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Abstract: This article presents a numerical study that aims to explore the impacts of the stiffness of
elastomeric bearings on the dynamic behavior of railway bridges under train-induced vibrations. For
this purpose, a finite element code that considers vehicle–bridge interaction using a coupled approach
was developed. The software was validated by comparing the numerical response to the analytical
solution. The numerical analysis of single- and multi-span bridges with varying bearing stiffness
values under passenger trains showed the interplay between bearing stiffness, its impact on the
natural frequency of the bridge and the loading frequency. It is demonstrated that the amplitude of the
maximum acceleration on the bridge depends heavily on the stiffness of the bearings. Furthermore,
the bearing stiffness significantly impacts the location of the maximum acceleration on the bridge.
The results of the extensive numerical analyses improve the understanding of the impact of the
bearing stiffness on the dynamic behavior of bridges and highlight the importance of quantifying the
boundary conditions correctly for reliable estimation of dynamic response of railway bridges under
train-induced vibrations.

Keywords: railway bridges; vehicle–bridge interaction; elastomeric bearing; boundary condition;
acceleration response

1. Introduction

Railway bridges are often seated on elastomeric bearings at the abutments and piers to
prevent the contraction- and expansion-related stress concentrations. Bearings are also used
in high-seismicity regions to protect buildings [1], their contents [2] and bridges. Despite
their ubiquity in railway bridges, their impacts on the dynamic response of bridges are
often neglected. Furthermore, the characteristics of the bearings are prone to significant
variations during the lifetime of a bridge [3], which may significantly impact the dynamic
response of the railway bridges.

The safety of the railway bridges is mainly governed by their dynamic response and
fatigue life. Both the dynamic response and the fatigue life can be influenced significantly
by the behavior of the bearings under train-induced vibrations. Unlike random loading on
highway bridges, the train loading on railway bridges has a specific frequency spectrum
that can significantly impact the bridge’s behavior [4]. This interaction has been studied
extensively using a number of approaches of different complexities over the last few
decades; e.g., [5–7]. Yang et al. [8] provide an excellent summary of different approaches
for modeling the vehicle–bridge interaction. Using simpler models, several researchers
investigated the behavior of bridges under train loading [9–13].

More complex models such as multi-body vehicle systems were also used in many
cases. Cheng et al. [14] used a bridge–track–vehicle element which consists of vehicles
modeled as mass-spring-damper systems and beam elements to model the rails and the
bridge deck. Kwark et al. [15] idealized the problem and compared their solution to
the moving load method numerically and using field tests. Majka and Hartnett [16]
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also utilized different modeling approaches to carry out a parametric analysis. In their
study, vehicle damping was found to have a negligible influence on the bridge response.
Zhang et al. [17] analyzed the dynamic behavior of a railway bridge and compared the
results to the field measurements.

In another aspect, Refs. [18,19] investigated the vibration characteristics of the bridge–
train system using a complex numerical model and field tests. Arguably, the most detailed
parametric studies on this topic can be found in [20,21]. In both studies, the train–bridge
interaction was modeled using both simple moving load models and more detailed interac-
tion models. Impact of several parameters on the reduction in acceleration demands using
detailed train bridge interaction models were evaluated and discussed. More recently,
Gonzalez et al. [22] compared the suitability of uncoupled and coupled methods for solv-
ing vehicle–bridge interaction problems. Through numerical analysis of different vehicle
and bridge parameters such as mass ratio and frequency ratio, Ref. [22] demonstrated
the error introduced by the uncoupled method and how it increases with an increase
in the vehicular dynamic force. These studies, similar to most of the others found in
literature [9,15,17–19,23], are based on simply-supported beams and ignores the effect of
the bearing stiffness on the vehicle–bridge interaction problem.

If the dynamic response of the bridge under moving train loads is sensitive to the
bearing stiffness, deviations of these characteristics from the assumed values during the
design phase may significantly alter the dynamic response of the bridge during its lifetime.
Despite this potentially significant impact, few studies have focused on the interaction
between the bearing stiffness and dynamic response. Arguably, Choi and Kim [24] and Yang
et. al. [25] present the most detailed work on the subject. In this context, Yang et al. [25]
examine the mechanisms of dynamic behaviour regarding resonance and cancellation when
using elastic bearings. By implementing a moving load model with equal distance between
each axle, a numerical study was conducted with verification from a field test. Although the
use of elastic bearings for railway bridges have several benefits, Yang et al. [25] also bring
attention to the prevention of transmitting the vehicle-induced vibrations to the ground.
This may lead to the accumulation of induced vibrations which promotes greater fatigue of
the bridge. Similar studies were also reported for single span beams in [26–28] while only
a handful studies [29,30] focus on the impact of elastomeric bearings on the behavior of
multi-span bridges.

