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Abstract

The European power markets have become highly integrated over the past decade.
The electrical grids of individual countries are increasingly well connected between
each other, which allows for trading the electricity on the common markets and
thus enhances the development of diverse electricity sources across the continent.
With that comes an increasing volatility of the power prices. It is in the interest
of all market players involved in generating, supplying, trading and consuming the
electricity to find a way to forecast the power price as accurately as possible. This
study investigates the potential of using filling level data from hydropower reser-
voirs and historical power price data—particularly, the Nordic system price—to
forecast the future system price. For this purpose, three forecasting models for
time series analysis were developed and evaluated—a statistical approach, as well
as two artificial neural network architectures with different levels of complexity.
The statistical approach is based on the autoregressive integrated moving-average
model with exogenous inputs (ARIMAX), while the investigated neural networks
include (a) a standard recurrent neural network (RNN), and (b) a combination of
one-dimensional convolutional layers (1D CNNs) and a long short-term memory
cell (LSTM). The experimental part of this work is based on data collected from
63 Norwegian hydropower reservoirs between 2015–2021. An extensive hyperpara-
meter tuning was conducted on the machine learning models, including input data
transformations, prediction time frames, network architecture parameters and the
shape of the RNN/LSTM 3D input data tensor. The ARIMAX model outper-
formed the machine learning models for both most thoroughly tested prediction
time frames of 14 and 28 days, achieving the R2 score of 0.8 and the MAE of 5.40
EUR. After a qualitative assessment of the obtained results it has been concluded
that the models show some promising potential, however, a number of aspects
would have to be further investigated to develop a mature solution, ready for
practical use in, e.g. power trading.
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Chapter 1

Introduction

1.1 Background

The Statistical Office of the European Union (Eurostat1) and The U.S. Energy
Information Administration (EIA2) define renewable energy as energy from sources
which replenish themselves naturally, thus are practically inexhaustible but flow-
limited [1][2]. In other words, there is a limit on how much of energy from such
sources is available per unit of time. The main types of renewables are:

• Water (further referred to as hydropower)

• Geothermal

• Wind

• Solar

• Biofuels

Majority of the renewable energy sources (excluding combustible biofuels), as well
as the nuclear energy, are considered clean energy sources. This means that they
can be used to generate electricity without emitting harmful byproducts (e.g. car-
bon dioxide) to the atmosphere, as it happens in the case of fossil fuels-based

1https://ec.europa.eu/info/departments/eurostat-european-statistics en
2https://www.eia.gov/

1

https://ec.europa.eu/info/departments/eurostat-european-statistics_en
https://www.eia.gov/
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electricity production [3]. There are many initiatives and policies, both at the
European and global levels, to decarbonise the energy system. An example is
the European Green Deal, which is a set of policies approved by the European
Commission in 2020, aiming for the EU to become climate neutral by 2050 [4].

Electricity production constitutes around 23% of the total energy consumed by
end users3. According to Eurostat, in 2020, for the first time in history, renewable
energy took the lead among energy sources utilised for power production in the
European Union. It corresponded to 39% of the generated electricity, compared to
36% coming from fossil fuels and 25% from nuclear plants [5]. If we look closer at
the renewable electricity mix, 14% of the total electricity was produced from wind,
13% from hydropower, 6% from biofuels and 5% from solar energy. These statistics
have been averaged over individual data from all EU member states. The countries
differ between each other quite significantly in that matter. Each country has its
own challenges on the way to achieving climate targets, different starting positions
and different geopolitical predispositions. Therefore, it does not seem appropriate
to compare their achievements directly, but it is worth taking a closer look at the
ones standing out in the electricity mix proportions. One such country is Norway—
which is not an EU member, but its economy and power market are, respectively,
closely connected to and integrated with those of the EU countries. Hence, Norway
is an important element of the European energy landscape, bringing in over 98%
renewable share in the country’s electricity production, with hydropower alone
accounting for 92% of production [5], as shown in Figure 1.1.

Figure 1.1: Share of different energy sources in the electricity production in EU and
in Norway, based on the data from [5].

Norway pioneered the use of hydropower for industrial purposes in the late 19th

century and continued through the Second Industrial Revolution fueled by clean,

3The remaining part is distributed among private households, industry, agriculture, transport
and services.
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renewable energy. Thanks to the advantageous geographical conditions, rich water
resources and sustainable environmental governance, as of 2016 Norway was the
largest hydropower producer in Europe and the 6th largest in the world [6].

The topic of the country’s hydro balance is vividly present in the public space in
Norway and regularly makes its way to the national newspapers and TV. In this
thesis, the hydro balance is understood as the total amount of water captured in
a certain geographical unit at a given point in time. In the context of hydropower
production, an interesting unit to calculate the hydro balance for is a hydropower
plant located at a storage reservoir (further also referred to as hydropower reser-
voir or regulated reservoir ; the plant uses the water from the reservoir to generate
electricity). The hydro balance of the plant includes the amount of water that is
already in the reservoir, as well as the amount accumulated in form of the snow
or ice cover in the reservoir’s catchment area, assumed to eventually melt and end
up in the reservoir. Adding up the calculated values for all hydropower plants in
the region/country gives an overview of the hydropower potential at the region-
al/country level. The aforementioned public interest in the hydro balance topic
is related to its historical correlation with the price which an average Norwegian
had to pay for electricity delivered to their household. Generally speaking, in case
of a “wet” year (high precipitation preceding and forecasted after a given point in
time—high supply of the energy source), one would expect low electricity prices,
and in a “dry” year—high prices. The prices are also driven by seasonal changes
of market demand—more electricity is used in the winter due to society’s heating
needs, and with the rising consumption the prices go up too [7].

Electricity production and trading have been deregulated in Norway in 1991 [8]
and since then they function in a market-based system. Although this topic will
be explained in more detail in Section 2.1, it is important to shed light already at
this stage on how this fact impacts the hydropower sector. The main points to
remember are:

• Electricity prices are determined by supply and demand in the power market
[9].

• Norwegian power market is integrated with the markets of other Nordic
countries and a large part of the European continent [10];

– in terms of physical transmission capacity through a net of cross-border
interconnectors (power cables),

– in terms of electricity price dependencies through the common price
coupling algorithm.



4 CHAPTER 1. INTRODUCTION

The process of market integration, especially the increase of the cross border trans-
mission capacity, has changed the formation of electricity price paid by consumers
in Norway dramatically over recent years. Electricity produced by companies op-
erating within the integrated market comes from multiples energy sources—partly
renewable, partly nuclear, partly conventional fossil fuels. The price for which the
conventional producers are ready to sell their electricity on the market is typically
much higher than the price viable for hydropower producers (hereinafter referred
to as hydro producers) or wind power producers due to higher marginal cost of
production (for more information see Section 2.1). Therefore, prices of the most
expensive energy sources (oils, gas, coal) drive the final electricity prices in all re-
gions of the integrated market, including Norway. Thus, the relationship between
the power price and hydro balance in Norway has become more complex to model,
due to an increasing number of influencing factors.

Hydro producers operating in such deregulated, highly competitive market need to
carefully plan when to produce electricity. Their goal is to maximise profits, hence
they want to produce when the market power price is high, and save the water in
the reservoir for the future if the current price is low. For this purpose they need
to develop reliable price forecasts, which are then fed into complex mathematical
models created to optimise hydro production plans. The resulting production
strategy is reflected in the reservoir’s water level. The process of hydropower
production planning is described in more detail in Section 2.2.

Positive and negative changes of the reservoir’s water level are related to several
factors. As illustrated in Figure 1.2, the water level increases as a result of direct
precipitation, melting of snow from the surrounding higher-elevated terrain and
inflow from the higher located hydropower plants. The water is caught in the
reservoir by a dam which is integrated with the given reservoir’s own hydroelectric
facility. The water level drops when this plant turns its turbines on and starts
generating electricity, using the flow of the water which has been for that purpose
let into the system through the dam [11]. Intensity of the production is controlled
by the operator and limited by the facility parameters. In general, a more intense
production leads to a higher usage of water, which in turn empties the reservoir
faster.

As a result of the described relation between produced electricity and water re-
sources, the history of changes in the water level of a hydropower reservoirs is, to
a high degree, a record of hydro producers’ strategies. These, in turn, are based
on the power price forecast. In this thesis we want to investigate whether it is
possible to reconstruct trends of the said price forecast from the filling levels of
the Norwegian reservoirs (filling level is a measure of how full the reservoir is,
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Figure 1.2: Factors causing the change of water level in the hydropower reservoir.
Sources of the increase are shown in the upper row, from the left: melting snow accumu-
lated in the surrounding higher-elevated terrain, direct rainfall and snowfall, inflow from
the higher located hydropower plant. The lower part indicates the source of decreasing
water level—the activity of the hydropower station located at the reservoir.

directly related to the water level; see Section 1.4). This would effectively allow
for predicting the future power price, with the upper boundary of accuracy equal
to the accuracy of the hydro producers’ forecast. The data we can use for this
purpose come in the shape of time series—vectors of values registered or measured
on an arbitrary feature (like electricity price or water level of a reservoir), typically
in regular time intervals [12].

It is important to remember, that each hydro producer operates multiple reservoirs,
with different water storage and power generation capacities. Some reservoirs are
used for long-term storage (can save water for drier seasons over multiple years),
some have a much shorter filling/emptying cycle and are designed to respond to
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short-term price signals. Power plants at each reservoir run according to their indi-
vidual schedules, optimised jointly to maximise profits of the operating company.
Hence, establishing relations between filling levels and future power price is not
possible using short time intervals of data from a single reservoir. On the other
hand, analysing several years of daily price records and several years of filling level
data from tens of hydropower reservoirs is not a task that a human can handle,
regardless of their expert domain knowledge or quantitative skills. However, in
2022 the obvious solution to the problem of finding patterns in the abundance of
data is to employ artificial intelligence, and more specifically—deep learning.

Deep learning technology—a subdomain of machine learning methods based on
artificial neural networks—is known to outperform traditional statistical methods
in many tasks of time series forecasting, especially when the time series exhibit
non-linear behaviour [13]. In this thesis, the statistical time series forecasting
method ARIMAX is used to develop a baseline price prediction model. Next, we
attempt to beat the ARIMAX prediction accuracy using a deep learning approach.
More extensive theoretical background for the two time series forecasting methods
can be found in Section 2.3.

1.2 Industrial partner

This master’s thesis has been developed in collaboration with EDInsights AS4.

Among other business lines, the company operates a pipeline that semi-automatically
calculates water levels of the monitored reservoirs in the Nordics and south-eastern
Europe, based on the satellite radar data provided by Sentinel-1 mission of the
European Space Agency. The water levels are updated with a frequency between
bi-weekly up to twice a week, depending on the Sentinel-1’s operationality and
seasonal variation of radar image quality. EDInsights can then convert the wa-
ter levels into water volumes (using parameters specific for each reservoir) and
eventually calculate filling level values.

4https://edinsights.no/

https://edinsights.no/
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1.3 Motivation

The motivation behind this work was to explore the landscape of potential novel
applications of EDInsights’ technology for monitoring water levels of hydropower
reservoirs.

Information about the regional filling levels – an average state over a region –
is publicly available in Norway. It is provided by NVE—The Norwegian Water
Resources and Energy Directorate5. Filling levels on a single reservoir scale, in
turn, are of strategical significance for the hydro producers and are restricted from
public access for three months. EDInsights’ technology offers more up-to-date
information and therefore is of great interest to various hydropower producers,
competing between each other. It enables them to track the entire hydropower
system with greater granularity and thus optimise their production and increase
revenue.

The hydro balance of the country where hydropower accounts for approximately
92% of total power production has also a large impact on the financial and physical
power markets, both domestically and on the Nordic and European scale. Hence,
market players such as traders are also vitally concerned with acquiring insights
into hydropower producers’ strategies as close to real-time as possible.

Having built the reservoir monitoring technology, EDInsights is looking into de-
veloping a new product which would leverage the unique information the company
collects on a regular basis. Gathering feedback from current clients and acquir-
ing opinions from market experts helped scope down the field of interest to what
every person involved in the power production planning and trading business is
interested in—the power price model.

The price model, albeit crucial, is not the sole factor taken into account in the
complex mechanism of hydro production planning. Hence, we cannot expect that
the filling levels will be a direct reflection of the price model, but we certainly
can hope to recover trends of the price model that the companies were using in
production planning (or rather its averaged version, as each company may have
a slightly different model at their disposal). At this stage, two points are worth
mentioning: firstly, production planners receive regular updates of the price model
from the company’s analysts. Secondly, even though the hydro producers have
access to the best price forecasts existing on the market, extraordinary events may

5To keep control over the hydropower potential in the country NVE measures the water levels
of nearly 500 most important reservoirs on a weekly basis [14].
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happen which affect the global commodity prices in the short-, mid- or even long-
term perspective. A war, pandemic, extreme weather, natural disaster or economic
collapse are the examples of powerful circumstances that may completely disrupt
even the most comprehensive price forecast. Should such circumstances occur,
the hydro producer’s model and the real (historical) price curve start diverging,
despite the continuous model revision. There is a practical consequence of such
divergence for the process of recovering the price model information from the filling
levels. When training, validating and testing our model, we should be using the
hydro producers’ forecasts as ground truth values of the target variable. However,
as third parties are not granted access to the hydro producers’ forecasts, we are
forced to use the real historical price data as the ground truth. As soon as it
begins to significantly differ from the actual ground truth, it confuses the model
we train. Despite this complication, it is still an interesting task to try and see
what can be discovered by modern statistical and deep learning techniques from
the data that are available.

1.4 Data

The input dataset consists of the price time series and multiple filling level time
series.

There are a number of power price variants that are present on the financial and
physical power markets (they are briefly described in Section 2.1). Since the ob-
jective of this work is to primarily utilise the filling levels information as input
data (possibly supplementing it in the future with other data types), the price
acting as target variable should have as direct a relationship with the filling levels
as possible. As explained earlier, the filling level of the hydropower reservoir is
the aftermath of the hydro producer pursuing their production strategy, which in
turn is built upon a certain price model (more on this process in Section 2.2).
For simplicity, in this work we assume that the Nordic system price (further also
referred to as SYS or SYS price), is an average representative of multiple price
components that drive the reservoir management optimisation. System price is
given in EUR/MWh (the “/MWh” part is often assumed implicit and skipped
when providing price values). The process of system price calculation and its role
in the financial power market are described in Section 2.1.1.1. The historical data
were obtained from Nord Pool [15], a pan-European power exchange.

Filling level denotes the degree to which the reservoir is full. Its values range from
0 to 1 (unitless), where 0 corresponds to the lowest regulated water level and 1
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to the highest regulated water level6. EDInsights’ pipeline has been monitoring
the filling levels of a variable number of Norwegian hydropower reservoirs over
different periods of time. For this master thesis, we decided to use filling level
data calculated based on the historical ground truth water volume data provided
by NVE. One reason for that is to be able to register the best possible performance
of the developed model by excluding the effect of potential pipeline processing
inaccuracies. Another is to possibly include information from the reservoirs which
have not been so far monitored by EDInsights and which can potentially add value
to the model. In the end, the delay in publishing the water volumes by NVE does
not harm the process of developing the model, as it is not crucial to use the most
up-to-date data for this purpose.

