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Abstract: Fat marbling, the amount, and distribution of intramuscular fat, is an important quality
trait for beef loin (Longissimus lumborum) and is closely connected to sensory properties such as
tenderness, juiciness, and flavor. For meat producers, it would be of value to grade and sort whole
loins according to marbling on the production line. The main goal of this study was to evaluate
high-speed NIR hyperspectral imaging in interaction mode (760–1047 nm) for in-line measurement of
sensory assessed marbling in both intact loins and loin slices. The NIR system was calibrated based
on 28 whole striploins and 412 slices. Marbling scores were assessed for all slices on a scale from
1 to 9 by a trained sensory panel. The calibrated NIR system was tested for in-line measurements
on 30 loins and 60 slices at a commercial meat producer. Satisfactory accuracy for prediction of
marbling was obtained by partial least squares regression for both slices and whole loins (R2 = 0.81 &
0.82, RMSEP = 0.95 & 0.88, respectively). The concentration of myoglobin in the meat and its state
of oxygenation has a strong impact on the NIR spectra and can give deviations in the estimated
marbling scores. This must be carefully considered in industrial implementation.

Keywords: in-line; NIR spectroscopy; hyperspectral imaging; beef loin; fat marbling; myoglobin

1. Introduction

Fat marbling, the amount and distribution of intramuscular fat (IMF), is an important
quality trait for beef loin (Longissimus lumborum) and is closely connected to sensory
properties such as tenderness, juiciness, and flavor [1–4]. For meat producers, it would be
of value to grade and sort whole loins according to marbling on the production line. This
would increase opportunities for optimal processing of this valuable meat. In the industry,
entire loins can be sorted according to fat content by manual inspection. This method is
quite subjective, time consuming, and not ideal in a high-volume process. A rapid and
non-destructive in-line method for marbling grading of both slices and whole loins would
enable efficient market driven quality sorting. In a digitized value chain, where all data
can be collected and connected, such information would also be valuable for learning and
value chain improvement.

There are numerous reports on how image analysis can be used to quantify fat mar-
bling in slices or cross sections of beef and pork [5–7]. Over the past decade, a manually
operated machine vision system has also been developed and commercialized to classify
fat content/marbling at carcass level by analysis of the rib eye area between the 12th and
13th ribs of each carcass (e + v Technology GmbH, Oranienburg, Germany). A similar type
of automatic machine vision would most likely work well also for the assessment of fat
marbling on beef slices moving at high speed in the process, but to our knowledge, such a
system is not in commercial use. Furthermore, a camera system for surface imaging would
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most likely be less suitable for the assessment of marbling in entire striploins since the
visible fat at the surface of the muscle might not be representative of the interior.

The sensory assessed marbling score increases with the IMF content. Different studies
report different relationships between sensorial marbling and IMF. The obtained correla-
tions can also be difficult to compare since the concentration range in IMF varies between
the studies. Muños et al. [7] obtained an exponential (non-linear) relation (R2 = 0.80) be-
tween sensorial marbling and IMF in the 1–20% range for pork. R2 in the range 0.76–0.79
has been reported for beef and pork [8–11]. These relationships will vary also with the
skills of the assessors, whether they are consumers, trained operators, or a sensory panel.
Anyhow, the measurement of IMF would give a good estimate of fat marbling.

It is well known that in-line near-infrared spectroscopy (NIRS) based on high-speed
hyperspectral imaging (HSI) in combination with so called interaction measurements can
be used to measure fat content in ground meat and trimmings of pork and beef [12,13].
This technology enables sampling across the entire width of a conveyor belt as well as a
sampling depth of 10 to 15 mm into the meat. This technology is established in the meat
industry for monitoring batch fat content. This instrumentation also allows for automatic
sorting of trimmings according to estimated fat content and thereby an improved utilization
of the meat raw material [14]. A limitation with NIRS and meat is that only the surface-near
part of the sample is probed, which can result in highly different fat estimates of the same
heterogeneous sample when measured on different sides. This was pointed out by Wold
et al. [13] who reported a high prediction error (root mean square error of prediction,
RMSEP) of 8.7% for single beef trimmings. This error, however, decreased with increasing
trimming batch size and was at about 0.5% for batches of 120 kg.