Xu and Li [30] further investigated the effect of coupling conditions between different
spans of multi-span bridges while using a moving load model. In a slightly different
framework, Zangeneh et al. [31], by using viscoelastic supports for a simple beam, have
developed a discrete model, which considers the soil–structure interaction effects on the
modal properties of a beam.

Although a vast majority of the railway bridges rest on elastomeric bearings, most of
the work that focuses on vehicle–bridge interaction so far is based on restrained boundary
conditions. The few articles that consider the bearing stiffness [25–27,29,30,32] shed light
into the impact of this parameter on the dynamic response of railway bridges. However,
there is a need to systematically study the impact of the bearing stiffness on the dynamic
response of railway bridges and vehicle–bridge interaction.

This article is an extension of an earlier study [33], which addresses this gap in
literature. For this, a finite element code was developed in MATLAB that can simulate
the vehicle–bridge interaction via a coupled model. The developed code was verified by
comparing its results to the analytical solutions provided in literature. A numerical model
of a 50 m long railway bridge is created in this software and its dynamic response under a
passenger train crossing for various bearing stiffness values was computed. Two-span and
three-span variations of the benchmark bridge were then created and the response analysis
was repeated to be able study the impact of the bearing stiffness on the dynamic response
of the multi-span bridges. By introducing intermediate supports to create the two- and
three-span bridges, the interplay between the vibrations in the different spans was studied.
Furthermore, the differences in the effect of the elastomeric bearings located at the edges
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and in the middle supports were evaluated. Finally, introducing the two- and three-span
bridges created variations in the natural frequencies of the bridge so that a wider frequency
range could be covered by the study.

The article is structured in the following way: First, the theoretical foundation of
the developed finite element code is summarized. The developed code was validated by
comparing its results with analytical response of a simply-supported beam under a single
sprung mass. A simply-supported, 50 m long prestressed concrete railway bridge was
selected as the benchmark case and introduced next. Two-span and three-span variations
of the benchmark bridge were then introduced, and the numerical analysis conducted on
the three bridges was evaluated to study the impact of bearing stiffness on the dynamic
response of single- and multi-span bridges. Finally, the conclusions drawn from the
conducted analysis are summarized, and needs for future research are discussed.

2. Theoretical Background

A finite element software was developed in MATLAB [34] computational environment
to facilitate the automation of the significant number of numerical analysis conducted for
the parametric study. Finite element models are well-suited for the complex vehicle–bridge-
interaction (VBI) problem as they can reproduce the geometry of the vehicle and the bridge
while considering other parameters such as bearing stiffness and their impact on the VBI.
In this study, the bridge is modeled using a series of Euler–Bernoulli beams discretized at
several points while the train is modeled as a series of masses connected to a spring and
dashpot, which simulate the stiffness and the damping characteristics of the suspension
systems of the train, respectively.

Once the stiffness, mass and damping matrices of the bridge and the vehicle are
defined, the equations of motion for each subsystem, i.e., the bridge and the vehicle, can be
written as:

[Mb]{üb}+ [Cb]{u̇b}+ [Kb]{ub} = {Fb} (1)

[Mv]{üv}+ [Cv]{u̇v}+ [Kv]{uv} = {Fv} (2)

where [Mj], [Cj], and [Kj] are the mass, damping, and stiffness matrices, respectively; Fj are
the time variant forces, and {üj}, {u̇j}, {uj} are the acceleration, velocity, and displacement,
respectively. Sub-indices j = b and j = v refer to the bridge and vehicle, respectively.