1.5 Problem statement

The main goal of this thesis is to evaluate the potential of deep learning method-
ology for recovering power price models from the filling levels of the hydropower
reservoirs in Norway. In this process, we sought to provide answers to the following
research questions:

• What magnitudes of forecasting performance can be achieved for various
combinations of input data, modelling methods, forecasting time frames
(short-/mid-/long-term) and hyperparameter setups?

• Does the deep learning approach, computationally more expensive than the
traditional statistical method, provide a significantly better modelling out-
come?

The accompanying goal is to determine best performing models for several predic-
tion time frames; such outcome would enable EDInsights to further analyse their
prospective applications and match them with potential users, such as business
developers, hydro production planners or traders.

This master’s project has an exploratory character—there was no a priori model
to be outperformed, no established solution to be improved and no particular fore-
casting time frame indicated by market practitioners as of the highest importance.

6Every regulated reservoir has upper and lower limits of the water level. NVE is responsible
for supervising the hydro producers and making sure they operate in accordance with their license
[16].



Chapter 2

Theoretical background

2.1 Physical and financial power markets

The Norwegian power market is a free competition-based market (as opposed to
state-run market type) and it has been maturing as such for over 30 years now [10].
Note that the deregulation from 1991 only pertains to electricity production and
trading. Transmission and distribution of electricity function on a basis of natural
monopoly1 and are strictly regulated by the state to ensure rational management
in the best interest of society [18]. Before we proceed to explaining different types
of markets for power trading and how they are related to each other, there is
an important physical aspect of the power system that needs to be mentioned.
After electricity is generated and supplied to the grid by a power plant, it is
no longer possible to distinguish between different deliveries flowing through the
grid. It is not possible to track the physical “portion” of electricity the end user
consumes to the plant that generated it. Electricity generated by all producers
operating within the integrated pan-European market is sent to the grid which
allows transmission between multiple countries. Producers are paid for the volume
they deliver to this pool, and end users pay for the amount they consume [8]. The
supply to and consumption from the pool need to be balanced at all times (every
single second). Securing this balance is a responsibility of Transmission System

1There are high fixed costs associated with the grid operations (development, maintenance)
and it would simply be inefficient to allow for any redundancy in the electrical network. The
reader can find more information about Norwegian electricity grid infrastructure in [17].

10
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Operators (TSOs)2 [17].

The main difference between physical and financial power markets is that clearing
of the physical markets results in the physical delivery of electricity from the seller
to the buyer, whereas trading on the financial markets is based on purely financial
settlements [9]. Let us first describe the characteristics of the physical markets, as
some of them will be useful to later discuss the financial markets.

2.1.1 Physical power markets

The physical power market can be divided with respect to the participants into:

• wholesale market—occupied by large players, such as: power producers and
suppliers, brokers, energy companies and large industrial customers;

• end-user market—where power suppliers meet smaller end users, such as:
private households, small and medium-sized businesses and industrial cus-
tomers [8].

In this thesis we are only interested in the wholesale market, as this is the trading
arena for hydropower producing companies. As shown in Figure 2.1, there are
three wholesale physical power markets in Norway:

• day-ahead market (see Section 2.1.1.1)

• intraday market (see Section 2.1.1.2)

• balancing market (see Section 2.1.1.3)

While spot3 markets—the day-ahead and the intraday—are run by Nord Pool4,
the balancing market is operated by the Norwegian TSO—Statnett5.

2There is typically one TSO per country, with few exceptions. See https://www.entsoe.eu/
about/inside-entsoe/members/ for European TSOs.

3Spot market is a market where delivery of product happens shortly after the trade has been
closed—in case of electricity market the next day at the latest [19].

4Nord Pool AS (https://www.nordpoolgroup.com/en/) is a Nominated Electricity Market
Operator (NEMO)—a power exchange. Originally served as power exchange for Nordic region,
currently operates in several European countries.

5https://www.statnett.no/en/

https://www.entsoe.eu/about/inside-entsoe/members/
https://www.entsoe.eu/about/inside-entsoe/members/
https://www.nordpoolgroup.com/en/
https://www.statnett.no/en/
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Figure 2.1: Power market types. They are ordered along the timeline with respect to
when the trading happens. Trading future or forward contracts on the financial markets
(Section 2.1.2) starts years, months or weeks before physical delivery of electricity takes
place, results in purely financial settlement between participants and in the Nordics it
is hosted by NASDAQ. Trading on the spot markets—day-ahead (Section 2.1.1.1) and
intraday (Section 2.1.1.2)—happens one day before and on the delivery day, respectively.
It results in physical delivery of electricity and Nord Pool is the platform that provides
the services for the Nordic region. Balancing market (Section 2.1.1.3) is also active on
the physical delivery day (hence highlighted in green together with the intraday market)
and it is operated by the TSOs.

2.1.1.1 Day-ahead market

Single Day-ahead Coupling (SDAC) is a mechanism that integrates European
wholesale power markets with the aim of improving their efficiency, liquidity and
transparency. It is supposed to ensure the optimal use of power infrastructure
and electricity generation resources across Europe, improve security of supplies
and reduce volatility of electricity prices. SDAC is based on the “Price Coupling
of Regions” concept founded jointly by a group of European NEMOs. The main
achievement of this collaboration is the development of the Pan-European Hybrid
Electricity Market Integration Algorithm (EUPHEMIA) [20][21]. As stated in the
EUPHEMIA Public Description document [21] issued by NEMO Committee6, the
algorithm calculates “energy allocation and electricity prices across Europe, max-
imizing the overall welfare and increasing the transparency of the computation
of prices and flows.” Price Coupling of Regions currently comprises most of the
European countries [20].

6https://www.nemo-committee.eu/nemo committee

https://www.nemo-committee.eu/nemo_committee
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The day-ahead market follows exactly the same routine every day in every coun-
try within the integrated pan-European market. Market activity during a given
day pertains to physical delivery of electricity during the subsequent day (hence
the name “day-ahead”). Between 08:00 and 12:00 sellers (e.g. hydro producers)
register their offers (sell orders) and buyers register their bids (purchase orders)
in the Nord Pool trading system. By 10:00 TSOs must publish transmission ca-
pacities for each bidding area in the market [8]. Bidding areas (also referred to
as bidding zones or price areas) are determined by limitations in the transmission
grid (often termed bottlenecks or congestions). If there is physically not enough
transmission capacity to import and export electricity freely from one location to
another, then these locations typically lie in different bidding zones—there must
be no bottlenecks in the grid inside a bidding zone [9]. The shape of bidding zones
is decided by local TSOs. Some countries constitute one zone, some are divided
into several. As of June 2022, Norway has five bidding zones [22] (see Figure 2.2).
Coming back to the daily cycle of the day-ahead market, the auction closes at

Figure 2.2: Bidding zones in the Nordic and Baltic regions, as of June 2022. Sourced
at https://www.nordpoolgroup.com/en/Market-data1/#/nordic/map and zoomed in to
the Nordic and Baltic regions, with permission from Nord Pool AS.

https://www.nordpoolgroup.com/en/Market-data1/#/nordic/map
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12:00. Between 12:00 and 13:00 all registered purchase and sell orders are used by
EUPHEMIA to calculate prices for each hour of the following day, for each bid-
ding zone. The prices are typically announced before 13:00 and are immediately
available on the power exchanges’ websites, e.g. Nord Pool’s market data. The
trades are invoiced in the afternoon.

The bids and offers submitted in the auction are used to build supply and demand
curves for each price area (for each delivery hour). The intersection of the two
curves determines the prices for each area-delivery hour combination. As presented
in Figure 2.3, in the areas with surplus of electricity the prices will typically be
lower than in the ones with deficit. The electricity will flow from the cheaper area
to the more expensive one. In general, the algorithm is trying to make the prices
from different areas converge, utilising transmission capacity to the maximum. If
the capacity set by the TSO is sufficient to balance the supply and demand in two
areas, the prices will be identical in these areas, otherwise—they will differ [23].

Figure 2.3: Price formation in the electricity surplus and deficit areas. Price is de-
termined by the intersection of the supply and demand curves. It is lower in the surplus
area, compared to the deficit area. Based on the original illustration from [23], redrawn
with permission from Nord Pool AS.

The prices determined by the supply and demand curves ensure that market equi-
librium has been reached at the lowest possible cost to society [8]. This is related
to the fact that, in compliance with the merit order rule, the market operator
orders supply bids in the ascending price order—the electricity from the cheapest
source (lowest marginal cost of production) is sold first [24]. Hence, the price

https://www.nordpoolgroup.com/en/Market-data1/#/nordic/table
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that results in the market equilibrium is determined by the cost of production of
the last unit of power that is necessary to satisfy the market demand—it usually
corresponds to the offer from the plant producing electricity from fossil fuels (see
Figure 2.4). It is worth noting that following the merit order is also beneficial from
the environmental point of view, as the cheapest electricity is, in fact, the “clean”
one (wind, solar, hydro, nuclear).

Among key factors forming the day-ahead price we should mention:

• those affecting the supply: fossil fuel prices, operationality of plants, hydro
balance, wind and sun conditions, regulations, political situation;

• those affecting the demand: season of the year, weather conditions, industrial
activity;

• those related to transmission capacity, e.g., availability of interconnectors,
grid operationality [25].

Last but not least, the Nordic system price—particularly interesting from the
perspective of this thesis—is also a product of the day-ahead market auction.
Similarly to area prices, it is also calculated with use of EUPHEMIA, but locally
at Nord Pool. The system price can be described as a theoretical price, as it is
calculated based on the assumption that there is an infinite transmission capacity
between bidding zones in the Nordic countries (Norway, Denmark, Sweden and
Finland)—in fact, they are simply treated as one big bidding zone. The rest of
the European bidding areas and the flows and restrictions between them remain
the same as for the area price calculations. The system price is used as clearing
reference price for the financial contracts traded in the Nordic region [23][8] (for
more information about financial market see Section 2.1.2). As mentioned in
Section 1.4, in this thesis the system price is treated as a generalised Nordic power
price for a given point in time, as its value reflects the spread of area prices in the
Nordic region.

2.1.1.2 Intraday market

The intraday market enables the participants to adjust their positions from the
day-ahead market [8]. Let us imagine the following situation—after the day-ahead
auction has been closed, a wind power producer gets an updated weather forecast.
The next day is going to be more windy than what was assumed when submitting
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Figure 2.4: Electricity price formation according to the merit order model. Electricity
produced from various sources forms a discrete supply curve, with the height of the
bars corresponding to the marginal costs of producing electricity from the given sources.
Electricity from the cheapest sources (renewables and nuclear) is produced and sold first,
then the more expensive sources (CHP—Combined Heat and Power, oil, gas) step in to
satisfy the demand. Market equilibrium is reached at the intersection of the supply and
demand. Note that this is a rough visualisation and may not reflect the exact relations
between the marginal production costs of different sources. Based on the original illus-
tration from [25], redrawn with permission from Nord Pool AS.

the offer to the day-ahead market. Thus, the producer will be able to generate and
sell more electricity. Another scenario involves a power supplier, who also received
a weather forecast update—it is going to be colder, people will want to switch
on the heaters. The supplier needs to buy more electricity from the producers to
accommodate the additional demand from the end users side. The wind power
producer from the first example and the power supplier from the second example
can achieve their desired balance through intraday trading. In the intraday market
trades are executed continuously, 24 hours per day, 7 days in the week. The
length of contracts (the unit of time for which the purchased electricity will be
delivered) and the time window during which the trade must be made depend on
the market operator. The latter typically starts after the day-ahead market for
the given delivery day has been cleared and ends 5-60 minutes before the physical
delivery begins. The prices are set in a “pay-as-bid” process—prices for different
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transactions are independent of each other (unlike in the day-ahead market where
all aggregated bids and offers form a basis of price calculation) [26].

2.1.1.3 Balancing market

The balancing market is used as a last resort to ensure the physical balance between
the supply and demand in the electrical grid. This market works on the basis of
agreements between the TSOs and major power producers and consumers, who
are willing to adjust their production or consumption instantaneously depending
on what is needed to maintain the balance in the grid at a frequency of 50 Hz.
The agreements are contracted a priori to ensure that the TSO can immediately
activate the available reserves, should such need occur as a result of e.g. sudden
failure of a transmission line or production unit. There are several tiers of reserves
(primary, secondary, tertiary) which can be activated to secure the balance in the
grid. The participants have no option to decide themselves when to sell or buy
electricity in the balancing market—the reserves may or may not be activated at
each time. However, the prices at the balancing market for those who offered
their flexibility are typically more favourable than those one can trade for in the
spot markets. Thus, provided a good imbalance forecast is in place, the risk and
flexibility might be financially rewarded—at the expense of those who caused the
imbalance in the grid [9][8][27].

2.1.2 Financial power markets

The electricity price on spot markets is driven by a series of weather, geopolitical,
social and operational factors. There are instruments on the power markets that
allow for managing the risk associated with prices volatility. One way of hedging
the electricity prices available for large players (e.g. power producers, power suppli-
ers or businesses with high demand for electricity) is participation in the financial
power markets. It involves buying or selling long-term financial contracts which
can be traded for up to six years ahead, split into daily, weekly, monthly, quarterly
or yearly delivery periods. There are several types of financial contracts:

• forward and future contracts—result in cash settlement that reflects the dif-
ference between the price a buyer and seller agreed on (for a given power
volume and delivery period) and the reference price from the spot market;
as mentioned earlier, the Nordic market uses the system price as reference
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for settling financial contracts. The difference between these two contracts
is that forward contracts are only settled when they expire, and futures are
settled both during trading and delivery periods [8].

• electricity price area differentials (EPAD)—traded to hedge the difference
between the area prices and the system price (reference for forward and
future contracts); they are getting more and more popular especially among
players who are exposed to high area prices in the bidding zone NO1 in
Norway [28].

• options—European options with forward contracts as the underlying product
[9].

If a financial market participant is interested in receiving an actual physical de-
livery of electricity (as in the case of a power supplier, who needs to deliver it
further to the end users), they still need to participate in the spot market and
buy the required volumes there. The financial market settlement simply covers a
difference between the price of the financial contract and the spot price. If the
supplier bought the financial contract in advance for more than the actual spot
price, they suffer loss. Otherwise, the hedge is successful.

Financial markets are also used for speculation. Speculators seek to profit from
short-term price movements and close their positions before they expire. Although
often negatively (and wrongly) associated with market disruptions, they in fact
increase markets’ liquidity by increasing the volumes of trades [29][30].

In the Nordics, most of the financial trading takes places on the Nasdaq OMX7

exchange.