An advantage with both whole and sliced striploins, from a measurement point of
view, is that the samples are relatively homogeneous compared to beef trimmings. Loin
slices are evenly sized with similar thicknesses. Whole striploins have a physiology where
the fat is rather evenly distributed, meaning that NIRS interaction measurements along
a loin might be representative of the internal fat content and marbling. If that is the case,
the method could be useful for in-line monitoring and sorting into classes of low, medium,
and high marbling scores. HSI in the NIR region has been reported for the prediction of fat
marbling of beef slices [6,15], but not for whole muscles. Furthermore, most studies with
HSI on meat are conducted with lab systems where the samples are either at a steady state
or moving at a very low speed, e.g., 0.5 cm/s [15], while the industry requires high speed
measurements and true-time analysis.

NIR interaction measurements are usually done in the 760–1100 nm region since these
wavelengths have a good penetration depth in muscle. NIR spectra in this region are
dominated by the absorption of molecular vibrations involving hydrogen bonds in water
(O-H), fat (C-H), and protein (N-H). The water absorption peak at around 980 nm is heavily
affected by sample temperature, which introduces apparent shifts [16]. Another type of
shift and broadening of the water peak is related to how tightly the water is bound to
proteins [17,18]. The fourth compound in beef with a strong absorption in this wavelength
region is myoglobin, an iron and oxygen binding protein. Myoglobin is the main pigment
giving the red color of beef. The spectroscopic properties of myoglobin in the visible region
(400–760 nm) have been extensively studied and reported since they are responsible for
color and color changes in meat [19,20]. A freshly cut surface of beef has a purple color given
by deoxy-myoglobin. Some minutes after cutting the myoglobin is oxygenated to the form
oxymyoglobin, and the color turns to fresh red. This chemical reaction, called “blooming”,
might affect also the NIR spectra and should be carefully studied and understood for
in-line measurements of freshly cut beef. The spectroscopic properties of myoglobin and
hemoglobin in the 750–1000 nm region are reported in medical related literature [21], and
the spectral signatures are being used to monitor, e.g., oxygenation in human muscle and
brain [22,23].

The main goal of this study was to evaluate high-speed NIRS based on HSI in interac-
tion mode for in-line measurement of sensory assessed marbling in both intact striploins
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and loin slices. The NIR system was calibrated under controlled conditions in a processing
hall before it was tested for in-line measurements under realistic conditions at a commer-
cial meat producer. The effect of myoglobin and beef blooming on the NIR spectra and
prediction results were studied.

2. Materials and Methods
2.1. Materials and Experimental Design
2.1.1. Calibration

A total of 28 whole beef striploins (Longissimus lumborum) were sampled from the
production line in a Norwegian slaughterhouse. They were collected in two groups of
14 loins in each, separated in time by six months. They were selected to give a large span in
fat content and marbling. Surface fat and connective tissue were trimmed away according
to standard procedures, leading to samples shown in Figure 1. The loins were vacuum
packed and stored at 4 ◦C for 2 weeks before they were shipped to our lab at Nofima
for measurements.
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Figure 1. Two samples of whole striploins and belonging slices (right). Cutting pattern on upper
loin was used for the calibration data set. Cutting pattern on lower loin was used for the test set. All
cut slices were measured with NIR. Fat content was determined in shaded slices. Sensory scoring of
marbling was done on all slices in calibration set and for the shaded slices in test set.

At Nofima the loins were stored at 4 ◦C 3 days before measurements. The loins
were unpacked, and excessive drip loss was wiped away. The following measurements
were done:

1. Every whole striploin was scanned with a NIR instrument on both sides, lateral and
medial, for a total of 56 measurements. The temperature of the samples was in the
range of 5–8 ◦C.