The equations of motion for the bridge and vehicle given in Equations (1) and (2),
respectively, can be solved using either coupled or uncoupled approach. In the uncoupled
approach, Equations (1) and (2) for each sub-system are solved separately. The compatibility
of the forces and the displacements between the vehicle and the bridge is ensured through
an iterative process at each time step. Although the uncoupled approach provides an
attractive alternative as it avoids numerical instabilities due to singularities in the time-
varying stiffness and damping matrices associated with the coupled approach, it implicitly
assumes that the effect of the time-varying properties of the VBI system on the dynamic
features of the response is negligible compared to that of the bridge, i.e., the frequencies
and mode shapes of the bridge are invariant with time [22]. Although this assumption
can be reasonable for vehicles with mass negligible compared to the mass of the bridge, it
may lead to inaccuracies when the vehicle mass is significant enough to alter the vibration
frequencies and the mode shapes of the bridge [22]. Considering the relatively high mass
of trains and their impact on the vibration frequencies of railway bridges [35–37], it was
decided to use the coupled approach to solve the system of equations.

In the coupled approach, the system of equations of motions of the bridge (Equation (1))
and the vehicle (Equation (2)) are combined and solved using accurate and efficient nu-
merical integration methods [38] that are suitable for second-order ordinary differential
equations. The mass, damping and stiffness matrices of the bridge and the vehicle are com-
bined to create global mass, damping and stiffness matrices, respectively. If the interaction
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forces due to track irregularities are ignored, the equation of motion for the entire system
can be written as:[

Mb 0
0 Mv

]{
üb
üv

}
+

[
Cb Cbv
Cvb Cv

]{
u̇b
u̇v

}
+

[
Kb Kbv
Kvb Kv

]{
ub
uv

}
=

{
0

−Mvg

}
(3)

where the mass matrix and the force vector are time-invariant while the stiffness and
damping matrices are time-variant, and g is acceleration of gravity. More specifically,
the stiffness matrix, K, is time variant and, along with the time variant damping matrix,
mathematically consider the interaction between the vehicle and the bridge. As an example,
the stiffness matrix when the spring mass is located on the vertical degree of freedom i of
the discretized bridge model can be written as:

[
Kb Kvb
Kbv Kv

]
=



k1,1 k1,2 · · · k1,i · · · k1,n−1 k1,n 0
k2,1 k2,2 · · · k2,i · · · k2,n−1 k2,n 0

...
...

. . .
...

...
...

. . .
...

ki−1,1 ki−1,2 · · · ki−1,i · · · ki−1,n−1 ki−1,n 0
ki,1 ki,2 · · · ki,i + kv · · · ki,n−1 ki,n −kv

ki+1,1 ki+1,2 · · · ki+1,i · · · ki+1,n−1 ki+1,n 0
...

...
. . .

...
...

...
. . .

...
kn−1,1 kn−1,2 · · · kn−1,i · · · kn−1,n−1 kn−1,n 0

kn,1 kn,2 · · · kn,i · · · kn,n−1 kn,n 0
0 0 · · · −kv · · · 0 0 kv



(4)

where ki,j are the elements of the stiffness matrix of the bridge and kv is the stiffness of
the vehicle. When the vehicle is represented using a single-degree-of-freedom system, the
submatrices Kvb and Kbv are 1xN and Nx1 vectors, respectively, where N is the number of
degrees of freedom on the bridge. When the vehicle is represented using a multi-degree
of freedom system with Nv degrees of freedom, the submatrices Kvb and Kbv are NvxN
and NxNv vectors, respectively. In Equation (4), the interaction between the vehicle and
the bridge is achieved through the ith elements of the Kvb and Kbv vectors as well as the
diagonal term in Kb = ki,i + kv.

Using Rayleigh damping, a similar equation to Equation (4) can be written for the
damping matrix as it is a combination of the time-invariant mass matrix and the time-
variant stiffness matrix. As such, the vehicle–bridge interaction is achieved through time-
variant stiffness and damping matrices.

The developed FE software is based on the theoretical background summarized above
and elsewhere [22]. As the next step, the developed FE software is validated by computing
the response of an undamped simply-supported beam under a single sprung mass that
was initially presented by [39] and used in several studies such as [8,16]. Figure 1 presents
the modeling parameters of the sprung mass and the bridge used in the verification of the
developed software.