In Section 2.2 we will take a closer look at some of the most important players on
the power markets—hydropower producers.

2.2 Hydropower production planning

According to NVE, there are over 1600 hydropower plants operating in Norway.
They are distributed across around 1400 regulated reservoirs.

7Nasdaq OMX Commodities AS—http://www.nasdaqomxnordic.com/.

http://www.nasdaqomxnordic.com/
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Hydropower producers have an advantage over other renewable energy producers,
originating from their unique capability to store water—their energy source. They
are flexible in terms of deciding when to generate electricity, when to pause the
production and when to relaunch it – and they can do it at a relatively low cost and
short time [31]. In fact, the costs of turbine and generator start-up are often treated
as negligible by scientific publications covering the topic of hydropower reservoir
management [32]. This flexibility, however, carries a challenge of deciding how to
schedule the production to maximise the profit.

Production planners are supported in their decision making process by complex
models which have been developed for nearly a century now. EOPS (One-area
Power-market Simulator) [33] created by SINTEF is one of the most popular com-
mercial models in the Nordics, suited for long- and medium-term production plan-
ning. The models are founded on a number of assumptions, e.g. that a given
plant’s activity is sufficiently small not to impact the overall market situation, or
that the company only trades in the spot market [32]. Some algorithms consider
participating in both spot and balancing markets in a sequential manner—ignoring
the effect of the latter one on the former one and optimising balancing bids only
after the spot market has been cleared. Yet another ones allow for coordinating
trades in the two markets [34]. Mathematical and computational concepts most
commonly used in such optimisation problems include Markov process, ARIMA
process and stochastic dynamic programming.

Both [34] and [32] highlight the importance of forecasting multiple factors for the
optimisation task and point out the complexity of dependencies between them.
The most important factors are prices and power flows (for different time intervals,
geographical locations and market types), as well as weather conditions and water
inflow to the reservoir. Last but not least, there are restrictions specific to each
reservoir to be accounted for when planning the production, such as lowest and
highest regulated levels, dam and turbine parameters, seasonal regulations.

The end goal of the complex optimisation task is to produce electricity when
the price is high. Note that the hydro producers cannot defer the production
in order to reduce supply and consequently induce a price rise—this qualifies as
market manipulation and it is illegal. There are regulations and guidelines in
place to ensure it does not happen, even though the presence of a grey zone seems
unavoidable.

In a workshop about physical and financial power markets organised by Nord Pool
Academy in January 2022, a simplified illustration of the production planning
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outcome was showcased by a representative from Statkraft8. Figure 2.5 (recreated
based on [35]) illustrates a situation where the water resources available for a
certain reservoir between April and October are predicted to suffice for 75 full
days of production. This amount takes into account the reservoir content at the
beginning of the planning period and the total expected inflow to the reservoir
from April until the end of October. Another element of the sketched situation
is the electricity price prognosis, predicted with a discrete step of one month (30
days). The 75 days of production can be freely distributed throughout the entire
planning period. Hence, to optimise revenue the production is scheduled for 75
highest-priced days—30 days of October, 30 days of September and 15 days of
April.

Figure 2.5: Hydropower production planning outcome. In the period between April
and October the reservoir is estimated to have enough water for 75 full days of produc-
tion. The production will be run when the forecasted power price is the highest, i.e.
30 days of October, 30 days of September and 15 days of April. Based on the original
illustration from [35], redrawn with permission from Nord Pool AS.

8Statkraft AS (https://www.statkraft.com/) is a Norwegian state-owned hydropower com-
pany and the largest generator of renewable energy in Europe.

https://www.statkraft.com/
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2.3 Time series forecasting

2.3.1 Time series

Time series data, such as stock prices, regular weather measurements or voice
recordings, are a type of sequential data [36]. This means that subsequent ob-
servations in the dataset are ordered and dependent on each other—randomising
the order of their appearance would result in the loss of information. In case of
time series, the order is related to the time stamp of an observation. However,
there are types of sequential data which do not have time dimension (e.g. DNA se-
quences). As far as non-sequential data are considered, the samples in the dataset
are assumed independent and identically distributed (i.i.d). An example of non-
sequential data can be a registry of students and their grades. The performance
of one student does not, in principle, affect the performance of another one. In
contrast, time series data are not considered independent—in fact, data measured
at consecutive time points are often highly correlated.

Time series data can be classified as:

• univariate—(xt)t∈T ∈ R

• or multivariate—(xt)t∈T ∈ Rn,

where T is the time domain. In the first case, the time series consists of only
one variable tracked over time—a sequence of measurements from one sensor, or
a history of one company’s stock price. In the second case, we deal with a set
of variables which might affect one another, in a linear or non-linear way. An
example can be a record of weather data from a meteorological station, where
multiple quantities like air temperature, atmospheric pressure, humidity, wind
speed, etc. are measured simultaneously in regular time intervals over a period of
time [37]. Note that although time series are assumed to be sampled in equidistant
time intervals, this is often not the case for real-world data. Hence, interpolation
between irregular time steps is a common pre-processing method.

Time series forecasting is a process of predicting future values of the series, based
on its recent and current values. As pointed out in [38], historically, computer sim-
ulation methods were used in forecasting tasks. However, statistical and machine
learning techniques tend to outperform the simulation methods in terms of both
accuracy and time efficiency. They are based on the process of fitting a model to
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the existing data and extrapolating it for predicting future values. In case of a
multivariate time series, it is possible to fit the model using multiple input vari-
ables (exogenous variables (xt)t∈T ) with a goal of predicting the future values of
one of them (the output variable (yt)t∈T ; note that both xt and yt are defined on
the same time scale t ∈ T ). This is the approach that will be explored in this
thesis, as we attempt to forecast the future values of the system price variable
using the recent and current values of the system price and filling level variables.

2.3.2 Statistical approach

In every prediction task, it is a good practise to first establish simple benchmark
models. Benchmark models are the most intuitive ones, can be computed at a
low computational cost, and are used as reference to assess the performance of
the more complex models. Benchmark models for statistical forecasting methods
include those computed with the average, näıve, seasonal näıve or drift methods
[39, Chapter 3.1].

Taking one step towards more advanced forecasting methods—we have multiple
regression models, in which the forecasted variable y is assumed to have a linear
relationship with k independent predictor variables x1, . . . , xk at each time step t:

yt = β0 + β1x1,t + β2x2,t + . . .+ βkxk,t + εt, (2.1)

where εt is the random error (following an i.i.d Gaussian distribution with mean
equal to 0) and β0, . . . , βk are the coefficients corresponding to the effects of the
respective predictors on the forecasted variable [39, Chapter 5.1]. After fitting the
regression model we can use it to predict the values of y for the set of predictor
variables x1,t, . . . , xk,t for t from the range that the model has been fitted on, or for
the future time stamps [39, Chapter 5.6]. If the assumption of linear relationship
between the forecasted and predictor variables is violated, there is also a way to
model the non-linear relationship by transforming the forecasted and/or predictor
variables with the natural logarithm function [39, Chapter 5.8].

Another, more advanced approach to the statistical time series forecasting is offered
by a group of so-called autoregressive models, which build upon a concept of auto-
correlation of a series [39, Chapter 8]. Autocorrelation is a measure of similarity
between the series and its lagged (i.e. shifted along time axis) version [39, Chapter
2.8]. For lag k, the autocorrelation coefficient rk quantifies the similarity between
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yt and yt−k according to the formula:

rk =

tmax∑
t=k+1

(yt − ȳ)(yt−k − ȳ)

T∑
t=1

(yt − ȳ)2
, (2.2)

where tmax denotes the length of the series.

Before delving into the topic of autoregressive models, some major concepts of
time series analysis need to be introduced. In addition to the serial dependence
between elements, described in Section 2.3.1 as the main property of sequential
data, a time series may exhibit the following characteristics [12]:

• trend—a general, consistently upward or downward direction of changes;

• seasonality—periodical fluctuation;

• stationarity—statistical properties (e.g. mean, variance, autocorrelation) re-
maining constant over time.

Time series analysis is a process of decomposing an observed time series into the
trend, seasonal and residual components. Residuals comprise the unexplained
part of data variability, the part not accounted for by the trend and seasonal
components [38]. If a time series exhibits trend or seasonality, it is considered
non-stationary. In both cases it is possible to transform the series to stationary
by differencing it [39, Chapter 8.1]. Differencing can be performed:

• to eliminate the trend—by computing differences between consecutive obser-
vations:

y
′

t = yt − yt−1 (2.3)

In case the series is still not stationary after the first differencing, a second-
order differencing can be applied:

y
′′

t = y
′

t − y
′

t−1 (2.4)

• to remove seasonality—by computing differences between observations lagged
by m periods, where m is the number of seasons after which the seasonal
cycle repeats itself (e.g. for monthly data m = 12):

y
′

t = yt − yt−m (2.5)
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While in the multiple regression models the y variable is forecasted using a linear
combination of predictor variables, basic autoregressive models use a linear com-
bination of past values of the forecasted variable [39, Chapter 8.3] (past values of
the predictor variables can also be used, in the extended variants of autoregressive
models). Autoregression model of order p, also referred to as AR(p) model, takes
the form of:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + . . .+ ϕpyt−p + εt, (2.6)

where c, ϕ1, . . . , ϕp are the autoregression coefficients and εt is white noise. Another
variant of a regression-like model is a moving average model, which is formulated
as a linear combination of past forecast errors [39, Chapter 8.4]. Moving average
model of order q, MA(q), can be described by the following formula:

yt = c+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q, (2.7)

where c, θ1, . . . , θq are the moving average coefficients and εt is white noise. Com-
bining the AR(p) and MA(q) models results in the ARMA(p, q) model—Autoregressive
Moving Average model of order p, q, which can be applied to model stationary time
series [39, Chapter 8.5]. It is possible to model non-stationary time series with a
modification of ARMA approach called ARIMA—Autoregressive Integrated Mov-
ing Average model, formulated as:

y
′

t = c+ ϕ1y
′

t−1 + . . .+ ϕpy
′

t−p + θ1εt−1 + . . .+ θqεt−q + εt, (2.8)

where y
′
t is the differenced series. ARIMA requires the differencing step to be

performed beforehand, and an integration step—the reverse of differencing—to
be performed after the model fitting. More specifically, the process of fitting an
ARIMA(p, d, q) model involves:

1. performing a d-fold differencing step (where d denotes the order of differen-
cing),

2. fitting the ARMA(p, q) model,

3. performing a d-fold integration step.

The optimal combination of p, q, and d parameters (where p is the number of AR
terms, d is the number of non-seasonal differencing passes and q is the number
of lagged forecast errors) can be found in the process of an automated parameter
grid search [40]. However, initial indications regarding the optimal p and q values
can sometimes be deduced from the Partial autocorrelation function (PACF) and
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Autocorrelation function (ACF) plots, respectively. ACF is simply a set of auto-
correlation values between the original series and the lagged series, for different
time lags. PACF, on the other hand, consists of autocorrelation values for different
time lags adjusted for the effects of all intermediate lags [39, Chapter 8.5].

The ARIMA model can be further extended to ARIMAX—Autoregressive Integ-
rated Moving Average model with exogenous variables. ARIMAX incorporates
additional input variables in the task of model fitting and forecasting of the target
variable. Exploiting additional information sources which are known to influence
the forecasted variable has a potential to increase the modelling capability and
improve prediction accuracy [41].

Compared with more complex time series forecasting methods (such as those based
on the machine learning concept, described in Section 2.3.3), the advantage of stat-
istical methods originates from their limited number of parameters and relatively
easily interpretable predictions [41]. However, estimating optimal parameters for
such models is not trivial.

2.3.3 Deep learning approach

2.3.3.1 Deep learning as a branch of machine learning

Deep learning (DL) is a branch of machine learning (ML), which, in turn, is a
subdomain of artificial intelligence (AI).

François Chollet—creator of the Keras deep learning library—points out in his
book [37] the reasons behind deep learning not taking over the reins of the machine
learning world until the second decade of the 21th century. Even though the key
deep learning concepts used for computer vision or time series forecasting tasks
were developed already in the 90’s, certain bottlenecks (poor internet, lack of data,
insufficient hardware) needed to be solved for this discipline to start advancing at
the current speed.

To appreciate the importance of data for deep learning (or machine learning, in
general), one should understand the difference between classical programming and
machine learning. As sketched in Figure 2.6, the former is based on laying out a set
of explicit rules for the computer to teach it how to perform certain tasks on the
input data and return answers. The latter, requires feeding both the input data
and the known answers into the computer, thus allowing the machine to decipher
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and learn the rules on its own. In the next step, the computer should be able to
apply the rules to the new input data and return answers. This part is analogous
to the classical programming flow—the difference lies in the process of learning
the rules by the computer, usually referred to as training. It is only possible when
a sufficient amount of input data (including answers) is available. Note that when
input data are available together with answers, we deal with a supervised machine
learning. There also exist unsupervised machine learning algorithms which learn
patterns from unlabeled input data (no answers available with the input dataset),
as well as reinforcement learning algorithms, but these two types are not applicable
in this thesis.

Figure 2.6: Difference between classical programming and machine learning workflows.
Redrawn based on a figure from [37, Chapter 1.1.2].

Supervised machine learning problems can be further grouped into [36, Chapter
1]:

• classification tasks—where the expected outcome of prediction is a discrete
class label (e.g. what animal species the input image represents, or whether
a specific patient should be diagnosed with a disease or not, based on the
symptoms)

• regression tasks—where the expected outcome is continuous (e.g. a price of a
house predicted based on the factors such as location, area, public transport
proximity, etc.)

The focus of this thesis—time series forecasting—can be classified as a supervised
regression problem.

In the field of supervised machine learning, there is a wide spectrum of shallow ML
methods, suited for solving both classification and regression problems. Popular
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algorithms belonging to this group include single-layer neural networks (e.g. lin-
ear regression, logistic regression), kernel methods (e.g. support vector machines),
decision trees or k-nearest neighbours models [36, Chapter 3 & Chapter 10]. The
shallow ML methods can be found to perform better than deep learning methods
in specific tasks, particularly when one does not have a high-performance com-
puting hardware and an abundance of labelled training data at their disposal [42].
However, the major advantage of using deep learning over any shallow ML method
is that it fully automates one of the most crucial steps in the ML workflow—feature
engineering. Deep learning is considered an end-to-end approach, as it extracts and
learns the important features by itself, from the the raw input data [37, Chapter 1].
Furthermore, there is empirical evidence that the DL methods tend to outperform
shallow ML methods in the time series forecasting problems [43], [44], as well as
in the computer vision and natural language processing tasks [37, Chapter 1].

Deep learning is based on the concept of neural networks (NN) built of multiple
layers. The number of layers is the depth of a network. This is where deep learning
takes a part of its name from and where the difference lies between the shallow
and deep learning methods. An extensive explanation of how to understand the
stacked layers of a neural network as increasingly meaningful representations of
data is provided by Chollet in [37, Chapter 1]. There are different types of layers
which can serve as building blocks for the deep learning architectures. They will
be described in more details in the following sections, together with an outline of
a typical machine learning workflow.

