. For L3_S3 BGC_HD and BGC_WGS had a significantly higher accuracy 

compared to BGC_PCADD (Supplementary Table 3). 
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There is no obvious difference between the methods for STB prediction of S-line animals. For 

prediction on SHL L-line animals, there was not a consistent difference between the methods, but 

the GBLUP methods tended to have a slightly higher accuracy compared to the BayesGC methods, 

and for example for L3_S1-S6 GBLUP_PCADD performed significantly better than the three 

BayesGC methods and for L6_S1-S6 GBLUP_HD performed significantly better than the three 

BayesGC methods (Supplementary Table 5). BGC_PCADD also had a significantly higher 

accuracy for S1 compared to GBLUP_HD, BGC_HD and BGC_WGS while BGC_WGS had a 

significantly higher accuracy compared to GBLUP_HD and BGC_HD for SHL predicted on S-line 

animals (Supplementary Table 6). 

For BCS predicted on L-line, there were no differences between the methods except for across-line 

S1 where both GBLUP_HD and GBLUP_PCADD had a significantly higher prediction accuracy 

compared to BGC_PCADD and BGC_WGS and for S3 BGC_WGS had a significantly higher 

accuracy compared to BGC_PCADD (Supplementary Table 7). For BCS predicted on S-line, 

GBLUP_HD and BGC_HD performed significantly worse compared to the other methods for 

within-line S1 predictions (Supplementary Table 8). 

When comparing the genomic prediction methods performance across traits (Figure 5) one cannot 

find a significant difference between the methods. The standard deviation (SD) seemed to increase 

when the reference population size was larger when predicting on L-line (Figure 5a). BGC_PCADD 

and BGC_WGS seemed to give slightly lower prediction accuracies across line for 1K animals 

(S1), but all methods performed better than L1 (whin-line) when number of across-line animals 

were 15-30K (Figure 5a). This was not the case for across-line prediction for S-line animals (Figure 

5b). Averaging the prediction accuracy across traits shows a slight improvement for the three 
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BayesGC methods compared to the two GBLUP methods in both lines for reference population size 

>15,000 animals.     

Discussion 
Size of reference population 

Across all the traits and lines, the size of the reference population and the relationship between the 

reference and validation animals influences the prediction accuracy most. For 3,000 within-line 

reference animals, the accuracies were consistently high across all the traits and methods. For SHL 

and BCS on S-line animals (Figures 6 and 8), the within-line prediction accuracy with a reference 

population of 1,000 animals (S1) did not seem large enough to be stable for all methods and 

genotypes. For example, GBLUP_HD and BGC_HD yielded zero accuracies. In contrast, 

GBLUP_PCADD acquired an accuracy similar to the results obtained for the multi-breed reference 

populations with added L-line animals (S1_L1). For smaller reference population sizes, the 

constitution of the animals in the reference population and their relationship with the validation 

animals become more critical compared to when the reference population is larger. 

A larger reference population size generally always seemed to increase the prediction accuracy. 

However, there could be a limit beyond which a larger reference population does not significantly 

contribute to prediction accuracy. For Total Number Born (TNB) and Total Number of Stillborn 

(STB), there was a slight increase in accuracy even when increasing the size of the reference 

population from 15,000 to 30,000 individuals for both the L and S-line (Figures 1-4). However, for 

Shoulder Lesions (SHL) and Body Condition Score (BCS) for L-line animals, there was a 

difference increasing from 6- to 15,000 animals but not a significant increase in accuracy when 

going from 15- to 30,000 (Figures 5 and 7). Takeda et al. (2021) found a reference population of 
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7,000-11,000 animals to be sufficient for genomic prediction methods to reach an accuracy similar 

to that of progeny testing for within breed prediction, which is in line with our results.  

Across and multi-line reference population 

The across-line prediction accuracy was generally low, with values close to zero. When having as 

many as 30,000 animals in the across-line reference population, the accuracy was for several traits 

close to the accuracy of 1,000 within-line reference animals. For STB with S-line reference 

predicting on L-line, the across-line prediction was higher for S15 and S30 than for L1. When 

adding animals from a different line for multi-line prediction, prediction accuracies generally 

improved compared to the accuracy of the pure within-line prediction with the same number of 

within-line animals in the reference data. However, there were some differences between the 

different traits and lines, and in some cases, adding more animals from a different line did not 

improve the prediction accuracy compared to pure within-line predictions. 

Adding S-line to predict L-line generally improved prediction accuracy, while adding L-line 

animals to predict S-line generally lowered the prediction accuracy slightly. However, adding too 

many S-line animals could also decrease the prediction accuracy of L-line animals. For instance, the 

multi-line reference population containing 3K S-line animals often performed better than the 

prediction accuracy that included 6K S-line animals.  