Figure 1. Verification case.
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The acceleration and displacement response of the bridge and the sprung mass was
computed using the developed software, and the results are compared with the solution
presented by Yang et al. [8] as well as the analytical solution obtained considering the
first mode response only. The results depicted in Figure 2 show that the developed soft-
ware can capture the acceleration and displacement response of the bridge under moving
sprung mass.

(a) Acceleration time history at the mid-span

(b) Displacement time history at the mid-span

(c) Acceleration time history of the sprung mass

Figure 2. Comparison of the acceleration and displacement response obtained from the developed
software with the literature.
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The bridge stiffness matrix, Kb, can be modified to include the stiffness of the bearings
leading to the numerical model depicted in Figure 3. In this model, each moving axle
consists of a mass, a spring and a dashpot, which simulate the inertia, stiffness and the
damping characteristics of the vehicle, respectively. While the interaction between each
axle and the bridge is considered, pitching and rolling of the train cannot be considered
with the developed model.

Figure 3. Overview of the numerical model.

3. Numerical Analysis

To investigate the impact of the bearing stiffness on the dynamic response of railway
bridges, numerical analyses were conducted on three separate bridges, one single-span and
two multi-span, under train loading. The single-span bridge used is a 50 m long railway
bridge. Young´s Modulus of concrete was taken as 32 GPa, and the moment of inertia
of the cross-section about the main bending axis is 16.89 m4. The mass per unit length is
assumed to be 22.9 t/m including the track bed and the ballast and modeled as lumped
mass at each node. Damping is modeled as 2% Rayleigh damping anchored at the first
and third mode frequencies. The bridge is discretized at equal distances of 0.025 m. The
horizontal movement in the supports is restrained considering their negligible effect while
the ends of the bridge are free to rotate. Elastic springs with a stiffness of kv, which varied
between 1× 104 kN/m and 1× 1015 kN/m, is used to simulate the vertical behavior of
elastomeric bearings. Here, it should be noted that, for most of the commercially available
elastomeric bearings, the stiffness varies between 1× 105 kN/m and 1× 107 kN/m, but a
wider range was used in this study to consider possible variation in the bearing stiffness
due to factors such as aging and deterioration. Stiffer values were considered to simulate
the fully restrained case, which is commonly used in literature as well as to account for
possible stiffening in bearings with aging.

Two- and three-span bridges were created from the single span bridge by introducing
elastomeric bearings at the column locations. The cross-sectional properties and the length
of the bridge was kept constant. Figure 4 depicts the overview of the two- and three-span
bridges generated from the single-span bridge. The multi-span bridges used in the study
represent a very common bridge type, where elastomeric bearings are placed at the top
of the columns while the bridge deck is continuous throughout the entire bridge length.
Introducing the middle supports serves two main purposes: (i) the frequency of the bridge
is altered significantly, and thus the dynamic analysis is repeated for a new set of bridge
frequencies paving the way to evaluate the effect of the bridge frequency and its interplay
with the loading frequency on the dynamic response of the bridge, and (ii) the difference in
the behavior of the end and middle spans can be evaluated.

As the train model, without losing generality, the ICE-2 train is selected as a representa-
tive of modern passenger trains. The configuration and the axle distances for a typical ICE-2
train are depicted in Figure 5. The axle load, suspension stiffness and suspension damping
used in the numerical analysis are 19.995 t, 4800 kN/m and 109 kNs/m, respectively. It
should be noted that, although only one type of train, ICE-2, is used in this study, the
properties of the ICE-2 train are similar to other trains such as TGV [40], and the results
presented in this article can be generalized for modern passenger trains. For each bridge
and bearing stiffness configuration, dynamic analyses were repeated for speeds of 50 km/h,
80 km/h and 130 km/h. Figure 6 shows the Fourier Amplitude Spectrum (FAS) of the
loading function of the ICE-2 train for the relevant speeds.
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(a) Two-span bridge

(b) Three-span bridge

Figure 4. Overview of the multispan bridges.

The track irregularities are not considered in the study because the main focus of the
article is to evaluate the impact of the bearing stiffness on the frequency content and bending
behavior of the bridge. Although the amplitudes of vibrations are used in the article to
identify the resonance conditions, prediction of the acceleration amplitudes is out of the
scope of this article. For this reason, only the vibrations that are created by the bending
behavior of the bridge are considered and not by other sources such as track irregularities.

Figure 5. Axle distance and configuration for a typical ICE-2 X [40].