2.3.3.2 Single-layer artificial neural network

The concept of an artificial neural network (ANN) was first invented in the 1940s,
in an attempt to emulate the human brain’s ability to solve complex problems.
Over the years it has developed as a mathematical framework straying from its
neurobiological inspiration, such that it is not correct to claim that the ANN
learning mechanism mimics the one performed by human brain [37, Chapter 1].

When talking about ANNs, one usually has in mind a multilayer neural networks.
However, to understand the multilayer variant, let us first explain a general single-
layer NN architecture on the example of the Adaptive Linear Neuron (Adaline)
algorithm, used for binary classification tasks (the output labels are either -1 or
1). The process of training the Adaline algorithm is illustrated by Figure 2.7 and
can be summarised in the following steps [36, Chapter 2]:

1. Weights (trainable parameters of the model) in vector w are initialised to 0
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Figure 2.7: Single-layer neural network architecture on the example of the Adaptive
Linear Neuron (Adaline) algorithm. Redrawn based on figures from [36, Chapter 2 &
Chapter 12] under MIT license.

or small random numbers.

2. Net input, z, is calculated as a linear combination of w and x, where x is a
vector of input data (corresponds to one observation from the input dataset)
consisting of m feature variables (x1, x2, . . . , xm) and the bias9 unit x0:

z = w0x0 + w1x1 + . . .+ wmxm = wTx (2.9)

3. The net input is transformed by the activation function ϕ(z) into activation
a:

a = ϕ(z) = ϕ(wTx) (2.10)

In case of Adaline algorithm, the activation function is a linear identity
function of the net input: ϕ(z) = z.

4. At this stage, the actual learning starts. There is an objective function that
needs to be optimised—specifically, in the supervised ML it is called the cost
function10 and it has to be minimised. This is done through the iterative

9Bias is an additional input element and its value is always set to 1 [36, Chapter 2].
10Cost function is also referred to as loss function or error function—for simplicity, in this

thesis we disregard the subtle differences between these terms.
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process of adjusting the weights. An update of the weight vector is defined
as:

w := w +∆w, (2.11)

where:

∆w = −η∇J(w) (2.12)

In Equation (2.12), η is the learning rate and ∇J(w) is the gradient of
the cost function J(w). A basic optimisation algorithm used to find the
set of weights that minimise the cost function is called gradient descent.
The underlying idea, visualised in Figure 2.8, is to take a step in the neg-
ative direction of the cost function’s gradient, to find the cost function’s
minimum—preferably the global minimum, as a local minimum would limit
the algorithm’s prediction accuracy. The learning rate determines the size of
the step—the goal is to strike a balance between the speed of learning and the
risk of overshooting the global minimum. In case of Adaline, J(w) is defined

Figure 2.8: Simplified gradient descent concept. Starting from randomly initialised
weights, the algorithm attempts to find the global minimum of the cost function. If the
steps it takes (determined by the learning rate) are to small, it may get trapped in the
local minimum. If too big, it may not find the global minimum either. Redrawn based
on figures from [36, Chapter 2 & Chapter 12] under MIT license.

with respect to the weight parameters as a sum of squared errors (SSE)



30 CHAPTER 2. THEORETICAL BACKGROUND

between the true label (target variable y) and the activation (a(i) = ϕ(z(i))),
over i observations in the input dataset:

J(w) =
1

2

∑
i

(
y(i) − a(i)

)2
(2.13)

The gradient of the cost function J(w) can be computed by taking its partial
derivatives with respect to each weight, so that the final formula for the
update of weight wj is given by:

∆wj = −η
∂J(w)

∂wj

= η
∑
i

(
y(i) − a(i)

)
x
(i)
j (2.14)

5. After each update of the weight vector, steps 1-4 are repeated with the
new weights, until some criterion for stopping the training process is met—
for instance, a maximum number of epochs (passes over the entire training
dataset), that was arbitrarily set at launch, has been reached. Ideally, the
training process stops when the algorithm has converged—the cost function’s
minimum has been hit and all weight updates are evaluated to 0, for a given
epoch.

6. After the end of the training process, the final (continuous) activations are
passed to the threshold function which generates the binary predictions. For
Adaline, the function assigns output label equal to 1 if the activation is
greater or equal 0, and -1 otherwise.

The cost function minimisation step is crucial for the learning process, but might
be computationally heavy, if the weight update is calculated based on the entire
training dataset—as in the case of batch gradient descent used by the Adaline. It is
possible to accelerate the process by utilising the stochastic gradient descent (SGD)
algorithm instead, which updates the weights on a sample by sample basis, or the
mini-batch gradient descent which takes in smaller subsets of data and performs
the batch gradient descent on them. The last option is particularly of interest
training on large datasets and with multilayer NNs [36, Chapter 2].

2.3.3.3 Multilayer artificial neural network

While a single-layer ANN has only one connection between input and output layer,
multilayer architectures can be built of an arbitrary number of hidden layers in
addition to the input and output layers. The layers can consist of multiple units



2.3. TIME SERIES FORECASTING 31

(also referred to as neurons or nodes). Multilayer NN architectures can be further
divided into three main types:

• dense (fully connected) neural networks

• convolutional neural networks (CNNs)

• recurrent neural networks (RNNs)

This section describes the first type, based on the example of the multilayer per-
ceptron (MLP) network—as it can be considered the most direct extension of the
single-layer architecture. Figure 2.9 presents an example of MLP network with
one hidden layer h. In this type of NN all units of one layer are connected to all
units of the next layer through weights. If the network has more than one hidden
layer, it is considered a deep neural network (DNN). In general, the learning ca-
pacity of the network increases with the number of layers and nodes within each
layer, but along with it increases the risk of overfitting (see Section 2.3.3.9), due
to an increasing number of model parameters. The MLP’s learning process can be

Figure 2.9: Multilayer Perceptron architecture, consisting of one hidden layer, in ad-
dition to the input and output layers. Marked in red, a part of the network that cor-
responds to the single-layer example illustrated by Figure 2.7—starting from the input
values to the output from the activation function. Adapted from [36, Chapter 12] under
MIT license.

summarised in three steps, repeated for multiple epochs [36, Chapter 12]:



32 CHAPTER 2. THEORETICAL BACKGROUND

1. Forward propagation

At this step, subsequent activations are calculated from the left (input layer)
to the right (output layer) of the network sketched in Figure 2.9. Assuming
this if performed on a batch of samples, activations of the hidden and output
layers, respectively, can be written in the matrix notation as follows:

A(h) = ϕ(Z(h)) = ϕ(A(in)W (h)), (2.15)

A(out) = ϕ(Z(out)) = ϕ(A(h)W (out)), (2.16)

where superscripts (in), (h) and (out) correspond to the input, hidden and
output layers, respectively. Note that the linear activation function used in
Adaline is not capable of solving complex, non-linear problems. A range
of more sophisticated, differentiable activation functions is described in Sec-
tion 2.3.3.7.

2. Error calculation

The cost function is calculated based on the values of activations from the
output layer and the true labels. There are various cost functions that can
be used in more complex ANNs (instead of a simple SSE function, as in
Adaline), some of which are suited for classification, some for regression
tasks11. Similarly, there is a wide range of optimisers to choose from12—the
best one, for a given problem, can be found in the hyperparameter tuning
process.

3. Backpropagation

Backpropagation is an extremely important algorithm that sends the feed-
back about the error through multiple layers, from the end of the network
(output) to its beginning, in an efficient manner. It employs the math-
ematical chain rule to compute partial derivatives of complex, nested cost
functions. The derivatives are used by the optimising algorithm (e.g. gradi-
ent descent) to adjust the weights across the network, aiming at lowering the
loss from epoch to epoch.

Another important aspect of increasing the number of layers in the network is a
phenomenon known as vanishing or exploding gradients. It manifests itself in the
weight updates being extremely small or large, respectively, which in turn makes
it impossible for the optimisation algorithm to converge. It is related to repeated

11An interested reader may check the full list of cost functions available in Keras library at
https://keras.io/api/losses/.

12A list of optimisers implemented in Keras: https://keras.io/api/optimizers/.

https://keras.io/api/losses/
https://keras.io/api/optimizers/
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differentiation operations throughout the backpropagation process and can be mit-
igated via avoiding certain activation functions (see Section 2.3.3.7, implementing
residual connections (see [37, p. 7]) or RNN-specific techniques described in [36,
Chapter 16].

2.3.3.4 Convolutional neural network

This section opens with a quick introduction of the mathematical operation of
convolution. More specifically, a one-dimensional discrete convolution between
two vectors, x (input signal) and w (kernel), which have n and m elements, re-
spectively, with m ≤ n. For practical reasons we assume that vector x is padded
with an arbitrary number (denoted as p) of zeroes on each side (resulting in xp,
and thus has size of n+2p. A formula for computing such convolution operator ∗
is as follows:

y = x ∗w → y[i] =
m−1∑
k=0

xp[i+m− k]w[k], (2.17)

where index i runs through each element of the output vector y. For practical
computation advice and information about a two-dimensional convolution formula,
an interested reader can check [36, Chapter 15].

Convolutional neural networks (also referred to as convnets) are a kind of networks
that have convolution layers as their main building blocks, but these can be sup-
plemented by layers of any other type. Two-dimensional CNNs are widely used in
computer vision tasks, such as image classification. One-dimensional convnets, on
the other hand, are often combined with RNN blocks in the modelling of sequential
data. Let us first describe 2D convnets, as the visual process of recognising pat-
terns in images appears more intuitive than recognising 1D patterns in sequential
data.

In the 2D CNN architecture, the early layers are responsible for recognising simple
shapes, e.g. detecting edges, straight lines, blobs. Deeper layers built on the
knowledge from the previous layers, combining the detected low-level shapes into
more complex patterns and objects, such as buildings, cars or animal species.
This process of identifying increasingly complicated and meaningful shapes can
be thought of as the built-in feature engineering ability of the neural networks
mentioned in Section 2.3.3.1. A single step of the forward propagation part of the
CNN layer’s training process is illustrated by Figure 2.10 and can be described as
follows: a kernel (alternatively called a filter) is a matrix of trainable parameters
(weights); it slides around an image channel performing discrete 2D convolutions
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between the filter elements and image pixels. There is one kernel for each of the k
channels of the image. Convolution results from a particular location in the input
channel are then summed over the k channels and projected onto the corresponding
location in the output feature map [37, Chapter 5].

Figure 2.10: 2D convolution of a one-channel 8x8-element input matrix and 3x3-
element kernel matrix. The size of the resulting feature map is 8x8, provided that the
kernel slides by one element at a time and the input matrix is padded with one row of
zeroes on each side. Reproduced from [36, Chapter 15] under MIT license.

Correspondingly, 1D convnets are used to detect one-dimensional patterns in the
sequential data, e.g. temporal patterns in time series data. As shown in Equa-
tion (2.17), if a 1D kernel slides over a sequence with a stride13 higher than 1, it can
also significantly shorten the length of the sequence, which can then be processed
faster by the subsequent (often RNN) layer [37, Chapter 6].

Convolutional layers are often combined with subsampling (pooling) layers and
followed by fully connected layers which use the CNN-derived features to predict
the target values. Pooling layers do not have any trainable parameters and their
primary function is to reduce the size of the feature maps [36, Chapter 15].

Another interesting concept widely used within the CNN architectures (but not
exclusively there) is a dropout. It is a regularisation14 technique, which is based on

13Stride parameter determines the number of elements that is being “jumped over” when
moving a convolution filter to the next position over the input vector or matrix.

14Regularisation is one of the methods used to fight overfitting.
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Figure 2.11: 1D convolution of a 12-element time series input feature and 3-element
kernel, with stride equal to 3. The output sequence has 4 elements—it is significantly
shorter than the input sequence.

deactivating a number of randomly selected nodes in a layer (setting their outputs
to zero in the forward propagation stage of the training process). Dropout is set on
a layer and can be parametrised by a dropout rate, which determines the fraction
of the layer’s nodes that should be switched off [37, Chapter 4].

2.3.3.5 Recurrent neural network

Neural network architectures described in the sections above share an important
property: they assume that the input data samples (observations) are independent
of each other. Hence, the order in which they are fed into the network can be
random—the network updates the weights in the forward-backpropagation pass
over a sample or a batch of samples and does not keep any information in memory
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about the processed samples. This type of networks can be classified as feedforward
networks [37, Chapter 6].

Sequential data, such as time series, violate the independence assumption. There-
fore, it is crucial to process them in the sorted order (e.g. sorted along time axis,
in case of time series data) and leverage the information learnt from the preced-
ing samples. An architecture capable of processing the sequence and retaining
the information from the past training examples is known as a recurrent neural
network. The difference between a feedforward network and a recurrent network
comes down to the fact that in an RNN, the hidden layer at time step t receives
inputs not only from the preceding layer, but also from its own unit activated at
previous time step t − 1. This is visualised for a simple, one-hidden-layer case
in Figure 2.12. The input, hidden and output layers are denoted by x, h and
o, respectively. Matrices of weights W mark connections between the layers in-
dicated by subscripts. The weight matrix Whh in the RNN section is associated
with a so-called recurrent edge (recurrent connection between the subsequent time
steps). The RNN structure is first presented in the compact form (with the round
arrow) and then in the unfolded way. Typically, an RNN layer can either output a
sequence of values (for multiple time steps) or just one output from the last time
step. The activations of the hidden layer for a unit at time step t can be computed
in the following way [36, Chapter 16]:

h(t) = ϕh

(
z
(t)
h

)
= ϕh

(
Wxhx

(t) +Whhh
(t−1) + bh

)
, (2.18)

where ϕh is the activation function and bh is the bias in the hidden layer h.

The backpropagation in RNNs is slightly different than in the feedforward net-
works, as the error is propagated both across the layers and the time steps. For
more information on the backpropagation through time process (BPTT) the reader
is referred to [36, Chapter 16]. BPTT is not free from challenges, such as the
vanishing and exploding gradients problem mentioned in Section 2.3.3.3. One way
of tackling these problems is to implement a more sophisticated RNN algorithm
called the long short-term memory (LSTM).

The key concept that makes LSTM capable of modelling long-range dependencies
in the data is a memory cell, which substitutes a basic hidden layer in the RNN
network architecture. The memory cell’s structure is schematically presented in
Figure 2.13. Compared to the regular flow of information between subsequent
time steps in an RNN, there is an additional flow that carries information across
many time steps without being repeatedly multiplied with weights. It is called a
cell state, C(t) and it is marked in the figure with the red rectangle. It preserves
the information from the early steps until the end of a long sequence is processed.
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Figure 2.12: Comparison of a standard feedforward network and recurrent neural
network. Input, hidden and output layers are denoted by x, h and o, respectively.
Matrices of weights W mark connections between the layers. Weight matrix Whh is
associated with the recurrent edge. Redrawn based on figures from [36, Chapter 16]
under MIT license.