It is not always an advantage to increase the reference population of the “foreign” breed in a multi-

breed reference population when the breed of interest has a small number of animals, as the SNP 

effects estimates become dominated by the larger breed. Other studies have looked for solutions to 

this issue. For example, Karaman et al. (2021) found that adding an admixed population could be a 

way for the prediction method to account for the breed origin of the alleles. Hayes et al. (2009) 
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found that a Bayesian variable selection method yields the best accuracy for multi-breed prediction, 

maybe because the Bayesian variable selection methods yield more accurate estimates of individual 

SNP effects. 

Differences between lines 

In addition to the reference population's size, the reference population's genetic constitution affects 

prediction accuracies. The S-line had a generally higher prediction accuracy than the L-line for all 

traits. The differences are likely due to the relatedness between reference and validation animals 

and the effective number of chromosomal segments, 𝑀𝑀𝑒𝑒 (van den Berg et al. 2019). The L-line is a 

closed pure-bred line with no new genetics introduced in the last 60-70 years, while the S-line is a 

synthetic line with at least two breeds or lines admixed. The synthetic line will have more long-

range LD which helps in prediction accuracy, especially when reference population size is small, as 

there will not be so many independent segments that need to be evaluated. When predicting across-

lines, the chromosomal segments in common are smaller, and Me increases. One needs more records 

to estimate the increased number of chromosomal segments and thus a large reference population to 

get a high prediction accuracy. Our study has a large reference population and many markers, which 

should be sufficient to estimate the larger number of chromosomal segments in the S-line. 

Differences between lines could also be due to a difference in heritability between the lines. If one 

of the lines has a higher heritability, it would be more valuable for within- and across-line 

prediction. Our study estimated the variance component for the two lines as if they were the same 

for both populations. Heritabilities estimated for pure L-line animals were 0.19, 0.13, 0.34 and 0.31 

for TNB, STB, SHL and BCS, respectively (Kjetså et al. 2022). For the combined L and S- lines, 

heritabilities were 0.09, 0.08, 0.59 and 0.47 for TNB, STB, SHL and BCS. To compare the results 

of within, across, and multi-line reference populations, the decision was made to use the variance 
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components estimated from the combined population, which may also explain why some prediction 

accuracies were estimated above 1, as the accuracies may be scaled with a too low (across-line) 

heritability. 

Genotypes 

One of the aims of this study was to see if using marker data based on pCADD values would 

improve prediction accuracies. There was little difference between the genotype marker sets of 

pCADD, High Density (HD) and Whole Genome Sequence (WGS.) However, the pCADD data 

tended to give a slightly lower prediction accuracy compared to the others, especially when 

combined with GBLUP. For TNB predicted on L and S-line (Tables 4 and 5) and BCS predicted on 

L line (Supplementary Table 7), BGC_PCADD had a significantly higher accuracy than 

GBLUP_PCADD for many of the reference populations, especially for a sizeable within-line 

reference population and multi-line reference populations. The HD and pCADD marker sets had 

approximately the same number of markers (433K and 417K, respectively). However, the average 

heterozygosity for pCADD, HD and WGS were 0.37, 0.40 and 0.37, respectively. Hence, the 

average heterozygosity and thus marker information was lower for pCADD and WGS compared to 

HD. In addition, pCADD marker genotypes and WGS data relied heavily on genotype imputation, 

whereas HD genotypes were primarily obtained from direct SNP-chip genotyping, which may have 

impaired the prediction accuracies obtained by pCADD and WGS data. 

Imputation and genotyping errors 

Most studies using high-density SNP panels and WGS data, including the current, use genotype 

imputation to increase the size of the reference population with similar (high) density of marker 

genotypes. Studies on the accuracy of imputation do generally report high imputation accuracy. 
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Larmer et al. (2011) reported accuracies of 0.89-0.99 for cattle imputing from 6K to HD (~777K 

SNP panel) and from 50K to HD, where the smaller breed generally gave a lower accuracy 

compared to the larger breed and the accuracy of imputation was higher when imputing from 50K 

to HD. Van Binsbergen et al. (2014) reported higher accuracies when imputing stepwise from 50K 

to HD and then to WGS, compared to a direct imputation from 50K to WGS. The studies on 

imputation accuracies report that imputation accuracies can vary for different SNPs and the location 

on the genome. Many factors can affect the accuracy of imputation, such as the size and the 

composition of the reference population and the relationship between the reference population and 

the imputed population. When comparing different marker genotypes, the lack of increase in 

accuracy when going to higher density was likely partly due to imputation errors. WGS data is also 

a lot more prone to genotyping errors than SNP-chip genotypes (Pérez-Enciso, Rincón, and Legarra 

2015), which could also affect the accuracy of GEBVs when using WGS data. 