(a) Loading FAS at 50 km/h (b) Loading FAS at 80 km/h

(c) Loading FAS at 130 km/h

Figure 6. Fourier amplitude spectrums for the loading for ICE-2 train at different speeds.
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3.1. Single-Span Bridge

Figure 7 presents the natural frequencies of the bridge for different bearing stiffness
values. This plot indicates that the vertical motion at the supports can be assumed to be
restrained once the vertical stiffness of the bearing exceeds 1× 108 kN/m as the natural
frequencies of the bridge remains unchanged beyond this threshold value. Figure 7 shows
that the frequencies of the bridge start to change significantly when kv < 1× 107 kN/m.

Figure 7. Variation of the bridge natural frequencies with the bearing stiffness.

Next, elastic response history analyses were conducted to investigate the effect of the
bearing stiffness on the dynamic response of the bridge. Figure 8 presents the absolute
maximum accelerations computed at nodes discretized at one meter for varying bearing
stiffness and train speeds. Maximum acceleration is selected as the main response param-
eter because it is the main parameter that impacts the ballast stability and, therefore, is
arguably the most important criterion for the serviceability of the railway bridges.

The maximum accelerations at the mid-span are shown to be very sensitive to the
bearing stiffness. Meanwhile, the maximum acceleration values remain virtually constant
at the mid-span for kv > 1× 108 kN/m, and they start to increase significantly as the
bearing stiffness drops below this threshold value.

The variation in the maximum acceleration demands at the mid-span with bearing
stiffness can be explained relatively simply with the effect of the latter on the vibration fre-
quencies for kv 6 1× 106 kN/m as depicted in Figure 7. For bearing stiffness values under
this threshold, the vibration frequencies decrease significantly compared to the virtually
rigid cases leading to an increase in the acceleration amplitudes. However, it is difficult to
use the same argument to explain the increase in the accelerations for kv = 1× 107 kN/m.
For this bearing stiffness value, the vibration frequencies computed from an eigenvalue anal-
ysis remain virtually identical compared to those for kv > 1× 108 kN/m. On the other hand,
the maximum accelerations increase significantly compared to the stiffer cases. For example,
even at the mid-span, the maximum accelerations reach 0.9 m/s2 for kv = 1× 107 kN/m
for a train speed of 80 km/h compared to 0.05 m/s2 for kv = 1× 1015 kN/m.
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Figure 8. Absolute Maximum Accelerations along the bridge length for different bearing stiffness
and train speeds.

To understand the reason behind this discrepancy, the Fourier Amplitude Spectra
(FAS) of the acceleration time histories at the mid-span for different bearing stiffness values
were plotted in Figure 9. The FAS for bearing stiffness values of kv > 1× 108 kN/m indicate
that the behavior of the bridge is dominated by the first mode at f < 5 Hz although some
influence of the third mode around 25 Hz is also visible. On the other hand, the third mode
becomes the dominant mode for kv = 1× 107 kN/m with very little energy at frequencies
f < 5 Hz compared to the higher bearing stiffness values. A closer look at Figure 7 shows
that, although the frequencies of the first two modes remain virtually identical when the
bearing stiffness is reduced to kv = 1× 107 kN/m, the third mode frequency drops from
27.5 Hz for kv > 1× 108 kN/m to 25.2 Hz for kv = 1× 107 kN/m. The Fourier Amplitude
Spectrum of the loading for 80 km/h depicted in Figure 6b indicate that the decrease in
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the third mode frequency for kv = 1× 107 kN/m leads to a resonance condition between
the loading and the bridge at around 25–26 Hz leading to a significant increase in the
contribution of the third mode for this bearing stiffness. In addition, Figure 9 indicates
that the fourth mode with a frequency around 45 Hz also contributes significantly to the
acceleration response. Similar to the third mode, the fourth mode comes into a resonance
condition with the loading frequency (see Figure 6b) and thus contributes significantly to
the response. Therefore, the change in bearing stiffness can significantly affect the dynamic
response of the bridge even its impact on the modal frequencies is small because it leads to
a change in the predominant mode of vibration.

Figure 9. Fourier Amplitude Spectrum of the acceleration time history response at the mid-span for a
train speed of 80 km/h. Different colors correspond to different bearing stiffness values.