In addition to the cell state component, the memory cell is built of several gates,
coloured in yellow, which have different tasks15 assigned with regard to processing
the information that is fed into the cell from the input layer (xt) and from the
previous time step of the cell (h(t−1)):

• forget gate ft—decides which information in the cell state flow is irrelevant
and should be forgotten; computed as follows, with σ denoting a sigmoid
activation function:

ft = σ
(
Wxfx

(t) +Whfh
(t−1) + bf

)
(2.19)

• input gate it and candidate value C̃t—contribute to the cell state update:

it = σ
(
Wxix

(t) +Whih
(t−1) + bi

)
(2.20)

C̃t = tanh
(
Wxcx

(t) +Whch
(t−1) + bc

)
(2.21)

15The tasks are merely an attempt to interpret how different sets of weights affect the learning
process and should rather be considered as its constraints, rather than literal interpretations [37,
Chapter 6].
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Figure 2.13: LSTM memory cell structure. Cell state information flow is marked by
a red rectangle. Forget, input, candidate value and output gates with corresponding
activation functions and weights are represented by yellow boxes. Adapted from [36,
Chapter 16] under MIT license.

• output gate ot—affects the update of the hidden units’ activations

ot = σ
(
Wxox

(t) +Whoh
(t−1) + bo

)
(2.22)

The above equations can be used to compute the cell state at time step t according
to:

C(t) =
(
C(t−1) ⊙ ft

)
⊕
(
it ⊙ C̃t

)
, (2.23)

where ⊙ and ⊕ denote element-wise multiplication and element-wise addition op-
erations, respectively. Eventually, the final formula for a hidden unit’s activation
at time step t can be written as:

h(t) = ot ⊙ tanh(C(t)) (2.24)

Note that at the first time step both the cell state and the activation corresponding
to the previous step are initialised to zeroes or small random values [37, Chapter
6].

The last couple of sections summarised the main types of NN building blocks
(dense, CNN, RNN layers) that will be used in the experimental part of this thesis.
The following sections give an outline of a standard machine learning workflow and
provide more detailed descriptions of selected machine learning aspects.
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2.3.3.6 Machine learning workflow

A universal workflow for conducting a machine learning project includes the fol-
lowing steps [45]:

1. Defining the problem, collecting the data and choosing the measure of suc-
cess;

At this stage, an expert domain knowledge should be used to determine:

• what type of problem is there to solve: classification, regression, clus-
tering?

• what kind of data are available? are the data labeled? are the labels
reliable or noisy? is the dataset balanced?

• is there a baseline model to beat?

• what kind of performance metrics can be used to compare the obtained
models?

• how to evaluate the training process—what type of validation protocol
to use? [36, Chapter 6]

2. Exploring, visualising and pre-processing the data;

As part of the exploratory data analysis (EDA) one should plot the data an-
d/or their distributions, as well as identify and handle missing data, outliers
and dataset imbalance. Data pre-processing can include multiple steps, e.g.:

• dimensionality reduction through feature selection or feature extraction

• data standardisation—data are transformed so that each feature in the
dataset is centered (the mean is shifted to 0) and scaled (its standard
deviation is equal to 1); it helps the optimising algorithm converge faster
at the global or local minimum of the cost function

• feature encoding

An obligatory step is to split the available data into training and test sets.
The model should be trained and validated on the train set. Afterwards,
the model is tested on the part of the data that has been left out—typically,
between 10-30% of the dataset. Thus, it is possible to check if the model
generalises well to the unseen data [36, Chapter 4 & Chapter 5].

3. Model development;
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This stage can be performed in parallel for multiple algorithms or archi-
tectures, to eventually choose the best performing variant. Within a single
ML model there are also multiple hyperparameters which can be tuned to
boost the model’s predictive power. Among commonly tuned hyperparamet-
ers there are: activation function, optimising algorithm, learning rate and
loss function. The model architecture elements, such as the number of nodes
in the layers or presence of different types of layers, can be themselves tuned
as hyperparameters.

Each model (each architecture and hyperparameter combination) is regularly
validated throughout the training process. The learning that the model
undergoes within this stage is described in more details in Section 2.3.3.2 on
the example of the single-layer ANN.

The training strategy is usually to develop a too complex model that over-
fits16 and subsequently regularise it. The final assessment of the model’s
performance is done by performing predictions on the test set and compar-
ing them to ground truth values of the target variable using performance
metrics chosen in the first phase of the project.

Note that this workflow stops at the stage of finalising the model and does not
include the steps which need to be taken to deploy the model in the production
mode.

2.3.3.7 Activation functions

To capture non-linear dependencies in data, one needs to use non-linear activation
functions—otherwise the network will only perform linear operations, such as dot
product and addition (used for computing net inputs) [37, Chapter 3]. A set of
widely used activation functions is presented in Figure 2.14. Different functions
are preferred for different problems. For instance, the linear variant is used in
the output layer in regression problems, sigmoid in the output layer in binary
classification problems. Hyperbolic tangent (tanh), belonging together with the
sigmoid function to the group of s-shaped functions, is preferred over the sigmoid
function in the multilayer NNs, as it has a broader range of output values ((-1,
1) compared to the sigmoid’s (0, 1)). Consequently, its derivative can take larger
values, allows for larger weight updates and the optimising algorithm converges
faster[46]. Eventually, the Rectified linear unit (ReLU ) and its multiple strains are

16A model overfits when it performs well on the training data, but predicts poorly on the new,
unseen data.
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extremely popular in the deep NNs. Due to ReLU’s derivative being always 1 for
positive net input values, it tackles the vanishing gradients problem [36, Chapter
13].

Figure 2.14: Selection of widely used activation functions. Reproduced from [36,
Chapter 15] under MIT license.

2.3.3.8 Loss functions and performance metrics in regression tasks

A loss function is an objective function that is being optimised during the learning
process [47]. Performance metric, on the other hand, is used to evaluate the
performance of the model after a certain training period and is not used in the
error backpropagation process [48]. Any loss function can be used as a metric, in
fact, it is often the case in the regression tasks. Both loss and metric functions
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indicate in various ways how far the model predictions are from the actual values
of the target variable. The functions used in this project are described below,
based on [49], [36, Chapter 10] and [50]:

• mean squared error (MSE)—equal to the averaged value of the SSE cost
introduced in Section 2.3.3.2, defined as:

MSE =
1

n

n∑
i=1

(y(i) − ŷ(i))2, (2.25)

where n denotes the number of observations for which the predicted output
value ŷ and the true output value are compared. Due to the squaring op-
eration preceding the averaging, large errors are given higher weights in the
average.

• root mean squared error (RMSE)—can be thought of as MSE transformed
back to the original unit of predictions:

RMSE =
√
MSE =

√√√√ 1

n

n∑
i=1

(y(i) − ŷ(i))2, (2.26)

• mean absolute error (MAE)—averages absolute values of the prediction er-
rors, thus all errors are weighted equally:

MAE =
1

n

n∑
i=1

|y(i) − ŷ(i)|, (2.27)

• mean absolute percentage error (MAPE)—the difference between the pre-
dicted and true values is normalised by the true value for each observation:

MAPE =
1

n

n∑
i=1

∣∣∣∣y(i) − ŷ(i)

y(i)

∣∣∣∣ , (2.28)

• coefficient of determination R2—reflects the accuracy of predictions:

R2 =

n∑
i=1

(y(i) − ŷ(i))2

n∑
i=1

(y(i) − ȳ)2
(2.29)

R2 = 1 for predictions perfectly matching the true values (MSE = 0) and
can be negative if the overall difference between the predictions and the true
values is higher than between the true values and their mean value ȳ.
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Out of the four error functions, only the RMSE function is not implemented in
Keras as both a loss and a metric function. It is only offered as a performance
metrics, because as a loss function it would deliver exactly the same optimised
network weights as MSE.

2.3.3.9 Model complexity and cross-validation

An important aspect of training any machine learning model is to make sure that
it captures general trends in the data, rather than memorises very specific patterns
and noise present in the training dataset. Should the latter happen, the model will
not be capable of making correct predictions on the unseen data—such a situation
can be diagnosed as overfitting and such model is referred to as one having a
high variance. The opposite situation would involve the model not being able to
capture the general patterns in the training dataset, which also results in the poor
performance the unseen data. In such case, however, the model exhibits a high
bias and the situation is classified as underfitting [36, Chapter 3].

Cross-validation is an important technique that allows for estimating model’s per-
formance on the new data during the training process. In the search for the best
performing hyperparameter combination, multiple models are being fitted on the
train set—every such model needs to be evaluated on the unseen data (validation
set) during the training process, in order to select the best performing one. In the
final step, the most credible and unbiased evaluation of the model’s generalisation
ability is performed on the test set.

Standard cross-validation methods include:

• holdout validation—requires splitting the input dataset into train, test and
validation sets; as long as test set remains the “unseen” data until the end of
the training process, the validation set is used to regularly evaluate model’s
performance during the training process;

• k-fold cross-validation—the train set is randomly split into k subsets, and in
each epoch a different subset is used for performance evaluation;

• leave-one-out-cross-validation—a single sample is left out for validating the
model’s performance during each training epoch.

The loss and the performance score of a given model can be recorded for both
training and validation sets at each step of the training (for each epoch). These
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values can then be appended and plotted as learning (or training) and validation
curves, with respect to the specific parameter that is being tuned—e.g. epoch
number, when trying to find the optimum number of iterations that maximise the
score, before the model starts to overfit. If one can imagine a single parameter
that can describe model’s complexity, the training and validation curve would
approximately look like the ones presented in Figure 2.15. Note that the validation
score will always be lower than the training score (which tends to always increase
with the increasing model complexity) and that the best model is assumed to be
the one with the optimal validation score (lowest, if the used metric is an error
metric, such as MSE, or highest, if the R2 is used). The moment the validation
score crosses the inflection point, the model starts overfitting and its performance
on the unseen data must be expected to drop.

Figure 2.15: Training and validation curves schematic. The optimal model complexity
corresponds to the inflection point of the validation curve. To the left from it, the model
underfits (has a high bias), to the right it overfits (has a high variance). Reproduced
from [36, Chapter 15] under CC-BY-NC-ND license.

Tuning a model’s complexity is the key to achieving a good trade-off between bias
and variance. To fight overfitting, one can for instance:

• reduce the number of layers and/or nodes in the network,

• apply L1 and/or L2 regularisation—penalising large values of weight coeffi-
cients [36, Chapter 3],
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• regularise the network by adding dropout [36, Chapter 15].

2.3.3.10 Inception module

In a standard configuration, a network consists of layers that are stacked on top
of each other, so that the output from the first layer is an input to the second
layer, the output from the second layer is an input to the third layer, and so forth.
However, there are architectures that exhibit more flexible approach—in which the
layers form a graph, rather than a linear stack. Inception module is one example
of such architecture. It is a concept developed in 2015 by Szegedy et al. at Google,
which significantly improved the utilisation of the computing resources inside the
CNN architecture for image classification and detection [51]. Its underlying idea
is that several convolutional layers operate on the same level—instead of being
stacked sequentially. They act as branches—they are processed in parallel and
their outputs are concatenated into a single tensor on the subsequent level, as
demonstrated in Figure 2.16.

Figure 2.16: Comparison of network configurations: linear stack of layers vs Inception
module consisting of three parallel branches concatenated on top.

Inception modules can be implemented in Keras using a functional API—which,
as opposed to Keras sequential API, allows for designing more complex networks
with e.g. multiple inputs/outputs to/from a layer [52].
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2.3.3.11 Related work

One of the model architectures tested out in this thesis has been inspired by
the MRC-LSTM solution proposed in [53]. Guo et al. combined a multi-scale
residual convolutional neural network (MRC) and the LSTM concepts for the
purpose of Bitcoin closing price prediction. The MRC block has been designed to
extract highly expressive features that would represent input data on different time
scales. For this purpose, they implemented an inception-like block which included
three parallel 1D CNN layers with different kernel sizes (responsible for extracting
patterns on different time scales) and ReLU activation functions. In the next step,
the three branches were concatenated together with an identity mapping of the
original input, and further fed into a 2D CNN layer. Finally, an LSTM layer and
a fully connected layer were used to learn the patterns and predict the prices.

What will be adopted in this thesis is the idea of combining multiple (parallel)
1D CNN layers to extract the features on different time scales with subsequent
LSTM and dense layers. The number of layers on each level, as well as their
respective numbers of units (and kernel sizes, in the CNN case) will be subject to
hyperparameter tuning.
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Methods

3.1 General experiment outline

The experimental part of this project can be divided into three modules, all of
which were expected to generate a system price prediction model. The outcomes
of the three modules can be summarised as:

1. a baseline model produced with the statistical method ARIMAX (see Sec-
tion 3.3)

2. a simple machine learning model based on a standard RNN network (see
Section 3.4)

3. a more sophisticated machine learning model based on a 1DCNN-LSTM
network (see Section 3.5)

The third module was designed as the core part of the study, hence it involves the
most extensive parameter search and tuning.

3.2 Exploratory data analysis and pre-processing

This section summarises the exploratory data analysis performed on the input
dataset prior to the model development stage. The goal of this part of the project

47
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was to get familiar with the data and potentially discover which prediction frame
(how many days or weeks ahead) might be promising.

The raw input dataset consisted of time series representing the daily filling levels
from 63 Norwegian hydropower reservoirs (their official ID numbers assigned by
the NVE served as columns names) and the SYS price history, covering the period
between 01/01/2015 and 30/09/2021—2465 data points. The data were checked
for missing values. Based on the visual assessment (Figure 3.1) only four reservoirs
seemed to have an outstandingly poor coverage, namely IDs 690, 703, 2196 and
2197. The corresponding columns were dropped by setting the threshold to filter
out reservoirs with more than 10% of data points missing. The missing values
in the remaining columns were filled with the value of the nearest preceding or
succeeding cell which had a valid numerical data point. The resulting dataframe
consisted of 59 columns (58 reservoir filling level time series and the SYS price
time series) and 2465 rows (time points), with all the data points formatted as
floating point numbers.

In the next step, the data were plotted—see Figure 3.2. All filling level time series
are plotted together, to inspect general characteristics of this type of data. A
yearly seasonal behaviour can be observed in the majority of reservoirs. Typically,
filling level values are contained in the 0–1 interval, with a few exceptions—these
are most likely related to the failed volume to filling level conversion, less likely
to the abnormal water levels exceeding the highest regulating levels. The bottom
plot represents the SYS price history. No seasonality can be observed and there is
no monotonous trend that would continue over the entire presented time period.

As a part of EDA, a cross-correlation between all features from the input dataset
was calculated and plotted in the form of heatmaps. Analogous to the autocor-
relation mechanism described in Section 2.3.2, a cross-correlation between two
time series is a measure of their similarity. Calculating and plotting the cross-
correlations was expected to yield insights into the importance of individual reser-
voirs in the price modelling process. The relationships between the filling levels of
the reservoirs and the SYS price, calculated for various time lags, were expected
to shed light on promising prediction time frames. However, it is important to
keep in mind that cross-correlation can only depict linear relationships.