Prediction methods 

A linear model Genomic Best Linear Unbiased Prediction (GBLUP) and a Bayesian method 

(BayesGC) were tested for both the high density (HD) marker set and the pCADD marker set. The 

WGS data was only tested with BayesGC since a variable selection genomic prediction analysis is 

required to make best use of WGS data (Meuwissen et al. 2021). GBLUP does not generally 

improve when WGS data is used (Van Binsbergen et al. 2015), probably because a lower marker 

density is enough to construct the genomic relationship matrix accurately. The differences between 

the GBLUP and BayesGC analyses were minor in our data, although BayesGC tended to have 

slightly higher accuracy, although often not significant. In some of the data sets, GBLUP yielded 

even higher accuracy than BayesGC, but this was only seen for small reference populations, 
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indicating that one needs a reasonably large reference population to benefit from Bayesian variable 

selection. 

Further developments 

Future studies are needed to optimise the reference populations for multi-line predictions. It may be 

possible to optimise the number of reference animals from a different breed. Our study also shows 

that one line could be more valuable as a reference than another. Hence, it is possible to choose a 

suitable line for boosting prediction accuracy, such as S-line animals to predict L-line animals but 

not the other way around. Further investigations would be needed to confirm this.  

 Furthermore, we could utilise WGS data to extract markers that aid HD-based prediction. It has 

been shown that including pre-selected markers in high LD with QTL derived from WGS can 

improve the GBLUP prediction (Brøndum et al. 2015; Warburton et al. 2020). Further development 

could be to combine a top 1% or 0.1% pCADD markers with markers known to have high LD with 

QTL, and neutral markers derived from WGS, covering the genome densely and evenly across the 

genome to account for markers in LD with potentially unknown QTL. 

Conclusions 
The main contributor to prediction accuracy is the size of the within-line reference population, 

where 3,000-6,000 animals were sufficient to get a high prediction accuracy of >0.5 for all traits 

except TNB predicted on L-line and BCS. However, increasing to 30,000 animals in the reference 

population further increases prediction accuracy for traits. A reference population of 30,000 animals 

for across-line prediction could achieve similar accuracy as 1,000 within-line animals. For multi-

line prediction accuracy, the accuracy was most dependent on the number of within-line animals in 

the reference data. Adding S-line was more beneficial for multi-breed prediction on L-line than vice 
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versa. Using pCADD scores to reduce the number of markers from WGS data combined with 

GBLUP generally reduced prediction accuracies relative to GBLUP_HD analyses, probably due to 

the lower information content of the pCADD markers. When using BayesGC, prediction accuracies 

were generally similar when using HD, pCADD or WGS marker data, which suggests that the 

variable selection method selects a suitable set of markers irrespective of the marker set provided 

(HD, pCADD or WGS).  
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Supplementary Information 
Supplementary Table 1. Accuracy of prediction for L-line animals for the trait Total Number 
Born (TNB). 

 Ref. 
Pop. 