2. Every whole loin was sliced into 12–15 slices of 3 cm thickness, depending on length
(Figure 1). Every slice was scanned on one side with the NIR instrument, a total of
412 samples.

3. Every slice was then photographed, on the same side as the one scanned with NIR.
4. The photos were evaluated by a trained sensory panel that produced a marbling score

for each slice.
5. IMF was determined in two slices out of 14 loins (the second group of samples). The

two slices were cut close to each of the two ends of the loin (Figure 1).
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2.1.2. Test in Industry

The NIR scanner was installed above a conveyor belt in a Norwegian slaughterhouse,
beside the process line. This was done 8 months after collection and measurement of the
last 30 freshly cut striploins from chilled carcasses were measured by the scanner. The
temperature of the samples was in the range of 4–7 ◦C. Each loin was scanned 3 times
with the lateral side facing the instrument. Immediately after scanning, a part of each loin
(Figure 1) was cut into 5 slices of 3 cm thickness and then scanned. Two slices from each
loin were shipped to Nofima for photography and determination of IMF. The photos were
subsequently evaluated for marbling by the sensory panel. pH was measured in all loins
to avoid DFD (dark, firm, and dry) samples with high pH. Measured values were in the
range 5.40–5.76.

2.1.3. Effect of Blooming

Two loin samples, low and high in IMF, were collected at the slaughterhouse, vacuum
packed, and shipped to Nofima. They were stored at 4 ◦C one day before measurements.
Two 3 cm thick slices from each loin were cut and immediately measured with the NIR sys-
tem. They were then measured four more times during the next 150 min. The temperature
of the samples was stable at 4 ◦C all the time.

2.2. NIR Measurements

The NIR system used was a QVision500 (TOMRA Sorting Solutions, Leuven, Belgium),
an industrial hyperspectral imaging scanner designed for in-line measurement of fat in
meat on conveyor belts. The instrument is based on interactance measurements in which
the light is transmitted into the meat and then back scattered to the surface. The optical
sampling depth in the beef is approximately 10–15 mm. The whole loins were scanned on a
moving conveyor belt, and each NIR measurement took about 1 s for the entire length of
the muscle. Scanning of a loin slice took about 0.1 s. The scanner was placed 30 cm above
the conveyor belt so there was no physical contact between samples and the instrument.
The scanner collected hyperspectral images of 15 wavelengths between 760 and 1047 nm
with a spectral resolution of approximately 20 nm. The output per sample scan was an
image of the loin or slice with a rather low spatial resolution. Each pixel represented a
spatial area of about 7 mm× 5 mm across and along, respectively, the conveyor direction.
The imaging capability was used mainly to obtain one average spectrum from each sample,
but also for illustration of fat distribution within intact loins. Segmenting the sample from
the conveyor belt in the images was done with a simple thresholding criterium since the
spectral signature of beef was very different from the belt.

The NIR system was already calibrated for determination of fat content in beef trim-
mings [14] and the estimated fat values from samples in this study were used to compare
results for slices of loins versus whole loins.

2.3. Photography of Beef Slices

Each slice of striploin was photographed in a controlled setup with a fixed distance to
sample, constant camera settings (f/7.1, shutter speed 1/100 s, automatic white balance,
ISO 100), and stable diffuse illumination provided by strong, external flashlights which
largely dominated room lighting. A digital Canon EOS 7D was used for image acquisition.