FUrther, a pre-processing step of despiking the SYS price time series was conduc-
ted, to reduce the influence of ultra short-term (one data point) price fluctuations
on the model training process. Such fluctuations are assumed to be related to
some extreme events on the market and should rather be treated as outliers. The
rule had been set that every data point at time t, whose differences against the
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values at time steps t−1 and t+1 were larger than 5, was to be replaced with the
mean of the values from time steps t− 1 and t+ 1. The threshold value of 5 was
determined based on the visual assessment of multiple tested options. The result
is presented in Figure 3.3.
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Figure 3.2: Visualisation of the raw input dataset. In the upper plot, all filling level
time series are plotted. System price is plotted separately in the lower plot.
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Figure 3.3: Despiking of the raw system price time series.
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3.3 Statistical modelling using ARIMAX

ARIMAX—a statistical method for modelling time series—was used to create a
baseline model. Although ARIMAX does not require training and testing the
model on separate datasets, the train-test split was performed anyway and the
model’s performance was evaluated on the test set. This was to ensure that the
results are comparable with the results of machine learning models presented later
in the thesis.

The ARIMAX model has been developed using a rolling forecast approach de-
scribed by [54] and [55]. The main idea underlying this approach is to re-fit the
model every time a new observation is received, to avoid accumulating the error
when forecasting for multiple time steps ahead. The looping workflow was as fol-
lows: at each time step t in the test set, the model was fitted on p AR and q MA
steps, the forecast was calculated a number of steps into the future (an arbitrary
prediction time frame—a parameter called delay), the last value was saved as pre-
diction for t + delay time step and afterwards the entire process was repeated to
obtain a prediction for t + 1 + delay time step, t + 2 + delay time step, and so
forth, throughout the entire test set.

Inside every loop, the model was fitted using SARIMAX class from statsmodels library
(see the code in Example 3.3.1). SARIMAX parameters include the endogenous
variable endog (the target times series—SYS price), the exogenous variables exog
(filling level time series from the selected reservoirs) and the order that specifies
the (p, d, q) order of the model. The p, q and d values were tuned manually as
hyperparameters. Thus parametrised SARIMAX, performs in fact the ARIMAX
modelling. The letter “S” in the name of the class extends its applicability to
SARIMAX modelling (another version of ARIMA-like models, that accounts for
seasonality in the data), however, it would require specifying additional parameters
for the model to perform as SARIMAX.

Example 3.3.1.

1 model = SARIMAX(endog=df_training['SYS'],
2 order=(p, d, q),
3 exog=df_training [['290', '300', '360', '378']])
4 model_SYS = model.fit()

A steep increase of training time was observed for increasing p and q, hence the
highest value tested in both cases was equal to 5. The manual parameter tuning
was based on the performance metrics (RMSE, MAE, MAPE and R2) calculated
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for each generated model, as well as visualisation of the original and predicted
time series for the time interval corresponding to the ML test set range.

3.4 Machine learning modelling using a basic RNN

architecture

This section covers the methodology used to develop a basic machine learning
model—consisting of one RNN layer and one fully connected (also referred to as
dense) output layer.

After the initial pre-processing described in Section 3.2, the input dataset was split
into training and test sets, the former encompassing the first 90% of the data, the
latter consisting of the remaining 10%. The split was performed chronologically,
without shuffling the observations, as it is crucial to preserve the original order of
consecutive data points when processing and analysing time series data. The split
at this stage was performed solely to fit a standard scaler function on the training
set and subsequently use it to standardise the entire dataset. Note that in this
project the SYS price time series both belongs to the input features set (together
with the filling level time series) and serves as a target variable.

While feedforward ANNs take two-dimensional matrices of data as input (obser-
vations × features)1, the RNN layer processes sequences, hence it requires 3D
tensors (observations × steps × features) on input. To structure the data into 3D
tensors, a custom generator function proposed by Chollet in [37, Chapter 6] was
used2. The generator function requires specifying the following parameters which
determine the shape of the 3D data tensor:

• delay—prediction time frame—the number of time steps into the future that
the target prediction should be made for,

• lookback—the number of previous time steps that an RNN layer takes into
account when calculating activations at a given time step,

1An observation is simply a row in the input dataset, consisting of the values of different
features at a particular time point t.

2The code from the book is available under MIT license at https://github.com/
fchollet/deep-learning-with-python-notebooks/tree/master/first edition. In the second
edition of the book, generator function has been replaced by Keras built-in function
timeseries_dataset_from_array.

https://github.com/fchollet/deep-learning-with-python-notebooks/tree/master/first_edition
https://github.com/fchollet/deep-learning-with-python-notebooks/tree/master/first_edition
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• batch size—the number of observations fed into the network at once,

• step—the number of time steps between consecutive samples in the lookback
sequence.

The function yields tuples which consist of a batch of input features and the cor-
responding target array. Separate generators were instantiated to yield batches
of data from the training, validation and testing sets—extracted in the chronolo-
gical order from the standardised input dataset in proportions 70%, 20% and 10%,
respectively.

After preparing the data generation tool, a framework for tuning machine learning
models was set up using KerasTuner3 API. The main goal of tuning is to find a
hyperparameter combination that yields the best model performance, following the
metrics specified upon tuner’s instantiation. A BayesianOptimization tuner was
chosen over other available tuners (e.g. RandomSearch). This variant is supposed
to learn from previous iterations—investigates the hyperparameter space in the
areas that had been found promising earlier in the training process, instead of
randomly choosing hyperparameter combinations that are to be tried out next
[56]. The code used to define the BayesianOptimization tuner is presented by
Example 3.4.1. Among parameters that can be specified when creating a tuner
instance, there are: the objective function (objective—set in this project to the
loss calculated on the validation set), the maximum number of hyperparameter
combinations to draw from the hyperparameter space (max_trials), the number
of executions per hyperparameter combination (executions_per_trial).

Example 3.4.1.

1 from keras_tuner.tuners import BayesianOptimization
2 from keras_tuner.engine.hyperparameters import HyperParameters
3

4 tuner = BayesianOptimization(
5 hypermodel=build_model ,
6 objective='val_loss ',
7 max_trials=120,
8 executions_per_trial=2,
9 directory=TUNER_LOG_DIR)

The most important part, however, is to specify under hypermodel the model
instance that should be tuned. In this project, the model was returned from a

3https://keras.io/api/keras tuner/

https://keras.io/api/keras_tuner/
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separate function, build_model—Example 3.4.2, which took an instance of Keras
HyperParameters [57] class (hp) as an argument.

Example 3.4.2.

1 def build_model(hp):
2 """
3 This function defines a parameter search space for tuning and

builds a model using an external function.
4 """
5 rnn_units = hp.Choice('rnn_units ',
6 [4, 8, 16, 32, 64])
7 activation_hidden = hp.Choice("activation_hidden",
8 ["relu", "tanh"])
9 dropout = hp.Choice('dr',
10 [0.0, 0.1, 0.2, 0.5])
11 recurrent_dropout = hp.Choice('rec_dr ',
12 [0.0, 0.1, 0.2, 0.5])
13 optimizer = hp.Choice('optimizer ',
14 ['adam', 'rmsprop ', 'adadelta '])
15 lr = hp.Float('lr',
16 min_value=1e-5, max_value=1e-2, sampling

="log")
17

18 # call an external model architecture specified within
design_model function

19 model = design_model(
20 rnn_units=rnn_units ,
21 activation_hidden=activation_hidden ,
22 dropout=dropout ,
23 recurrent_dropout=recurrent_dropout ,
24 optimizer=optimizer ,
25 lr=lr
26 )
27 return model

The HyperParameters class allows for defining a search space—a grid of hyper-
parameter values that the tuner should draw their combinations from. As shown
in the code snippet above, tuning included various parameters of the RNN layer:
the number of units (rnn_units), the activation function (activation_hidden
), the dropout and recurrent dropout rates (dropout and recurrent_dropout).
Additionally, for the optimising algorithm (optimizer) there were three options
available within the search space, and the learning rate (lr) values were sampled
from the specified range. The model architecture itself was defined in a function
design_model, presented by Example 3.4.3:
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Example 3.4.3.

1 from tensorflow.keras.layers import *
2 from tensorflow.keras.models import Model
3 from tensorflow.keras.metrics import MeanAbsoluteError ,

RootMeanSquaredError , MeanAbsolutePercentageError
4 from tensorflow.keras.optimizers import Adam , RMSprop , Adadelta
5 from tensorflow.keras.losses import MeanSquaredError
6

7 def design_model(rnn_units , activation_hidden , dropout ,
8 recurrent_dropout , optimizer , lr):
9 """
10 This function builds a network architecture according to the

hyperparameter combination passed as an argument. Returns a
compiled model.

11 """
12 input_layer = Input(shape=(int(lookback / step), num_features)

)
13

14 rnn = SimpleRNN(rnn_units ,
15 return_sequences=False ,
16 activation=activation_hidden ,
17 dropout=dropout ,
18 recurrent_dropout=recurrent_dropout)(input_layer

)
19

20 output_layer = Dense (1)(rnn)
21

22 model = Model(inputs=input_layer ,
23 outputs=output_layer)
24

25 if optimizer == 'adam':
26 optimizer = Adam
27 elif optimizer == 'rmsprop ':
28 optimizer = RMSprop
29 elif optimizer == 'adadelta ':
30 optimizer = Adadelta
31

32 model.compile(loss=MeanSquaredError (),
33 optimizer=optimizer(learning_rate=lr),
34 metrics=[MeanAbsoluteError (),

RootMeanSquaredError (),
MeanAbsolutePercentageError ()])

35

36 return model

The resulting model summary is shown in Figure 3.4.
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Figure 3.4: Simple RNN model summary.

Before running the search, two Keras callback objects4 were initialised: EarlyStopping
and TensorBoard. The former is responsible for stopping the training process after
a specified number of epochs without an improvement in the monitored metric [58]
(validation loss, in this case), whereas the latter logs the metrics at each step of
the training and can be further used to visualise the learning and validation curves
[59]. The section of the code containing the callbacks’ instantiation, together with
the tuner’s search call is presented in Example 3.4.4.

Example 3.4.4.

1 from tensorflow.keras.callbacks import EarlyStopping ,
TensorBoard

2

3 early_stopping = EarlyStopping(monitor='val_loss ', patience=8,
mode='min')

4

5 TB_LOG_DIR = f'{dir}/ tboard_{datetime.datetime.now().strftime ("%
Y%m%d-%H%M%S")}'

6 tensorboard = TensorBoard(TB_LOG_DIR , histogram_freq=0,
write_graph=True , write_images=True)

7

8 # Run the search
9 tuner.search(train_generator ,
10 epochs=50,
11 validation_data=valid_generator ,
12 shuffle=False ,

4A callback in an object that can perform certain action at different stages of the training
process, e.g. after every epoch.
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13 callbacks=[early_stopping , tensorboard],
14 steps_per_epoch=train_steps ,
15 validation_steps=val_steps)

The search method takes as arguments the arguments that should, in a standard
workflow, be passed to the model fitting function, i.e. the training and validation
data (here yielded by the generators), the number of epochs to run the training
for, the list of callbacks, and the number of steps per epoch (how many times the
generator should be called, in both the training and validation cases).

The tuner returns the best hyperparameters combination (the one that yielded
the lowest validation loss score), as well as the best model itself—a set of model’s
weights (parameters). The model is output at its best performing epoch [60], and
can be saved in the .hdf5 format—thus it is possible to load it and re-use for
predictions in the future.

The best model was further used to make predictions on the full range of data,
including the training, validation and test sets. For a given observation at time
t, a single value of SYS price was predicted, that corresponded to the time step
t+ delay—hence, in order to be appended to the input dataset as a prediction, it
had to be shifted forward by the number of steps equal to the delay parameter.
Inverse scaling was applied, to revert the effect of standardisation and restore the
predicted SYS price values to the original scale. A set of performance metrics,
including RMSE, MAE, MAPE and R2, was calculated using the ground truth
and predicted values for the observations belonging to the test set. Eventually,
the results were plotted, to visually assess the match between the real and predicted
SYS price time series.

3.5 Machine learning modelling using a hybrid

1DCNN-LSTM architecture

The network architecture presented in this section has been inspired by the ap-
proach implemented in [53], described in Section 2.3.3.11. The architecture com-
bines the one-dimensional CNN layers and the LSTM variant of recurrent NNs.

The workflow for this approach follows the one of the simple RNN model in such as-
pects as: data standardisation, the generator function, the use of BayesianOptimization
tuner, as well as post-processing stages, including prediction on the full range of
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data, inverse scaling, calculating performance metrics on the test set and plot-
ting the results. What differs is the hyperparameter tuning, which was extended
beyond the parameters related to the model architecture and optimisation.

In the search for the best performing model, a two-level tuning was conducted.
The outer layer of tuning was concentrated on the data pre-processing step. It
included various combinations of input data transformations, such as:

• transformation of filling level time series into residual filling levels (presented
in the middle plot in Figure 3.5); a result of the low-frequency smooth signal
(dashed curves in the top plot), modelled as a rolling mean, being subtracted
from the original time series.

• transformation of filling level time series into differenced filling levels (presen-
ted in the bottom plot in Figure 3.5); differencing was performed at each time
step t by subtracting the value from time step t− 1.

• transformation of the (despiked) SYS price time series into smoothed SYS
price—smoothing windows of 5 and 21 samples were tested, as shown in
Figure 3.6.

Additionally, tuning at this level involved parameters determining the shape of
the 3D data tensor taken as input by the LSTM layer, such as: delay, lookback,
batch size and step. After initial manual parameter testing, lookback, batch size
and step were fixed at 60, 32 and 1, respectively. Delay values that were further
tested with different combinations of other parameters included 14, 28 and 42 days.
The outer layer tuning was conducted manually, in separate Jupyter notebooks,
according to the schedule shown in Figure 3.7. Fifteen combinations were tested
(marked in red), inside of each the inner layer tuning was performed. The three
remaining tests on the differenced filling levels were dropped, as this input variant
had not yielded promising results.

The inner layer tuning was focused on the design and parametrisation of the net-
work itself. An extensive hyperparameter grid search was automated using the
KerasTuner framework, same as in the simple RNN case. The corresponding
build_model and design_model functions are presented in Example 3.5.1 and Ex-
ample 3.5.2, respectively.

Example 3.5.1.

1 def build_model(hp):
2 """
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3 This function defines a parameter search space for tuning and
builds a model using an external function.