GBLUP 
HD 

GBLUP 
PCADD 

BGC 
HD 

BGC 
PCADD 

BGC 
WGS 

Within- 
line 

L1 0.35±0.10 0.36±0.10 0.33±0.10 0.33±0.10 0.33±0.10 

L3 0.33±0.10 0.34±0.10 0.32±0.10 0.33c±0.10 0.32±0.10 

L6 0.43ce±0.10 0.45ce±0.10 0.41±0.10 0.42ce±0.10 0.40±0.10 

L15 0.56±0.10 0.56±0.10 0.60a±0.10 0.60ab±0.10 0.60±0.10 

L30 0.68±0.09 0.68±0.09 0.73ab±0.09 0.73ab±0.09 0.73ab±0.09 

Across- 
Line 

S1 0.17±0.10 0.12±0.10 0.18±0.10 0.18±0.10 0.19±0.10 

S3 0.23±0.10 0.19±0.10 0.23±0.10 0.22±0.10 0.21±0.10 

S6 0.14±0.10 0.12±0.10 0.14±0.10 0.13±0.10 0.00±0.10 

S15 0.26±0.10 0.18±0.10 0.27b±0.10 0.23±0.10 0.26±0.10 

S30 0.28±0.10 0.20±0.10 0.32b±0.10 0.29b±0.10 0.29±0.10 

Multi- 
Line 

L1_S1 0.37±0.10 0.36±0.10 0.37±0.10 0.37±0.10 0.37±0.10 

L1_S3 0.39±0.10 0.37±0.10 0.39±0.10 0.38±0.10 0.38±0.10 

L1_S6 0.34±0.10 0.35±0.10 0.36±0.10 0.36±0.10 0.36±0.10 

L3_S1 0.35±0.10 0.34±0.10 0.35±0.10 0.37ac±0.10 0.35±0.10 

L3_S3 0.37±0.10 0.35±0.10 0.37±0.10 0.40b±0.10 0.37±0.10 

L3_S6 0.33±0.10 0.34±0.10 0.37a±0.10 0.39ab±0.10 0.38a±0.10 

L6_S1 0.44±0.10 0.45±0.10 0.44e±0.10 0.46ce±0.10 0.42±0.10 

L6_S3 0.45±0.10 0.45±0.10 0.46±0.10 0.48ce±0.10 0.45±0.10 

L6_S6 0.43±0.10 0.46±0.10 0.46a±0.10 0.49abc±0.10 0.46a±0.10 

Ref. Pop. Is the reference population, Letters L and S indicates animals belonging to either L- or 
S- line and the number indicating number of animals in reference population in number of 1,000. 
GBLUP and BGC is the statistical method (GBLUP or BayesGC), HD indicates the High 
Density marker data, PCADD indicates the pCADD marker data and WGS indicates the Whole 
Genome Sequence marker data. 
a indicates a significantly larger prediction accuracy compared to GBLUP_HD 
b indicates a significantly larger prediction accuracy compared to GBLUP_PCADD 
c indicates a significantly larger prediction accuracy compared to BGC_HD 
d indicates a significantly larger prediction accuracy compared to BGC_PCADD 

e indicates a significantly larger prediction accuracy compared to BGC_WGS 
 



Supplementary Table 2. Accuracy of prediction for S-line animals for the trait Total Number 
Born (TNB). 

 Ref. 
Pop. 

GBLUP 
HD 

GBLUP 
PCADD 

BGC 
HD 

BGC 
PCADD 

BGC 
WGS 

Within- 
line 

S1 0.49±0.10 0.48±0.10 0.47±0.10 0.48±0.10 0.47±0.10 

S3 0.64±0.09 0.62±0.09 0.65±0.09 0.65b±0.09 0.64±0.09 

S6 0.65±0.09 0.63±0.09 0.66±0.09 0.66±0.09 0.66±0.09 
S15 0.77±0.09 0.76±0.09 0.78±0.09 0.79±0.09 0.78±0.09 
S30 0.81±0.09 0.81±0.09 0.82±0.09 0.83±0.09 0.83±0.09 

Across- 
Line 

L1 0.15±0.10 0.14±0.10 0.14±0.10 0.15±0.10 0.15±0.10 
L3 0.13±0.10 0.08±0.10 0.15±0.10 0.15±0.10 0.16±0.10 
L6 0.27±0.10 0.26±0.10 0.28±0.10 0.28±0.10 0.29±0.10 
L15 0.32±0.10 0.31±0.10 0.31±0.10 0.33±0.10 0.32±0.10 
L30 0.34±0.10 0.33±0.10 0.31±0.10 0.33±0.10 0.34±0.10 

Multi- 
Line 

S1_L1 0.50±0.10 0.48±0.10 0.49±0.10 0.49±0.10 0.49±0.10 
S1_L3 0.50±0.10 0.49±0.10 0.50±0.10 0.50±0.10 0.50±0.10 
S1_L6 0.52±0.10 0.49±0.10 0.53±0.10 0.53±0.10 0.53±0.10 
S3_L1 0.65±0.09 0.62±0.09 0.66b±0.09 0.66b±0.09 0.65±0.09 
S3_L3 0.65±0.09 0.62±0.09 0.67ab±0.09 0.67b±0.09 0.66±0.09 
S3_L6 0.67±0.09 0.63±0.09 0.69ab±0.09 0.69b±0.09 0.68±0.09 

S6_L1 0.67±0.09 0.64±0.09 0.67±0.09 0.67b±0.09 0.67±0.09 
S6_L3 0.67±0.09 0.63±0.09 0.68ab±0.09 0.68b±0.09 0.68b±0.09 
S6_L6 0.69±0.09 0.65±0.09 0.70ab±0.09 0.69b±0.09 0.70b±0.09 

Ref. Pop. Is the reference population, Letters L and S indicates animals belonging to either L- or 
S- line and the number indicating number of animals in reference population in number of 1,000. 
GBLUP and BGC is the statistical method (GBLUP or BayesGC), HD indicates the High 
Density marker data, PCADD indicates the pCADD marker data and WGS indicates the Whole 
Genome Sequence marker data. 
a indicates a significant difference from GBLUP_HD 
b indicates a significant difference from GBLUP_PCADD 
c indicates a significant difference from BGC_HD 
d indicates a significant difference from BGC_PCADD 

e indicates a significant difference from BGC_WGS 
 

 

  



Supplementary Table 3. Accuracy of prediction for L-line animals for the trait Number of 
Stillborn (STB). 