2.4. Determination of IMF

IMF was determined in slices of loins using low field nuclear magnetic resonance
(NMR). 3–3.5 g of homogenate was placed in a custom-made Teflon container (16 mm
in diameter) with a Teflon screw top and a rubber seal for the NMR measurements. The
samples were equilibrated to 40 ◦C for 40 min using a heat block (Dri-block heater DB-3D,
Techne, Staffordshire, UK). IMF was determined using a one-shot method to estimate fat
content in a 20 MHz benchtop R4-NMR spectrometer (Advanced Magnetic Resonance,
Abingdon, UK) [24].
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2.5. Sensory Evaluation of Marbling

The sensory evaluation was performed by a highly trained sensory panel at Nofima AS
(Ås, Norway), consisting of 8 trained assessors trained according to ISO 8586. The sensory
laboratory follows the practice of ISO 8589. A descriptive marbling analysis was performed
on photographs of the loin sliced. Fat marbling was visually graded on a categorical
scale from 1 (no marbling) to 9 (intense marbling). Before evaluating the marbling, the
assessors were trained in a pretest (plenum session) and calibrated (individually) on
selected references from grades 1, 5, and 9 (examples in Figure 2). All samples were
evaluated by all assessors individually over several sessions at individual speed. Breaks
were taken between the evaluation of 20–30 photos to avoid fatigue. The slices used for
calibration (n = 412) were assessed in two equally large groups six months apart. The test
set (n = 60) was judged eight months later. To evaluate the repeatability of the measurement,
20 samples were assessed twice by the panel. The root mean square deviation (RMSD) was
used as a measure for repeatability, where yi,t1 and yi,t2 are sensory scores the first and
second time of assessment, respectively, and i denotes the samples from 1 to N.

RMSD =

√
1
N ∑N

i=1(yi,t1 − yi,t2)
2 (1)
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2.6. Instrument Calibration

The NIR spectra were linearized using the logarithm of the inverse of the interactance
spectrum (T), log10(1/T), resulting in absorption spectra. To reduce the effects of potential
light scattering and small variations in distance between instrument and sample, the
spectra were normalized by standard normal variate (SNV) [25]: for each spectrum, the
mean value was subtracted, and the spectrum was then divided by the standard deviation
of the spectrum.

In an attempt to reduce the spectral effect of myoglobin in the calibration, we did
also pre-process by extended multiplicative scattering correction (EMSC) [26], where a
deoxy-myoglobin like spectrum was used as a “bad” spectrum (the difference spectrum
shown in Figure 4b).

Partial least squares regression (PLSR) was used to make calibrations between NIR
spectra and marbling scores. Cross validation was applied to determine the optimal number
of PLS factors and to evaluate the model’s predictive ability. Replicate measurements of the
same samples were left out in the same cross validation segment. Beef slices from the same
striploins were also grouped in the same cross validation segments to avoid overfitting. The
prediction error was estimated by the root mean square error of cross validation (RMSECV)



Foods 2022, 11, 1219 6 of 13

where ŷi is the predicted value from the cross validation, yi is the reference value and i
denotes the samples from 1 to N.

RMSECV =

√
1
N ∑N

i=1(yi − ŷi)
2 (2)

For calibrations for whole loins, the response value used per loin was the average
marbling score of all slices from that loin and full cross validation was used.

The calibrations were implemented in the NIR system to produce marbling values in
true time. The calibrations were tested on new whole striploins and slices of loins in the
commercial slaughterhouse.

The software The Unscrambler version 9.8 (CAMO Analytics AS, Oslo, Norway) was
used for calibration and analysis of the data. Image processing and spectral preprocessing
were carried out in MATLAB version 7.10 (MathWorks Inc., Natic, MA, USA).

3. Results and Discussion
3.1. Sensory Assessment of Marbling

The 412 calibration samples spanned the full range of marbling scores from 1 to 9.
The scores used in this study were the average score per sample for the eight judges. The
20 samples that were judged twice by the panel indicated an RMSD of 0.43, which can be
regarded as a high repeatability. Another interesting measure is the standard deviation of
the judge’s scores per sample since it says more about expected variation from person to
person. The mean standard deviation was 0.85.

The marbling scores were closely related to the concentration of IMF (R2 = 0.86),
as measured in 88 loin slices, illustrated in Figure 3. This relationship was clearly non-
linear and very similar to results obtained on slices of pork ham [6]. Others report linear
relationships, but these have often been obtained on meat with considerably higher fat
levels [4].
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Figure 3. Relation between sensorial fat marbling scores and IMF for sliced loin steaks.