A similar behavior can also observed for the bearing stiffness value of kv = 1× 106 kN/m.
Figure 9 shows that the behavior of the bridge is dominated by the frequencies 15 Hz and
36 Hz for kv = 1× 106 kN/m. These correspond to the third and fourth vibration modes of
the bridge, respectively, and are very close to the dominant loading frequencies as indicated
by the loading function for a speed of 80 km/h; see Figure 6b.

When the bearing stiffness value is reduced further to kv = 1 × 105 kN/m and
1× 104 kN/m, the dynamic response of the bridge continues to be dominated by third
mode of the bridge, which has a frequency between 7 and 8 Hz, while the influence of the
fourth mode diminishes.

The results summarized above indicate the sensitivity of the dynamic response and
the dominant mode to the bearing stiffness. Furthermore, the bearing stiffness has a sig-
nificant influence on the location of the maximum accelerations. While the maximum
acceleration is closer to the mid-span for the case of kv = 1× 1015 kN/m, its location
shifts towards the ends of the bridge as the bearing stiffness gets lowered. Here, it
should be noted that some sudden jumps were observed at the ends of the bridge for
1× 108 kN/m 6 kv 6 1× 1010 kN/m. A possible explanation for these sudden jumps can
be the singularities associated with the Finite Element Method at the boundaries. Since the
bridge is modeled as a stand-alone structure without the front and back approaches, the
train movement starts and ends abruptly at the two supports which may lead the inaccura-
cies at the edges depicted in Figure 8. Although the acceleration values at the support for
1× 108 kN/m 6 kv 6 1× 1010 kN/m may not be exact, it is clear from Figure 8 that the
location of the maximum accelerations shifts towards the edges for kv 6 1× 109 kN/m.

This shift in the location of the maximum acceleration can be explained by the impact of
the bearing stiffness on the mode shape of the bridge as it modifies the boundary conditions
of the bridge. As an example, the first and third mode shapes for different bearing stiffness
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values are plotted in Figure 10. While the first mode shape remains identical for the two
cases, there is a significant difference in the third mode shape, particularly at the bearing
locations for kv = 1× 1010 kN/m and kv = 1× 107 kN/m. The modal displacements at
the bearing location increase even further when the bearing stiffness is reduced further.
Recalling that the third mode begins to dominate the dynamic response of the bridge for
kv 6 1× 107 kN/m, the increase in the modal displacement close to the abutments for these
bearing stiffness values for the third mode can be indicated as the reason why the location
of the absolute maximum acceleration on the bridge shifts from the mid-span towards the
ends of the bridge with a decrease in the bearing stiffness.

Figure 10. Mode shapes of the bridge with different bearing stiffness values.

3.2. Multi-Span Bridges

As the next step, the numerical study was repeated for the two- and three-span bridges.
Figure 11 presents the variation of the natural vibration frequencies of the two-span bridge
for the first vertical modes. As expected, the two-span bridge has higher frequencies for
each mode compared to its single-span counterpart (Figure 7). Similar to the single-span
bridge, vibration frequencies of the first two modes of the two-span bridge remain relatively
identical for kv > 1× 108 kN/m while a significant drop can be observed in the third and
higher mode frequencies when the bearing stiffness is kv = 1× 108 kN/m and continue to
drop as the bearing stiffness continues to reduce.

Figure 11. Variation of the eigenvalues of the two span bridge with bearing stiffness.
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Figure 12 presents the maximum accelerations at different locations of a two-span
bridge for different bearing stiffness values and train speeds of 50, 80, and 130 km/h,
respectively. The results for the two-span bridge are similar to those obtained for a single-
span bridge that are presented in Figure 8 in many aspects. For example, the location of the
absolute maximum acceleration along the length of the bridge shifts from the middle of the
span to the ends of the bridge. However, the accelerations at the middle support remain
the lowest along the length of the bridge for all the bearing stiffness values investigated.
For kv > 1× 109 kN/m, the bearings remain virtually rigid, and the vibrations are minimal
although the shift in the location of maximum acceleration location can already be observed
for kv = 1× 109 kN/m. As the bearing stiffness decreases, the accelerations at the middle
support increase but remain less than those at the other locations of the bridge. This is unlike
the supports at either end of the bridge, which become the point of highest acceleration
for lower bearing stiffness values. This difference can be explained by the discrepancy in
the boundary conditions for these locations. The train traverses the relatively soft bridge
before arriving at the middle support and after leaving it. As such, the vibrations at the
middle support are dominated by the bridge stiffness and frequency. On the contrary, the
train travels over an infinitely rigid surface before crossing the bearing, which is stiffer
compared to the bridge itself even for the lower bearing stiffness values. Only after traveling
some meters, the stiffness and the frequency of the bridge start to dominate the behavior.
Therefore, the vibrations close to the end bearings are dominated by high frequency motion
that leads to higher acceleration amplitudes compared to the bearing at the middle.

