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Abstract

The application of machine learning in the field of medicine is expanding on an
almost daily basis. Data from the healthcare industry typically have high dimen-
sionality but a limited sample size. The learning process can be sped up, system
performance can be improved, complexity can be minimised, and the risk of over-
fitting may be decreased by selecting a smaller subset of relevant features from the
high-dimensional data set.

The primary objective of this investigation was to diagnose patients with major
depressive disorder (MDD) using radiomics features extracted from MR images.
In addition, the thesis tries to accomplish the objective by locating a collection
of biomarkers that can assist in developing individualised treatment plans. Es-
tablishing Moderators and Biosignatures of Antidepressant Response for Clinical
Care (EMBARC) was the source of the data.

Before beginning the classification process, the data set’s dimensionality was de-
creased by applying a technique known as RENT, which stands for Repeated
Elastic Net Technique for Feature Selection. Logistic Regression, Support Vector
Machines, and Random Forest are three common classifiers utilised in comput-
ing the performance of all features and the RENT chosen features predictions. A
technique known as principal component analysis (PCA) was used for the analysis
of the data. Throughout the splits and the dataset, RENT chose eleven charac-
teristics in all. According to RENT, the rostral middle frontal cortex may be a
significant biomarker that can predict people who have MDD.
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Chapter 1

Introduction

1.1 Motivation and background

Major depressive disorder is a prevalent mental disorder characterized by poor
mood, reduced mental and motor activity, pessimism, and loss of interest in life.
Unlike other kinds of depression, major depression has complicated symptoms.
Depression is a primary cause of disability, and a major contribution to the global
illness burden [1]. Depressive symptoms rose from 27.8% in 2020 (CI: 24.9, 30.9)
to 32.8% in 2021. (95 per cent CI: 29.1, 36.8) [2].

Compared to the general population, graduate students are six times as likely
to experience depression [3]. Due to its relapsing and repeated nature, depres-
sion is a significant disorder that must be prevented and treated by identifying its
susceptibility factors. Depression often begins in early adolescence or young adult-
hood. Untreated depressive people have a 20% lifetime suicide risk [4]. Stressful
life experiences can trigger depression; however, this link weakens with recurring
instances [5]. Not everyone who endures a traumatic incident gets depression [6].

Antidepressants are the principal treatment for moderate to severe depressive epis-
odes, yet six decades of research have not improved their effectiveness [7] [8]. An-
tidepressants are commonly prescribed ‘trial-and-error’ style for depression [9].
Antidepressants require 2 to 8 weeks to take action; if none do, a new one is given.
Precision medicine Precision medicine uses daily healthcare data to give the most
effective treatment or preventative care to the appropriate people at the right time
[10]. Precision medicine shortens depressive patients’ treatment courses [9]. Bio-
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2 CHAPTER 1. INTRODUCTION

markers help target precision medication. Biomarkers are molecular, anatomical,
physiological, or biochemical properties [9].

MR images are converted into high-dimensional radiomics datasets. Machine learn-
ing algorithms can discover patterns in these datasets that humans cannot. Bio-
markers may be used to diagnose MDD and guide treatment. Radiomics analysis
can be done on medical images from several sources, allowing for an integrated
cross-modality approach exploiting the potential additive value of imaging inform-
ation acquired from MRI, CT, and PET scans [11]. Following the image acquis-
ition and segmentation processes, radiomic characteristics are obtained using a
radiomics framework such as pyradiomics, among others. Radiomics generates
many potential image biomarkers . Nevertheless, there are several challenges in-
volved in the process of identifying biomarkers using MR images. Even with the
same subject and MR scanner, MR pictures might vary [12]. Medical imaging
biomarkers must be confirmed and repeated to assure dependability [13]. During
radiomics, many features are extracted; nevertheless, it is possible that the major-
ity of those features will not supply the machine learning models with any helpful
information. Therefore, the results of machine learning models are not improved.
Therefore, it is necessary to cut down on the number of features by utilizing the
feature selection process. The features that provide the most information to the
models are the ones that are chosen via feature selection techniques. Repeated
Elastic Net Technique (RENT) is used to select features. RENT is an ensemble-
based feature selection technique that uses a logistic regression (LR) model with
elastic net regularization trained on multiple subsets of data to discover resili-
ent features for binary classification tasks [14]. Using the Repeated Elastic Net
Technique (RENT) and radiomics characteristics generated from MR images, this
thesis sought to establish a method for the early detection of individuals suffering
from major depressive disorder(MDD). In addition, further research looked at the
possibility that the radiomics characteristics studied may serve as biomarkers for
depression.