The reason for non-linearity is not clear. Muños et al [6] suggested that samples with
high marbling scores contain more small deposits of fat between muscle fibers that are
difficult to discern for the human eye. Another explanation could be that the adipose
tissue in very marbled samples has a higher concentration of fat. We checked this by
measuring the concentration of fat in adipose tissue from four samples but found no
support for this hypothesis. The psychological literature refers to the Weber-Fechner law
which states that linear increments in sensation are proportional to the logarithm of the
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stimulus intensity [27]. This relationship was initially intended for perceptual faculties
such as loudness or brightness, but does also apply to more abstract parameters [28]. This
may explain why the relationship between IMF and marbling is non-linear.

There was a large variation in marbling between the loins, and there was also quite
some variation in marbling within some of the loins. Figure 8 shows examples of marbling
distribution in three loins. The biggest internal variations were found in rather fat loins.

3.2. NIR Spectra and Fat Estimates

Typical NIR spectra from loin slices are shown in Figure 4a. The broad peak at around
980 nm is absorption by water. Fat absorbs at around 930 nm but there was no clearly
visible fat peak since the highest concentrations were just above 20%. It is clear that the
apparent offset of the spectra correlated positively with marbling (R = 0.74 at 860 nm).
The more fat, the higher absorption. This was not expected. Wold et al. [14] reported the
opposite for beef trimmings measured with the exact same NIR system: Samples with high
fat content had lower absorption than lean beef. Adipose tissue does in general have lower
absorption than beef muscle. In beef trimmings, there are large shares of pure adipose
tissue, while in the loin the fat is marbled into the meat. It is well known that older animals
have higher concentrations of myoglobin in the muscle [29]. Meat from older animals does
also tend to contain more fat. A close inspection of the spectra indicated that differences in
myoglobin concentration was the main contributor to the large variations in offset. Dark
red samples had an overall higher absorption than light red beef. Even on beef with a lot of
marbling, where adipose tissue made up much of the surface, this was the case because the
red muscle fibers were darker. This can be observed in Figure 2 where the most marbled
slice had darker muscle fibers compared to the leaner samples. Figure 4b shows absorption
spectra from two very lean samples where one is dark red and one is light red. There
was a clear offset between the two, and when the lower spectrum is subtracted from the
higher we get a difference spectrum which is very similar to the absorption spectrum of
myoglobin [21,22].
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In the beef spectra, myoglobin is responsible for the steep absorption towards 760 nm,
and a relatively sharp shoulder around 920 nm. The variation in myoglobin seemed
to represent as much as 95% of the variation in the calibration set (based on principal
component analysis, data not shown). It is very important to be aware of the huge impact
of myoglobin on these spectra. First, the shoulder at 920 nm is close to the absorption peak
for fat at 930 nm and might affect IMF and marbling estimates unless this is thoroughly
handled in the calibration. Second, the absorption spectrum of myoglobin is not stable
over time since it changes with the degree of oxygenation. Figure 4c shows how the NIR
spectrum from a freshly cut loin surface changes during the first 150 min of exposure to air.
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Deoxy-myoglobin gradually turns to oxy-myoglobin. This is seen by a systematic
lower absorption at 760 nm and a higher absorption for wavelengths longer than 800 nm.
We have included a spectrum measured after 3 days when most of the myoglobin in the
upper 10 mm layer is in the oxy state to illustrate the huge spectral differences. The changes
observed here correspond well with published spectra of deoxy- and oxy-myoglobin [21,22].
It should be noted that the surface color of the sample stabilized after about 20 min of
exposure to air, while the blooming effect continued in depth of the sample as illustrated
by others [30]. Within NIR spectroscopy we normally model on rather subtle spectral
differences, so it is obvious that the changes induced by myoglobin and oxygenation
will most likely affect predictions of fat/marbling unless they are accounted for in the
calibration or avoided in the industrial process by measuring all samples at approximately
the same time after cutting and trimming.