To further study the impact of the bearing stiffness on the frequency content of the
dynamic response, Fourier Amplitude Spectrum of the acceleration response at the middle
of the first span was created and presented in Figure 13 for speeds of 50 km/h and 80 km/h.
For both speeds, the sensitivity of the frequency content of the vibrations to the bearing stiff-
ness is evident. Particularly for the speed of 50 km/h, the vibrations are dominated by the
first mode for kv = 1× 104 kN/m and kv = 1× 105 kN/m; see Figure 13a. For the higher
bearing stiffness values, kv > 1× 108 kN/m, the effect of the second mode at approximately
20 Hz is evident from Figure 13a. The most complicated behavior as far as frequency con-
tent is concerned can be observed for kv = 1× 106 kN/m and kv = 1× 107 kN/m. For the
former, the behavior is dominated by the first mode, but the contributions of the third and
fourth modes at approximately 25 Hz and 40 Hz are not negligible.

For the speed of 80 km/h (Figure 13b), for higher bearing stiffness values of
kv > 1× 108 kN/m, the contribution of the second mode becomes more prominent. Fur-
thermore, the second and third modes contribute much more to the dynamic response for
kv = 1× 104 kN/m and kv = 1× 105 kN/m. Nonetheless, the first mode dominates the
behavior compared to the higher bearing stiffness values.

Finally, the numerical analysis was repeated for the three span bridge shown in
Figure 4. This bridge has much higher natural vibration frequencies compared to the
single- and two-span bridges as depicted in Figure 14. However, similar observations
regarding the variation of the natural frequencies can be made as the frequencies tend to
remain constant for kv > 1× 108 kN/m while decreasing significantly when the bearing
stiffness drops below this value. The change in the frequencies is especially sharp between
1× 106 kN/m 6 kv 6 1× 108 kN/m.

The variation of maximum accelerations along the length of the bridge shown in
Figure 15 is also similar to those observed for single-span and two-span bridges. Firstly,
the maximum accelerations increase with a decrease in the bearing stiffness. Furthermore,
the location of the maximum acceleration shifts from the middle of the spans towards the
ends of the bridge. The accelerations at the middle supports tend to remain to be lower
than the other parts of the bridge.
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Figure 12. Absolute Maximum Accelerations along the bridge length for different bearing stiffness
and train speeds for the two span bridge.

Finally, Figure 16 shows the Fourier amplitude spectrum of the accelerations computed
at the middle of the second span for the three-span bridge for speeds of 50 km/h and
80 km/h. Comparing the FAS for 50 km/h in Figure 16a and for 80 km/h in Figure 16b
reveals the impact of the train speed on the frequency content of the bridge vibrations. For
the higher bearing stiffness values, the first mode is dominant for the 50 km/h, while higher
modes become more active for lower stiffness values. When the train speed is increased to
80 km/h, the second mode becomes the dominant mode of vibration for higher bearing
stiffness values as well. On the other hand, for this train speed and kv = 1× 104 kN/m, the
vibrations are dominated solely by the first mode of vibration.
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(a) 50 km/h

(b) 80 km/h

Figure 13. Fourier Amplitude Spectrum of the accelerations at the middle of the first span for the
two-span bridge. Different colors correspond to different bearing stiffness values.

Figure 14. Vibration Frequencies–Three span bridge.
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Figure 15. Absolute Maximum Accelerations along the bridge length for different bearing stiffness
and train speeds for the three span bridge.