4 """
5 conv_layers = hp.Int('conv_layers ',
6 min_value=1, max_value=3, step=1)
7 conv_units = hp.Int('conv_units ',
8 min_value=4, max_value=16, step=4)
9 lstm1_units = hp.Choice('lstm1_units ',
10 [4, 8, 16, 32])
11 lstm2 = hp.Boolean('lstm2 ')
12 lstm2_units = hp.Choice('lstm2_units ',
13 [4, 8, 16, 32])
14 activation_hidden = hp.Choice("activation_hidden",
15 ["relu", "tanh"])
16 pool = hp.Boolean('pool')
17 dropout = hp.Choice('dr',
18 [0.0, 0.1, 0.2, 0.5])
19 recurrent_dropout = hp.Choice('rec_dr ',
20 [0.0, 0.1, 0.2, 0.5])
21 optimizer = hp.Choice('optimizer ',
22 ['adam', 'rmsprop ', 'adadelta '])
23 lr = hp.Float('lr',
24 min_value=1e-5, max_value=1e-2, sampling

="log")
25

26 # call an external model architecture specified within
design_model function

27 model = design_model(
28 conv_layers=conv_layers ,
29 conv_units=conv_units ,
30 lstm1_units=lstm1_units ,
31 lstm2=lstm2 ,
32 lstm2_units=lstm2_units ,
33 activation_hidden=activation_hidden ,
34 dropout=dropout ,
35 recurrent_dropout=recurrent_dropout ,
36 pool=pool ,
37 optimizer=optimizer ,
38 lr=lr
39 )
40 return model

Example 3.5.2.

1 def design_model(conv_layers , conv_units , lstm1_units , lstm2 ,
lstm2_units , activation_hidden , dropout , recurrent_dropout ,
pool , optimizer , lr):
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2 """
3 This function builds a network architecture according to the

hyperparameter combination passed as an argument. Returns a
compiled model.

4 """
5 input_layer = Input(shape=(int(lookback / step), num_features)

)
6

7 conv_layers_list = []
8 for i in range(conv_layers + 1):
9 convl = Conv1D(filters=conv_units ,
10 kernel_size=3**i,
11 strides=1,
12 padding='same',
13 activation=activation_hidden)(input_layer)
14 conv_layers_list.append(convl)
15

16 concat = Concatenate ()(conv_layers_list)
17

18 if pool:
19 pool1 = AveragePooling1D(pool_size=2)(concat)
20 lstm1 = LSTM(lstm1_units ,
21 return_sequences=lstm2 ,
22 activation=activation_hidden ,
23 dropout=dropout ,
24 recurrent_dropout=recurrent_dropout)(pool1)
25 else:
26 lstm1 = LSTM(lstm1_units ,
27 return_sequences=lstm2 ,
28 activation=activation_hidden ,
29 dropout=dropout ,
30 recurrent_dropout=recurrent_dropout)(concat)
31

32 if lstm2:
33 lstm2 = LSTM(lstm2_units ,
34 activation=activation_hidden ,
35 dropout=dropout ,
36 recurrent_dropout=recurrent_dropout)(lstm1)
37 output_layer = Dense (1)(lstm2)
38 else:
39 output_layer = Dense (1)(lstm1)
40

41 model = Model(inputs=input_layer ,
42 outputs=output_layer)
43

44 if optimizer == 'adam':
45 optimizer = Adam
46 elif optimizer == 'rmsprop ':
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47 optimizer = RMSprop
48 elif optimizer == 'adadelta ':
49 optimizer = Adadelta
50

51 model.compile(loss=MeanSquaredError (),
52 optimizer=optimizer(learning_rate=lr),
53 metrics=[MeanAbsoluteError (),

RootMeanSquaredError (),
MeanAbsolutePercentageError ()])

54

55 return model

As shown in the examples above, multiple network architecture elements and model
optimisation hyperparameters were tuned, including:

• conv_layers—the number of 1D convolutional layers (performing feature
extraction), determining at the same time the kernel size in each layer

• conv_units—the number of units in each 1D CNN layer

• lstms1_units—the number of units in the first LSTM layer

• lstm2—the presence and potentially the number of units in the second LSTM
layer

• activation_hidden—the activation function for hidden (i.e. CNN and LSTM)
layers

• dr and rec_dr—the dropout and recurrent dropout rates for the LSTM layers

• pool—the presence of a 1D average pooling layer

• optimizer—the optimising algorithm

• lr—the learning rate used by the optimising algorithm

The values that different hyperparameters could take are specified in Example 3.5.1,
while the network architecture setup is defined in Example 3.5.2. A visualisation
of a sample 1DCNN-LSTM network is provided by Figure 3.8. In this example,
the input layer feeds the data into four 1D convolutional layers, with kernel sizes
determined by the successive powers of three5, the number of kernels in each

5Kernels of different sizes are supposed to detect patterns (in the data) of different temporal
lengths—see Section 2.3.3.11.
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layer specified by hyperparameter conv_units and activation functions determ-
ined by activation_hidden. Notice the padding and strides parameters in Ex-
ample 3.5.2 were fixed at “same” and “1”, respectively—such combination ensured
the equal length of all output sequences (from all 1D CNN layers), which was a
precondition for concatenation procedure. Next, the activations from 1D CNNs are
concatenated and fed into the pooling layer, which reduces the length of sequences
(the size of the time dimension) by half. Subsequently, the pooling layer output
is sent to the LSTM layer with lstm1_units. In this example, the lstm2 hyper-
parameter must have been set to False, as there is no second LSTM layer. The
last step is a fully connected layer with one node and a default (linear) activation
function. The corresponding model summary is shown in Figure 3.9.
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Figure 3.5: Input data transformations—a comparison of the original, residual and
differenced filling level time series.
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Figure 3.6: Input data transformation—various levels of smoothing applied on the SYS
price time series. The smoothed curve in the upper plot corresponds to the smoothing
window of 5 samples, in the lower plot—the window of 21 samples.
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Figure 3.7: Outer layer tuning schedule in the 1DCNN-LSTMmodel. The red colour on
the right marks the conducted tests—the remaining ones were dropped, as the preceding
tests that used the variant of differenced filling levels had not yielded promising results.
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Figure 3.8: A sample 1DCNN-LSTM network architecture.



3.5. MACHINE LEARNINGMODELLING USING A HYBRID 1DCNN-LSTMARCHITECTURE69

Figure 3.9: A sample 1DCNN-LSTM model summary.
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3.6 Software and hardware

The experimental part of this thesis was conducted using Python 3.7.13 in the free
version of Google Colaboratory6 (“Colab”) environment. Colab hosts a Jupyter
notebook service with access to free computing resources, including standard CPU,
as well as accelerated GPU and TPU runtimes. It is connected to the Google Drive
data storage service, which ensures convenient input and output files exchange.

The most crucial Python libraries, from the thesis’ point of view, are listed in
Table 3.1, including the information about their versions used in the project.

Table 3.1: The most important Python libraries used in the project

Library Version

TensorFlow 2.8.2

Keras 2.8.0

scikit-learn 1.0.2

pandas 1.3.5

NumPy 1.21.6

statsmodels 0.10.2

matplotlib 3.2.2

seaborn 0.11.2

6https://colab.research.google.com/

https://colab.research.google.com/


Chapter 4

Results

This chapter presents the findings from the EDA, as well as the prediction res-
ults obtained with the three modelling approaches: ARIMAX, simple RNN and
1DCNN-LSTM. They are first described separately and later arranged together
for comparison purposes.

4.1 Exploratory data analysis

The relationships between input dataset features are visualised via a correlation
heatmap in Figure 4.1. Note that, in this thesis, “correlation” always refers to
the Pearson correlation coefficient. The heatmap indicates that the filling level
time series from the majority of reservoirs are highly positively correlated between
each other, as expected. Furthermore, a general negative correlation between
the amount of water in the storage reservoirs and the SYS price is confirmed by a
noticeably different colour of the very bottom row of the heatmap, corresponding to
the correlations of filling levels with the SYS price. Judging by the colour intensity
of the cells in that row, it can be observed that the absolute correlation coefficients
for the reservoirs with IDs between 287 and 378 are on average higher that for the
rest of the reservoirs. This observation was considered in the process of limiting the
number of reservoirs taken further into modelling. Additionally, a greedy manual
feature selection was conducted using a basic RNN network with fixed parameters,
to find out which reservoirs included in the input dataset yield best performance
scores. The findings were supplemented by the results of backward feature selection
tests—aiming at eliminating the reservoirs whose removal from the input dataset
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Figure 4.1: Heatmap of correlations between the raw input features.

yielded a positive or neutral model performance change. Finally, a practical aspect
of choosing reservoirs that are currently monitored by EDInsights (or possible to
monitor in the future—with the reservoir size being the limiting factor) was taken
into account. Based on all the factors mentioned above, the input dataset has been
limited to four filling level time series (reservoirs IDs: 290, 300, 360, 378) and the
SYS price time series. Such dimensionality reduction allowed for conducting a
more thorough hyperparameter tuning at the later stages.

An alternative technique which could be used to address the multicollinearity of
the original set of filling level time series is a Principal Component Analysis (PCA).
It is a common data dimensionality reduction tool which, in contrast to the feature
selection process performed in this study, does not preserve the original features,
but handles the data redundancy problem better.
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The correlations illustrated in Figure 4.1 were calculated based on non-shifted
time series. To investigate the predictive potential of filling level data, cross-
correlations were calculated for each reservoir between the filling level and price
time series for a set of shifts (lags), as presented in Figure 4.2. The column
name SYS 1w ahead means that the price time series was shifted 7 days in the
negative direction—so that the filling levels from time step t were, after the shift,
in the same row with the price from the original time step t + 7. In the resulting
heatmap, the rows refer to subsequent reservoirs and are tagged with the reservoirs’
IDs. The first column in Figure 4.2 corresponds to the last row of Figure 4.1.
Further columns correspond to various SYS price time shifts. Focusing on the
four reservoirs selected at the earlier step (290, 300, 360, 378), it can be observed
that their noticeable correlation with the non-shifted SYS price drops significantly
towards increasing time shifts. It suggests that the predictions are most likely
to get more difficult for increasing time frames—which is rather intuitive. The
reservoir no. 15 sticks out with its high positive cross-correlation values for the
longest analysed time frames, but it probably constitutes an example of a spurious
correlation. Looking at the heatmap as a whole, there is no apparent time shift
that would stand out as one for which the price time series is highly correlated
with the filling levels of a significant number of reservoirs. Hence, it did not lead to
a conclusion about which time shift might potentially be promising as a prediction
time frame. Thus, the prediction time frame was one of the hyperparameters
tuned in the modelling process, with an upper limit restricted to six weeks—as
the cross-correlations seem to fade significantly around and after that length.
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Figure 4.2: Cross-correlations between filling level time series and the SYS price time
series shifted by various time lags. The rows correspond to different reservoirs and are
tagged with the reservoir IDs.
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4.2 ARIMAX model

Table 4.1 and Figure 4.3 summarise the results of the ARIMAX model. The former
lists the performance scores and the latter plots the predictions made using the
models which achieved the highest R2 scores for the 14-day and 28-day prediction
time frames. These particular time frames were found to be the most promising in
the machine learning modelling, hence it is relevant to focus on the performance
of the baseline ARIMAX model in these two variants. The input SYS price time
series that yielded these scores was smoothed with the window of 21 samples and
the optimal set of (p, d, q) parameters was found to be equal to (1, 1, 1), in both
cases.

Table 4.1: The best performing ARIMAX models

Model RMSE MAE MAPE R2

ARIMAX 14 days ahead 6.61 5.40 9.96 0.80

ARIMAX 28 days ahead 11.32 9.29 15.57 0.39

Performance of the model with the shorter prediction time frame is better than
for the longer prediction time frame. This is an expected effect, as the forecasting
error accumulates when making a prediction for time step t + 1 based on the
prediction for time step t. Looking at the plots, one can also observe that the
shorter prediction time frame, the more the predicted time series resembles the
original time series. That means that the autoregressive component of the model
plays an important part in forecasting the future values, and that the exogenous
variables are of little significance—which is by no means a desired effect.

Finally, it is important to remember that the ARIMAX model does not take the
history of the exogenous variables (the filling levels) into account, but just the
current filling levels for a given time step t. The autoregressive part of the model
only looks at the history of the endogenous variable—the SYS price. The machine
learning models, in contrast, will consider the historical component of all the input
variables.
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Figure 4.3: Best results of ARIMAX modelling for two prediction time frames—14
days ahead in the upper graph and 28 days ahead in the lower graph.

4.3 Basic RNN model

Two RNN models—one for the 14-day and one for the 28-day prediction time
frame—which achieved the minimum validation loss scores in the hyperparameter
tuning process are presented in Table 4.2, together with their test set performance
scores. They were trained on the input dataset with the SYS price time series
smoothed using a 21-sample window and the original filling level time series. The
best combination of hyperparameters for both prediction time frames included the
RNN layer with 32 units, tanh activation function and dropout rate of 0.0, as
well as “Adam” optimiser and learning rate of the order of 0.001. The recurrent
dropout rate was 0.5 in the winning 14 days ahead model and 0.0 in the 28 days
ahead model.
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Table 4.2: The best performing RNN models

Model RMSE MAE MAPE R2

RNN 14 days ahead 8.89 6.94 11.71 0.64

RNN 28 days ahead 17.01 14.39 23.61 -0.35

Figure 4.4 illustrates training and validation learning curves for the two models,
documented using the TensorBoard callback. As expected, the training losses (left
column) are generally lower than validation losses (note the different scales of the
y axes) and decrease monotonically with an increasing number of training epochs.
The two graphs in the lower row correspond to the training and validation curves
aggregated over consecutive epochs for the 28 days ahead model. One can no-
tice that the model was only trained for 9 epochs and must have been stopped
by the EarlyStopping callback due to insufficient improvement rate. The low-
est validation loss was registered after the first epoch of training and the weights
corresponding to this stage are the ones that the model was saved with. The up-
per row contains the corresponding curves for the 14 days ahead model, only this
time two executions of model training with the same combination of hyperpara-
meters were run. Repeating the training process multiple times with the same
hyperparameter combination can reduce results variance and allows for a more
accurate assessment of the model’s performance [60]. The execution in which the
lowest validation loss was achieved yielded the model whose performance scores
are discussed in this section.

Predictions made on the training, validation and testing intervals are visualised in
Figure 4.5 and Figure 4.6, for the 14-day-delay and 28-day-delay models, respect-
ively. The top graph in each figure shows the smoothed ground truth SYS price
time series, as well as the predicted time series divided into training/validation
and testing sets. The middle graph zooms into the smoothed and predicted price
in the testing period, and the bottom one plots the residuals for the testing period
(a difference between the observed and predicted data). It can be observed that
the prediction quality drops significantly towards the end of the testing period,
when the real SYS price values increased to 60–90 EUR—a level not registered at
any time in the training or validation dataset. Intervals without predictions, at the
beginning of the training/validation and testing sets, originate from the fact that
a number of samples (equal to lookback parameter) before time step t is needed to
calculate prediction for time step t+delay (where delay is equal to the prediction
time frame). Thus, the first prediction is made at time step number equal to the
sum of lookback and delay, counting from the beginning of the dataset.
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Figure 4.4: Training and validation learning curves of the best performing simple RNN
models. Plots in the upper and lower row correspond to the 14-day and 28-day prediction
time frame models, respectively. In the 14-day case, two executions of each individual
hyperparameter combination were run.