The fat calibration that was already implemented in the NIR scanner was used to
estimate the fat content in all measured samples in the calibration set. This was used
to compare fat estimates for whole loins versus slices. Figure 5 shows that there was a
very close linear relationship (R2 = 0.98) between estimated fat in the whole loins with
the average estimate for all slices from the same loin. This indicates that the NIR spectra
measured along the upper layer of intact loins were highly representative of the internal IMF.
Figure 5 represents NIR measurements done on the lateral side of the loins. Measurements
on the medial side resulted in a slightly lower correlation (R2 = 0.96) maybe because
remnants of surface fat affected the measurements.
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3.3. Modelling of Marbling Based on NIR

Table 1 summarizes the calibration and testing of different regression models for
marbling. Models were made for both loin slices and entire loins. Calibration performance
was quite the same for absorption spectra and SNV corrected spectra for the slices, while
SNV performed slightly better for whole loins. EMSC correction with the aim of removing
the effect of myoglobin did not work well. Since the concentration of myoglobin correlated
quite well with marbling and fat, as described above, the removal of this spectral infor-
mation was not successful. The choice of the correction spectrum for myoglobin might be
critical since it has a shoulder close to the fat peak.
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Table 1. Results of calibration and testing in industry.

Loin Slices Calibration (n = 412) Test In-Line (n = 60)

#LV a R2 RMSECV b R2 RMSEP b Offset

Abs 5 0.81 1.0 0.82 0.89 0.7
SNV 4 0.81 1.0 0.81 0.95 1.0

EMSC 2 0.26 2.1 0.15 2.20 0.1

Whole Loins Calibration (n = 28) Test In-Line (n = 30)

Abs 5 0.82 0.98 0.76 1.14 0.7
SNV 4 0.87 0.82 0.82 0.88 0

EMSC 2 0.24 2.1 0.15 1.93 0.1
a Number of latent variables used in model. b Root mean square error of cross validation/prediction.

SNV would also remove the offset variation connected to myoglobin, but the infor-
mation about fat was still maintained in the spectra. SNV data required one PLS factor
less than non-normalized data, which is quite usual. The SNV based calibrations were
implemented in the NIR instrument and used for true time measurements at the meat
producer. When a calibration is made at one location and the NIR instrument is moved to
another location, it is not unusual that a slope and/or an offset is encountered in the new
prediction values. This was, to some extent, the case also now. These offsets are given in
Table 1. For practical use in the industry, such offsets would be subtracted as a very simple
way of calibration transfer. Before the RMSEP values in Table 1 were calculated, the offsets
were therefore subtracted.

The results for the prediction of marbling in new samples in an actual industrial line
were quite similar to those of the calibration, in particular for SNV corrected spectral data.
Figure 6 shows predicted versus sensory assessed marbling for single slices and whole
loins. R2 values above 0.80 are rather high when modeling is based on sensory data. A
prediction error (RMSEP) of about 0.90 is on par with the average standard deviation for the
judges (0.85). Having in mind that the sensory evaluation was performed in three sessions
(calibration set 1, calibration set 2, test set) more than six months apart, we can assume that
the scoring procedure had a high degree of repeatability. The correlation between estimated
marbling scores from whole loins versus the average of the slices was again high (R2 = 0.92),
verifying that NIR measurements on intact loins were representative of the internal marbling.
A lower correlation than what was obtained for fat estimates for the calibration set (Figure 3)
might be due to the fact that only five slices per loin were measured for the test set, versus
15 in the calibration set (see Figure 1). The average of these five would be less representative
for the whole loin and a lower correlation can be expected.
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In this work, we used linear regression for calibration. Since there was a clear non-
linear relationship between IMF and marbling score, a non-linear modeling approach could
be more appropriate. For instance, a linear calibration could be used to estimate the IMF
based on NIR, and then the marbling could be estimated based on the relationship with
IMF (Figure 3).