Figures 9, 13, and 16 show the complex relationship between the frequency content
of the vibrations and the bearing stiffness for bridges with both relatively low (single-
span) and high (multi-span) natural frequencies. Thus, variations in the bearing stiffness
throughout the lifetime of the structure can lead to significant variations in its dynamic
response under train loading. Furthermore, the results also indicate the importance of
accurately modeling the bearing stiffness in the evaluation of the bridge under service
loading. Considering the uncertainties in the production stage that may lead to deviations
from the prescribed bearing stiffness values such as partial loss of contact between the
bearing and concrete surfaces through stochastic analysis can be necessary in certain cases
where the response parameters are close to the threshold values.
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(a) 50 km/h

(b) 80 km/h

Figure 16. Fourier Amplitude Spectrum of the accelerations at the middle of the second span for the
three-span bridge. Different colors correspond to different bearing stiffness values.

4. Conclusions

The aging of the railway bridge infrastructure and the modernization of the train
fleets worldwide necessitates regular safety assessment of railway bridges. Vital in this
assessment procedure is the vehicle–bridge interaction and the ability of the numerical
models to reflect the dynamic properties of the vehicles and bridges. Although elastomeric
bearings are ubiquitous in railway bridges, research that quantifies their effect on the bridge
response is scarce. This study, which aims to understand and quantify the effect of bearing
stiffness on the dynamic response of railway bridges, is motivated by this scarcity.

A finite element code that can take vehicle–bridge interaction into account is developed
to analyze the behavior of railway bridges with varying bearing stiffness values. The code is
then verified using the existing literature. The developed code conducts the vehicle–bridge
interaction analysis at a relatively low computational cost compared to commercially
available software paving the way to the parametric study reported in this article.

Single- and multi-span bridges with varying bearing stiffness values were modeled
using the developed software, and their dynamic response under vibrations induced by
passenger trains traveling with different speeds was computed. As a result of the numerical
analysis conducted, the following conclusions can be drawn.
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• The bearing stiffness has a significant influence on the dynamic response on railway
bridges at all train speeds considered in the study. Not only the amplitudes of the
accelerations varied with the changes in the train speed but also the locations of the
maximum accelerations shifted considerably.

• The vertical stiffness of the bearings can be assumed to be infinite when its value
exceeds 1× 108 kN/m as neither the bridge frequency nor the acceleration response
of the bridge is affected once the vertical bearing stiffness exceeds this value.

• Even when the first and second mode frequencies of the bridge is not affected by the
variations in the bearing stiffness, the subtle change in the higher mode frequencies
can lead to significant changes in the acceleration response. For the single-span bridge
analysed, only the third mode frequency of the bridge was slightly changed when
the bearing stiffness was reduced from 1× 108 kN/m to 1× 107 kN/m while the
frequencies of the first two modes remained the same. However, this subtle change
combined with the change in the third vertical mode shape led to a significant increase
in the acceleration response as well as in a shift in the location of the maximum
acceleration.

• For the multi-span bridges, the bearings at the ends of the bridge and the middle
supports have a significantly different impact. When all bearings are infinitely rigid,
the accelerations at each of the bearings are naturally zero. As the bearing stiffness is
decreased, the accelerations at the end bearing increase rapidly, and the maximum
accelerations are recorded at these edges. On the other hand, the accelerations over
the middle bearings remain the lowest values over the entire bridge for all the bearing
stiffness values considered.

• The acceleration response of the bridges was not significantly influenced by the train
speed for the speeds considered in this study when the bearing stiffness is lower than
1× 108 kN/m. The effect of train speed in acceleration response is more pronounced
for higher bearing stiffness values.

• For certain bearing stiffness values, the finite element analysis can suffer from instabil-
ities at the boundaries, and the results for these cases should be evaluated carefully.
However, once the bearing stiffness values drop below 1× 107 kN/m, these instabili-
ties disappear. Modeling the front and back approaches can solve these instabilities
and will be included in further research.

This study contributes to understanding the dynamic behavior of railway bridges
under various bearing stiffness values. The outcomes of this study demonstrates the
importance of accurately modeling the bearing stiffness in the analysis, especially when it
drops below the threshold value of 1× 108 kN/m.

The study is limited to a single bridge deck and train geometry and three train speeds.
Further research is necessary to take into account the energy dissipation capabilities of
elastomeric bearings and to expand the observations made in this study to different train
geometries and train speeds.
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