 Ref. 
Pop. 

GBLUP 
HD 

GBLUP 
PCADD 

BGC 
HD 

BGC 
PCADD 

BGC 
WGS 

Within- 
line 

L1 0.23±0.10 0.22±0.10 0.24±0.10 0.24±0.10 0.24±0.10 

L3 0.50±0.10 0.47±0.10 0.49b±0.10 0.49±0.10 0.49±0.10 

L6 0.60±0.10 0.57±0.10 0.59±0.10 0.59±0.10 0.59±0.10 

L15 0.72±0.10 0.70±0.10 0.72±0.10 0.72±0.10 0.72±0.10 

L30 0.82±0.10 0.80±0.10 0.82±0.10 0.82±0.10 0.82±0.10 

Across- 
Line 

S1 0.24±0.10 0.25±0.10 0.23±0.10 0.24±0.10 0.23±0.10 

S3 0.25±0.10 0.19±0.10 0.26±0.10 0.23±0.10 0.24±0.10 

S6 0.23±0.10 0.24±0.10 0.23±0.10 0.25±0.10 0.22±0.10 

S15 0.34±0.10 0.35±0.10 0.35±0.10 0.35±0.10 0.35±0.10 

S30 0.35±0.10 0.34±0.10 0.35±0.10 0.31±0.10 0.32±0.10 

Multi- 
Line 

L1_S1 0.30±0.10 0.30±0.10 0.30±0.10 0.30±0.10 0.31±0.10 

L1_S3 0.33±0.10 0.28±0.10 0.35abd±0.10 0.32b±0.10 0.36bd±0.10 

L1_S6 0.28±0.10 0.28±0.10 0.28±0.10 0.29±0.10 0.30±0.10 

L3_S1 0.56±0.10 0.53±0.10 0.55±0.10 0.54±0.10 0.55±0.10 

L3_S3 0.57b±0.10 0.50±0.10 0.58bd±0.10 0.56b±0.10 0.58bd±0.10 

L3_S6 0.52±0.10 0.49±0.10 0.51±0.10 0.50±0.10 0.51±0.10 

L6_S1 0.65±0.10 0.62±0.10 0.64±0.10 0.64±0.10 0.64±0.10 

L6_S3 0.65b±0.10 0.60±0.10 0.65b±0.10 0.64b±0.10 0.66b±0.10 

L6_S6 0.62±0.10 0.60±0.10 0.62±0.10 0.61±0.10 0.61±0.10 

Ref. Pop. Is the reference population, Letters L and S indicates animals belonging to either L- or 
S- line and the number indicating number of animals in reference population in number of 1,000. 
GBLUP and BGC is the statistical method (GBLUP or BayesGC), HD indicates the High 
Density marker data, PCADD indicates the pCADD marker data and WGS indicates the Whole 
Genome Sequence marker data. 
a indicates a significant difference from GBLUP_HD 
b indicates a significant difference from GBLUP_PCADD 
c indicates a significant difference from BGC_HD 
d indicates a significant difference from BGC_PCADD 

e indicates a significant difference from BGC_WGS 
 
  



Supplementary Table 4. Accuracy of prediction for S-line animals for the trait Number of 
Stillborn (STB). 

 Ref. 
Pop. 