The plots confirm that the 14-day prediction time frame yields a lower prediction
error than the 28-day one. Same as in the ARIMAX case, similarities can be no-
ticed between the ground truth and prediction curves, which suggest that the SYS
price variable influences the predictions stronger than the filling level variables.
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Figure 4.5: Predictions on the training, validation and testing intervals for the RNN
model with the 14-day prediction time frame. In the top graph, the smoothed ground
truth SYS price is plotted, together with the predicted SYS price divided into train-
ing/validation and testing sets. The middle graph is a zoom into the predictions on the
test set, while the bottom one plots the test set residuals.
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Figure 4.6: Predictions on the training, validation and testing intervals for the RNN
model with the 28-day prediction time frame. In the top graph, the smoothed ground
truth SYS price is plotted, together with the predicted SYS price divided into train-
ing/validation and testing sets. The middle graph is a zoom into the predictions on the
test set, while the bottom one plots the test set residuals.
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4.4 Hybrid 1DCNN-LSTM model

The results of the hyperparameter tuning of the 1DCNN-LSTM model are presen-
ted in Figure 4.7. The rows in the table correspond to the tests described in
Figure 3.7. For a given test, the hyperparameters from the outer layer of tuning
(i.e., input data transformations, LSTM input tensor shape) were fixed, while the
hyperparameters under the inner layer tuning category correspond the model that
achieved the lowest validation loss score in the inner layer tuning process. The first
four columns present a model’s predictive performance on the test set.

There are no obvious indications of any particular combination of hyperparameters
dominating among the best performing models. The only hyperparameter that
is common for all models listed in Figure 4.7 is the Adam optimiser. Another
characteristic that is common for all models except one, is that they only had one
LSTM layer—the lstm2 hyperparameter was set to False. Apart from that, the
rest of the hyperparameters took various values available within the search space.

The table in Figure 4.7 is divided into sections corresponding to the three tested
prediction time frames—14-day, 28-day and 42-day. The models from each section
that performed best on the test set are highlighted in green, together with their
corresponding hyperparameter combinations. In two cases, the model with the
lowest prediction errors is not the one with the highest R2 score. In this study, it
is preferred for the predictions to reflect the correct directions of the price change,
rather than minimise the absolute errors (potentially at the cost of loosing the
change direction). Hence, it was decided that for the purpose of comparison with
the models produced with the ARIMAX and simple RNN approaches, the best
models will be selected according to the R2 criterion. An exception was made for
the prediction time frame of 42 days—even though the two models competing for
the best model’s prize both performed noticeably poorly, the model with slightly
a lower R2 score is more stable (due to the larger input price smoothing window).
Thus selected models, generated under the names of test10, test08 and test12, are
summarised in Table 4.3.

Table 4.3: The best performing 1DCNN-LSTM models

Model RMSE MAE MAPE R2

1DCNN-LSTM 14 days ahead 10.66 8.02 12.92 0.49

1DCNN-LSTM 28 days ahead 16.68 13.26 21.03 0.02

1DCNN-LSTM 42 days ahead 19.88 17.45 27.78 -0.79
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The learning curves of the three models were registered by TensorBoard and are
shown in Figure 4.8. It can be observed that in all three cases the training was
stopped well before reaching the maximum iterations limit set to 50. The curves
exhibit short-term spikes, particularly in the early stages of training. Eventually,
however, they all converge towards stable solutions.

The predictions on the training, validation and testing sets are visualised in Fig-
ure 4.9, Figure 4.10 and Figure 4.11, for the 14-day, 28-day and 42-day prediction
time frames, respectively. Similarly as in the case of the ARIMAX and RNN
models, prediction errors increase with the increasing prediction time frame. The
14-day and 42-day models were trained on the SYS price smoothed with a window
of 21 samples, hence the predicted curve seems more stable than in the case of the
28-day model (where the SYS price smoothing window was set to 5 samples). In
neither case was the model able to predict the steep increase of the price in the
end of the training period.
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Figure 4.8: Training and validation learning curves of the best performing 1DCNN-
LSTM models. Starting from the top row, the plots correspond to the 14-day, 28-day
and 42-day prediction time frame models, respectively.
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Figure 4.9: Predictions on the training, validation and testing intervals for the 1DCNN-
LSTM model with the 14-day prediction time frame. In the top graph, the smoothed
ground truth SYS price is plotted, together with the predicted SYS price divided into
training/validation and testing sets. The middle graph is a zoom into the predictions
on the test set, while the bottom one plots the test set residuals.
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Figure 4.10: Predictions on the training, validation and testing intervals for the
1DCNN-LSTM model with the 28-day prediction time frame. In the top graph, the
smoothed ground truth SYS price is plotted, together with the predicted SYS price di-
vided into training/validation and testing sets. The middle graph is a zoom into the
predictions on the test set, while the bottom one plots the test set residuals.
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Figure 4.11: Predictions on the training, validation and testing intervals for the
1DCNN-LSTM model with the 42-day prediction time frame. In the top graph, the
smoothed ground truth SYS price is plotted, together with the predicted SYS price di-
vided into training/validation and testing sets. The middle graph is a zoom into the
predictions on the test set, while the bottom one plots the test set residuals.
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4.5 Summary

Table 4.4 and Table 4.5 summarise the best performing models of each category
(ARIMAX, RNN, 1DCNN-LSTM) for two prediction time frames, 14-day and 28-
day, respectively. In both cases it was the ARIMAX model which yielded the best
predictions on the test set, achieving the highest R2 scores equal to 0.8 (14-day)
and 0.39 (28-day) and the lowest predictions errors. The machine learning models
performed worse, which must to a large extent be related to their inability to
catch the steep upward price trend by the end of the test period. The RNN 28-
day variant achieved a negative R2 score, which translates to the model yielding a
worse match then a straight line would yield.

Table 4.4: Summary of the best performing 14 days ahead models

Model RMSE MAE MAPE R2

ARIMAX 14 days ahead 6.61 5.40 9.96 0.80

RNN 14 days ahead 8.89 6.94 11.71 0.64

1DCNN-LSTM 14 days ahead 10.66 8.02 12.92 0.49

Table 4.5: Summary of the best performing 28 days ahead models

Model RMSE MAE MAPE R2

ARIMAX 28 days ahead 11.32 9.29 15.57 0.39

RNN 28 days ahead 17.01 14.39 23.61 -0.35

1DCNN-LSTM 28 days ahead 16.68 13.26 21.03 0.02
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Discussion

As demonstrated in the previous chapter, the statistical ARIMAX models outper-
formed the machine learning models. This proves that it should not be taken for
granted that the more computationally expensive approaches always yield better
results.

In the previous chapter, the performance of various developed models was presen-
ted using quantitative performance metrics, such as error functions (RMSE, MAE,
MAPE) and the R2 score.However, this way of assessing the performance and ap-
plicability of the model in a real setting is not sufficient when there is no a priori
baseline model that we could refer to. One needs to be aware that the quantitative
performance scores reflect how the predictions match the observed values over the
entire period of time that predictions were calculated for, e.g. the length of the
test set. However, to understand the quality of the models developed in this thesis
we need to consider how they can be used in practise. Instead of an averaged
performance over the entire prediction set, we need to take a closer look at how
the models perform within the range of the prediction time frame, at individual
points in time.

5.1 Interpretation of the results

Let us think about how the information available in the form of prediction plots
from the previous chapter should be read. On a given day t, the prediction is made
for day t+delay—in our case 14 or 28 days ahead. If we then look at the prediction
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plots, we need to imagine that at a given day t we only have predictions available for
the next 14 or 28 days (assuming that predictions were being calculated with every
new observation—ideally daily, for the preceding 14 or 28 days, at least). Locally,
within the prediction time frame, the predictions may not reach the accuracy
suggested by the performance metrics calculated on the entire dataset. Let us check
how the models that achieved the highest scores (the ARIMAX models) perform
locally. Figure 5.1 presents the prediction plots known from Section 4.2, only this
time there are additional arrows drawn along the original and predicted curves.
They are supposed to aid the visualisation of local consistencies or inconsistencies
(blue and red color, respectively) between the original and predicted SYS price
curves. Their length approximates the prediction time frames. If the arrows
are red, one of the curves increases and the other decreases locally, within the
prediction time frame. Such situation is clearly undesirable from the perspective
of, e.g. making a trading decision—for which a decision maker needs to know
whether the price will go up or down. The arrows were placed in just a few
positions in each graph, for visibility reasons, but if one analyses more locations
it becomes clear that this level of accuracy has a moderate applicability in any
trading activity. Furthermore, if we consider shorter-term trends, the divergence
between the directions that the original and predicted curves take is even more
apparent.

It is worth noting, that the ARIMAX models perform decently well in the intervals
where the price maintains a constant trend for a longer period of time (e.g. August
and September). This might be, however, related to the fact that the ARIMAX
model was set up to use just a single autoregressive component (p = 1)—the
prediction for the succeeding time steps was strongly influenced by one directly
preceding time step. This enables the model to focus on the steeply increasing
price. The machine learning models, on the other hand, were trained to use (in
various variants) up to around 60 preceding time steps, which might have taught
them to look for longer-term trends in the data, but apparently did not enable
them to compete with the ARIMAX model on this dataset. In general, as observed
in the previous chapter, practically all prediction plots resemble (to a smaller or
larger extent) the historical price curves, slightly shifted in time by the value of
the corresponding prediction time frames. This is not a desirable effect, as it can
mean that the models are mostly driven by the SYS price feature, instead of finding
relationships between the changes of the filling levels of the hydropower reservoirs
and the price movements. Machine learning is particularly powerful when there
are multiple variables that impact the response variable, especially in a non-linear
manner. In this case, it appears that the algorithms found out that the loss is
best minimised through focusing on the past values of the response variable itself.
However, they failed to outperform the ARIMAX method, which specialises in
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Figure 5.1: Analysis of ARIMAX prediction plots. Red arrows signalise that one of
the curves increases and the other decreases in the interval limited by the arrows’ length.
Blue arrows mark the intervals where both curves follow the same direction of change.

utilising the autoregressive information.
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5.2 Shortcomings of the current approach

There are several factors that might have negatively affected the performance of the
ML models—multiple error modes of different origins could have been accumulated
across different stages. Firstly, as noted in the introductory part of the thesis, the
SYS price used a ground truth in this project is a real, historical time series. The
hydro producers, however, run the production according to the price forecasts.
When developing a model supposed to reconstruct relationships between the filling
levels and the future power price, it is the forecasted price that should serve as a
ground truth, not the real historical data. Any divergence between these two is
expected to negatively affect the model training process. Unfortunately, we did
not have access to the hydro producer’s forecast.

Secondly, the filling levels of the hydropower reservoirs are affected not only by the
hydropower production, but also by the inflow of water. It might be worth consid-
ering supplementing the input dataset with features that could add information
about the inflow, e.g. meteorological data.

Finally, we need to remember that for the machine learning algorithm to be trained
on the train set and predict accurately on the test set, the data in both sets
should be sampled from the same distribution—the mean and variance of data
should remain constant within both sets. This assumption is violated in the case
of power markets the moment any extreme geopolitical or weather-related events
occur. As Chollet notes in [37, Chapter 6], forecasting the markets’ behaviour is
extremely difficult. The past is usually not a good predictor of the future in the
markets’ case, as opposed to, e.g. forecasting natural phenomena, such as weather.

5.3 Alternative approaches

After analysing the obtained results, several alterations of the current methodo-
logy, as well as potential extensions of the study come to mind.

Starting from the changes that should be introduced in the current setup—a com-
pletely basic, naive baseline model should be created. With this model, the predic-
tions would by calculated by shifting the exact values from time step t to t+delay.
Performance metrics obtained on thus calculated predictions would constitute a
reference for any statistical or machine learning model developed at a later stage
of the project.
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Furthermore, the input dataset was divided into the training, validation and test-
ing set chronologically, resulting in the testing set falling onto the period of an-
omalously high power prices, at the level unseen by the ML algorithms during the
training. A direct consequence is the poor performance score of the ML models.
[61] describes cross-validation techniques for time series data that could be ex-
plored for our dataset. A simple example involves developing a model on a small
training subset of data and testing it on a small, directly succeeding subset. Next,
both subsets from the previous step constitute a bigger training set used to train
a new model, which is then tested on another small testing subset, consisting of
directly succeeding samples. This procedure is repeated several times, until reach-
ing the end of the original dataset. Then, the performance scores from different
testing subsets are averaged to obtain an overall testing score.

To further investigate the actual contribution of the reservoir filling level time series
in the model, compared to the contribution of the autoregressive price component,
one could try to remove the price time series from the set of feature variables and
treat it exclusively as a response (target) variable. Such a move should reveal the
extent of the predictive power of the filling level data. Additionally, a Principal
Component Analysis could be performed on the filling level time series to remove
the redundant information present in the original set of input reservoirs and thus
reduce the dimensionality of the input dataset. In case of the ARIMAX model,
it would be worth to take a closer look at the parameters of the fitted models
(the coefficients) to better understand the contribution of each model component,
including the filling levels.

A potential extension of this study would be to gather and utilise expert know-
ledge of the characteristics of various reservoirs. The main feature that should
be explored is the storage cycle of various reservoirs. Some can be emptied and
refilled several times during a season, some are used to save the water over years,
to secure the supply for a “dry” year. Using such an information to select the
reservoirs for the input dataset and creating an additional feature that would in-
form about the current month or a season of the year could potentially allow for
discovering valuable patterns.

Finally, it would be worth considering to modify the current price forecasting
approach (regression task) into a trend forecasting approach (classification task)
described in [44]. The output of such an alternative approach would be a label in-
forming about the direction of the price change (e.g. increase or decrease), instead
of the actual price prediction.



Chapter 6

Conclusion

This work explored the potential of using the hydropower reservoirs filling level
data and the historical power price data in the problem of forecasting the future
power price (particularly, the Nordic system price). Three modelling approaches
were tested—a statistical method ARIMAX, a machine learning model with an
RNN layer as a main building block and a hybrid machine learning model com-
bining 1D-CNN layers with LSTM layers. Despite an extensive hyperparameter
tuning in the machine learning approaches, the statistical method—although less
computationally demanding—outperformed the machine learning models in the
predictive performance on the testing set. The suspected reason is that the autore-
gressive price component was prioritised over the filling levels information by all
the models. Despite reaching the R2 score of 0.8 for the 14-day prediction time
frame, we believe that even the ARIMAX model is not sufficiently accurate, at
this stage of development, to be relied upon when making decisions related to,
e.g. trading in the power market. We provide a set of suggestions for future im-
provements and alternative approaches that can be investigated in order to further
boost the performance of the models.
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