During the test measurements, we observed some deviations from the expected. Two
very lean loins got high marbling scores in the range 3–4 based on the NIR calibrations,
while another lean loin got a low value of about 1, as expected (samples singled out in
Figure 6). The loins with overestimated scores had dark red color, while the ones with
low estimated scores had a very light red color. These deviations in prediction can most
likely be attributed to myoglobin. A closer look at the predicted values in Figure 6 revealed
that dark samples tended to get slightly higher scores than lighter red samples. When
we started this work, we were not aware of the influence myoglobin would have on the
spectra. Ideally one should collect calibration samples where the concentrations of fat and
myoglobin are very weakly correlated so that calibrations of fat/marbling will not depend
on variations in myoglobin.

We also observed that a dark loin that obtained a marbling score of 4, when scanned
15 min later got a score of 3. The spectral effect of blooming, as shown in Figure 4c, affected
the estimated marbling scores. Figure 7 shows how estimated marbling scores varied with
time of air exposure. Note that the estimated score dropped by about 1 unit during the
first 20 min. Ideally, a calibration should be invariant to the effect of blooming. This can
most likely be done by including this variation in the calibration set. The timing of NIR
measurements after cutting the beef was not strictly controlled during calibration and
testing in this work. A strict timing regime would reduce the effects of blooming and
potentially also improve performance.
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To our knowledge, the effect of myoglobin on fat calibrations for meat by NIRS is
hardly discussed in the literature. This might be due to (1) unawareness of its role or
(2) because myoglobin in other meat systems and with different NIR technology will have
less effect than in the present study. Myoglobin absorbs strongly in the 760–1047 nm region
while the absorption of deoxy and oxy states is much more limited at wavelengths longer
than 1200 nm [31]. The work of Kuenstner and Norris [31] was done on human hemoglobin
but is still very relevant since hemoglobin has very similar spectral properties to myoglobin.

Measurements in our study were done in interactance mode to probe as deeply as
possible. The radiation traveling distance in the meat is then much longer than for reflection
measurements. For dark beef samples with high levels of myoglobin, there might be a
chance that radiation at some wavelengths are almost completely absorbed and that spectra
become distorted. This kind of data will be difficult to fit into a model and therefore
important to detect by some kind of outlier detection. For a NIR interaction system used
on this kind of application, there will be a tradeoff between probing as deep as possible
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and still obtaining undistorted spectra with a high signal to noise ratio. The distance of
interaction can be adjusted to optimize this tradeoff, as pointed out by Wold et al. [32].
NIR spectroscopy in reflection mode will also be sensitive to blooming, and the complete
transition from deoxy-myoglobin to oxy-myoglobin will most likely be much more rapid
since mainly the surface of the meat is probed. As indicated in Figure 4c this transition
took as much as three days with interaction measurements since they probe deeper and
can therefore measure the gradual diffusion of blooming in depth.

Trained workers can probably grade whole loins into marbling classes with quite a
good accuracy. A well-working in-line classification instrument would still be an advantage
since speed would be no issue and the measurements would be objective day after day.
The ability to non-destructively score the fat marbling on whole loins gives the processor
a chance to consider the optimal use of each and every loin early in the process. The
hyperspectral imaging system used in this study can give more information than just an
average score per loin. Figure 8 shows that estimated fat marbling can be imaged on every
loin. The image patterns correspond to some degree with the actual marbling measured on
the slices. The marbling pattern might serve as a guide for portioning the loins into parts of
different quality, dedicated to different customers.
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4. Conclusions

In-line estimation of fat marbling in whole beef loins by NIR hyperspectral imaging can
be achieved with acceptable accuracy. This is possible because the IMF content in the upper
layer of the lateral side of the loin correlates well with the internal fat content in the loin.
Myoglobin and its state of oxygenation has a strong impact on the NIR spectra and must be
carefully considered at implementation. A robust calibration that can handle the variations
of myoglobin is one solution and an interesting topic for future work. This work also
emphasizes the importance of developing and evaluating NIR applications under realistic
conditions to discover critical factors that affect the performance of the instrumentation.
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