GBLUP 
HD 

GBLUP 
PCADD 

BGC 
HD 

BGC 
PCADD 

BGC 
WGS 

Within- 
line 

S1 0.58±0.10 0.55±0.10 0.57±0.10 0.57±0.10 0.57±0.10 

S3 0.63e±0.10 0.63±0.10 0.63e±0.10 0.64e±0.10 0.60±0.10 

S6 0.77e±0.10 0.76±0.10 0.78ae±0.10 0.78e±0.10 0.74±0.10 

S15 0.87b±0.10 0.84±0.10 0.90abe±0.10 0.88b±0.10 0.87±0.10 

S30 1.00±0.10 0.98±0.10 1.03abe±0.10 1.01b±0.10 1.00±0.10 

Across- 
Line 

L1 -0.20±0.10 -0.14±0.10 -0.17a±0.10 -0.17a±0.10 -0.17ac±0.10 

L3 0.08±0.10 0.11±0.10 0.06e±0.10 0.07e±0.10 0.05±0.10 

L6 0.01±0.10 -0.02±0.10 0.00±0.10 0.00±0.10 0.00±0.10 

L15 0.14e±0.10 0.08±0.10 0.13e±0.10 0.13±0.10 0.11±0.10 

L30 0.24±0.10 0.24±0.10 0.24±0.10 0.27±0.10 0.23±0.10 

Multi- 
Line 

S1_L1 0.53±0.10 0.50±0.10 0.52±0.10 0.52±0.10 0.51±0.10 

S1_L3 0.57±0.10 0.54±0.10 0.56±0.10 0.56±0.10 0.55±0.10 

S1_L6 0.56bcde±0.10 0.51±0.10 0.54e±0.10 0.53±0.10 0.53±0.10 

S3_L1 0.61ce±0.10 0.60±0.10 0.60e±0.10 0.61e±0.10 0.58±0.10 

S3_L3 0.63ce±0.10 0.62±0.10 0.63e±0.10 0.63e±0.10 0.60±0.10 

S3_L6 0.63ce±0.10 0.61±0.10 0.62e±0.10 0.61e±0.10 0.59±0.10 

S6_L1 0.76e±0.10 0.75±0.10 0.76±0.10 0.76±0.10 0.73±0.10 

S6_L3 0.78e±0.10 0.76±0.10 0.78e±0.10 0.78e±0.10 0.75±0.10 

S6_L6 0.76e±0.10 0.74±0.10 0.76e±0.10 0.75e±0.10 0.73±0.10 

Ref. Pop. Is the reference population, Letters L and S indicates animals belonging to either L- or 
S- line and the number indicating number of animals in reference population in number of 1,000. 
GBLUP and BGC is the statistical method (GBLUP or BayesGC), HD indicates the High 
Density marker data, PCADD indicates the pCADD marker data and WGS indicates the Whole 
Genome Sequence marker data. 
a indicates a significant difference from GBLUP_HD 
b indicates a significant difference from GBLUP_PCADD 
c indicates a significant difference from BGC_HD 
d indicates a significant difference from BGC_PCADD 

e indicates a significant difference from BGC_WGS 
  



Supplementary Table 5. Accuracy of prediction for L-line animals for the trait Shoulder Lesions 
(SHL) 

 Ref. 
Pop. 

GBLUP 
HD 

GBLUP 
PCADD 

BGC 
HD 

BGC 
PCADD 

BGC 
WGS 

Within- 
line 

L1 0.09±0.04 0.10±0.04 0.10±0.04 0.10c±0.04 0.10±0.04 

L3 0.10±0.04 0.12±0.04 0.10±0.04 0.10c±0.04 0.10±0.04 

L6 0.20cde±0.04 0.20±0.04 0.18±0.04 0.18±0.04 0.18±0.04 

L15 0.26b±0.04 0.24±0.04 0.26±0.04 0.25±0.04 0.25±0.04 

L30 0.26±0.04 0.25±0.04 0.26±0.04 0.25±0.04 0.26±0.04 

Across- 
Line 

S1 -0.07±0.04 -0.07±0.04 0.05±0.04 -0.04±0.04 -0.04±0.04 

S3 0.04±0.04 0.04±0.04 -0.06±0.04 0.14c±0.04 -0.01±0.04 

S6 -0.02±0.04 0.03±0.04 -0.02±0.04 -0.01±0.04 -0.01±0.04 

Multi- 
Line 

L1_S1 0.10±0.04 0.11±0.04 0.11±0.04 0.11±0.04 0.11±0.04 

L1_S3 0.11±0.04 0.12±0.04 0.10±0.04 0.10±0.04 0.10±0.04 

L1_S6 0.11±0.04 0.12±0.04 0.11±0.04 0.11c±0.04 0.11c±0.04 

L3_S1 0.11±0.04 0.12cde±0.04 0.09±0.04 0.09±0.04 0.09±0.04 

L3_S3 0.10±0.04 0.12cde±0.04 0.09±0.04 0.09±0.04 0.09±0.04 

L3_S6 0.11±0.04 0.13acde±0.04 0.09±0.04 0.09±0.04 0.09±0.04 

L6_S1 0.20cde±0.04 0.19±0.04 0.18±0.04 0.18±0.04 0.18±0.04 

L6_S3 0.20cde±0.04 0.20±0.04 0.18±0.04 0.18±0.04 0.18±0.04 

L6_S6 0.20cde±0.04 0.20cde±0.04 0.18±0.04 0.18±0.04 0.18±0.04 

Ref. Pop. Is the reference population, Letters L and S indicates animals belonging to either L- or 
S- line and the number indicating number of animals in reference population in number of 1,000. 
GBLUP and BGC is the statistical method (GBLUP or BayesGC), HD indicates the High 
Density marker data, PCADD indicates the pCADD marker data and WGS indicates the Whole 
Genome Sequence marker data. 
a indicates a significant difference from GBLUP_HD 
b indicates a significant difference from GBLUP_PCADD 
c indicates a significant difference from BGC_HD 
d indicates a significant difference from BGC_PCADD 

e indicates a significant difference from BGC_WGS 
 

 

  



Supplementary Table 6. Accuracy of prediction for S-line animals for the trait Shoulder Lesions 
(SHL) 

 Ref. 
Pop. 

GBLUP 
HD 

GBLUP 
PCADD 

BGC 
HD 

BGC 
PCADD 

BGC 
WGS 

Within- 
line 

S1 0.01±0.04 0.30acde±0.04 0.01±0.04 0.12ace±0.04 0.09ac±0.04 

S3 0.51±0.03 0.50±0.03 0.51±0.03 0.51e±0.03 0.51±0.03 

S6 0.57±0.03 0.56±0.03 0.56±0.03 0.56e±0.03 0.56±0.03 

Across- 
Line 

L1 0.08e±0.04 0.08±0.04 0.07±0.04 0.07±0.04 0.06±0.04 

L3 0.00±0.04 0.04acde±0.04 0.01±0.04 0.02±0.04 -0.01±0.04 

L6 0.14d±0.04 0.11±0.04 0.12±0.04 0.11±0.04 0.11±0.04 

L15 0.09cd±0.04 0.10cd±0.04 0.04±0.04 0.05±0.04 0.06±0.04 

L30 0.08±0.04 0.11±0.04 0.07±0.04 0.08±0.04 0.06±0.04 

Multi- 
Line 

S1_L1 0.28±0.04 0.27±0.04 0.28±0.04 0.28±0.04 0.28c±0.04 

S1_L3 0.23c±0.04 0.24d±0.04 0.21±0.04 0.22±0.04 0.23c±0.04 

S1_L6 0.31±0.04 0.29±0.04 0.29±0.04 0.30±0.04 0.31±0.04 

S3_L1 0.49±0.03 0.47±0.04 0.49±0.03 0.49±0.03 0.49±0.03 

S3_L3 0.47±0.04 0.46±0.04 0.47±0.04 0.47±0.04 0.47±0.03 

S3_L6 0.50b±0.03 0.48±0.03 0.49±0.03 0.49±0.03 0.50bc±0.03 

S6_L1 0.56±0.03 0.54±0.03 0.55±0.03 0.55±0.03 0.55±0.03 

S6_L3 0.55±0.03 0.53±0.03 0.55±0.03 0.55±0.03 0.55±0.03 

S6_L6 0.56b±0.03 0.54±0.04 0.56b±0.03 0.55±0.03 0.56b±0.03 

Ref. Pop. Is the reference population, Letters L and S indicates animals belonging to either L- or 
S- line and the number indicating number of animals in reference population in number of 1,000. 
GBLUP and BGC is the statistical method (GBLUP or BayesGC), HD indicates the High 
Density marker data, PCADD indicates the pCADD marker data and WGS indicates the Whole 
Genome Sequence marker data. 
a indicates a significant difference from GBLUP_HD 
b indicates a significant difference from GBLUP_PCADD 
c indicates a significant difference from BGC_HD 
d indicates a significant difference from BGC_PCADD 

e indicates a significant difference from BGC_WGS 
 

 

  



Supplementary Table 7. Accuracy of prediction for L-line animals for the trait Body Condition 
Score (BCS). 

 Ref. 
Pop. 

GBLUP 
HD 

GBLUP 
PCADD 

BGC 
HD 

BGC 
PCADD 

BGC 
WGS 

Within- 
line 

L1 0.21±0.04 0.22±0.04 0.22a±0.04 0.22a±0.04 0.22acd±0.04 

L3 0.28±0.04 0.29ce±0.04 0.28±0.04 0.28±0.04 0.28±0.04 

L6 0.35±0.04 0.35±0.04 0.35±0.04 0.35±0.04 0.35±0.04 

L15 0.38±0.04 0.38±0.04 0.38±0.04 0.38c±0.04 0.38±0.04 

L30 0.40±0.04 0.40±0.04 0.39±0.04 0.39±0.04 0.39±0.04 

Across- 
Line 

S1 0.15de±0.04 0.15de±0.04 -0.01±0.04 -0.08±0.04 -0.06±0.04 

S3 -0.01±0.04 -0.01±0.04 0.01±0.04 -0.03±0.04 0.09d±0.04 

S6 0.01±0.04 -0.02±0.04 0.03±0.04 0.05±0.04 0.04±0.04 

Multi- 
Line 

L1_S1 0.19±0.04 0.18±0.04 0.19±0.04 0.19±0.04 0.20a±0.04 

L1_S3 0.21±0.04 0.21±0.04 0.21±0.04 0.22±0.04 0.21±0.04 

L1_S6 0.19±0.04 0.20±0.04 0.20±0.04 0.21±0.04 0.19±0.04 

L3_S1 0.27±0.04 0.28±0.04 0.27±0.04 0.27±0.04 0.27±0.04 

L3_S3 0.29±0.04 0.30±0.04 0.28±0.04 0.29±0.04 0.30±0.04 

L3_S6 0.28±0.04 0.29±0.04 0.28±0.04 0.29±0.04 0.29±0.04 

L6_S1 0.34±0.04 0.34±0.04 0.34±0.04 0.34±0.04 0.34±0.04 

L6_S3 0.36±0.04 0.36±0.04 0.36±0.04 0.36±0.04 0.36±0.04 

L6_S6 0.36±0.04 0.36±0.04 0.36±0.04 0.36±0.04 0.37±0.04 

Ref. Pop. Is the reference population, Letters L and S indicates animals belonging to either L- or 
S- line and the number indicating number of animals in reference population in number of 1,000. 
GBLUP and BGC is the statistical method (GBLUP or BayesGC), HD indicates the High 
Density marker data, PCADD indicates the pCADD marker data and WGS indicates the Whole 
Genome Sequence marker data. 
a indicates a significant difference from GBLUP_HD 
b indicates a significant difference from GBLUP_PCADD 
c indicates a significant difference from BGC_HD 
d indicates a significant difference from BGC_PCADD 

e indicates a significant difference from BGC_WGS 
 

 

  



Supplementary Table 8. Accuracy of prediction for S-line animals for the trait Body Condition 
Score (BCS). 

 Ref. 
Pop. 

GBLUP 
HD 

GBLUP 
PCADD 

BGC 
HD 

BGC 
PCADD 

BGC 
WGS 

Within- 
line 

S1 -0.03±0.04 0.57acde±0.04 -0.02±0.04 0.49ace±0.04 0.43ac±0.04 

S3 0.77b±0.04 0.74±0.04 0.77bde±0.04 0.76b±0.04 0.77b±0.04 

S6 0.84b±0.03 0.82±0.03 0.84b±0.03 0.84b±0.03 0.84b±0.03 

Across- 
Line- 

L1 -0.05±0.04 0.00acde±0.04 -0.01±0.04 0.00ace±0.04 0.01ac±0.04 

L3 0.16±0.04 0.13±0.04 0.15±0.04 0.15±0.04 0.16±0.04 

L6 0.31±0.04 0.29±0.04 0.33abe±0.04 0.32b±0.04 0.32±0.04 

L15 0.27b±0.04 0.20±0.04 0.29ab±0.04 0.29ab±0.04 0.30ab±0.04 

L30 0.26±0.04 0.23±0.04 0.28b±0.04 0.29ab±0.04 0.29ab±0.04 

Multi- 
Line 

S1_L1 0.58b±0.04 0.56±0.04 0.59be±0.04 0.58b±0.04 0.58±0.04 

S1_L3 0.60±0.04 0.58±0.04 0.60±0.04 0.60b±0.04 0.60±0.04 

S1_L6 0.61bde±0.04 0.58±0.04 0.60d±0.04 0.59±0.04 0.60±0.04 

S3_L1 0.76b±0.04 0.73±0.04 0.76bd±0.04 0.75b±0.04 0.76b±0.04 

S3_L3 0.75b±0.04 0.72±0.04 0.76bd±0.04 0.74b±0.04 0.75b±0.04 

S3_L6 0.76bd±0.04 0.72±0.04 0.76bd±0.04 0.74b±0.04 0.76b±0.04 

S6_L1 0.83b±0.03 0.81±0.03 0.83b±0.03 0.83b±0.03 0.84b±0.03 

S6_L3 0.83b±0.03 0.81±0.04 0.83b±0.03 0.83b±0.03 0.83b±0.03 

S6_L6 0.83b±0.03 0.80±0.04 0.82b±0.03 0.82b±0.03 0.83bc±0.03 

Ref. Pop. Is the reference population, Letters L and S indicates animals belonging to either L- or 
S- line and the number indicating number of animals in reference population in number of 1,000. 
GBLUP and BGC is the statistical method (GBLUP or BayesGC), HD indicates the High 
Density marker data, PCADD indicates the pCADD marker data and WGS indicates the Whole 
Genome Sequence marker data. 
a indicates a significant difference from GBLUP_HD 
b indicates a significant difference from GBLUP_PCADD 
c indicates a significant difference from BGC_HD 
d indicates a significant difference from BGC_PCADD 

e indicates a significant difference from BGC_WGS 
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