1.2 Problem statement

This project has two distinct objectives, all of which are interrelated.The data
are short and wide, meaning there is a large ratio between the number of rows
and the number of columns, with the latter having a significantly greater total.
Therefore, the first thing that must be done to prepare the data for the feature
selection process is data preprocessing. Preparing (by cleaning and organizing)
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the raw data to make it appropriate for use in the development and training of
machine learning models is called data preprocessing. Preprocessing will allow the
data to be used more efficiently. Searching for missing data, duplicate columns,
correlated characteristics, and other anomalies before deciding whether or not to
eliminate them is a common definition of preprocessing. The reader ought to have
prior experience with ‘normal’ machine learning (for example, having studied the
majority of the book [15]) to understand the terms easily.

The second objective is to use the RENT feature selection approach to identify
the most significant collection of features. This will assist in condensing a large
dataset down to only the most significant aspects. Also, use classification models
to predict whether or not the patient is suffering from a major depressive disorder.
The final step is to create a framework that performs well with this dataset in the
hopes that it will also perform well with new data.

1.3 Structure of the thesis

The introduction to the thesis will cover the theory behind machine learning and
the many approaches taken, as outlined in Chapter 2. The data, the methods and
the application of the algorithms to the data are both covered in Chapter 3. The
preprocessing of the data and the findings from the study are provided in Chapter
4, followed by a more in-depth discussion with further work in Chapter 5. Finally,
a conclusive statement about the analysis and the theory can be found in Chapter
6.
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Chapter 2

Theory

2.1 Depression

Depressed mood, reduced interests, poor cognitive function, and vegetative symp-
toms such as disrupted sleep or hunger describe major depressive disorder (MDD)
[16]. Antidepressants from various classes are typically given for the treatment of
MDD; however, clinically applicable accurate and repeatable measures of efficacy
are not yet available [17]. After cardiovascular diseases and lung cancer, major
depressive disorder was among the top five causes of disability-adjusted life years
(DALYs) in the United States in 2010 [18].

Depression is a prevalent disorder that affects around 280 million people worldwide,
with an estimated 3.8 per cent of the population afflicted, including 5.0 per cent
of adults and 5.7 per cent of persons over the age of 60 [19]. Unfortunately, more
than seventy-five per cent of people living in low- and middle-income countries
do not receive treatment for mental problems, even though there are established
therapies that are effective [20].

Due to the inaccessibility of the human brain, there is no scientific or histological
test for definite psychiatric diagnosis, unlike with cancer. Standard nosology, as
represented in diagnostic manuals such as the Diagnostic and Statistical Manual
of Mental Disorders (DSM) or the International Classification of Diseases, bases
the diagnosis on a combination of symptoms alone [9].

The Hamilton Depression Rating Measure, sometimes known as the HDRS, is the
depression evaluation scale used most frequently in clinical settings. There are 17

5



6 CHAPTER 2. THEORY

items (HDRS17) in the original form that refer to symptoms of depression that
have been encountered over the previous week. As it was first designed for use
with hospital inpatients, the HDRS places a strong focus on both the emotional
and physical manifestations of depression [21].

When treating depressive illness, starting with the minor invasive measures is
typical and adding more if necessary [8]. Current therapy for Major Depressive
Disorder is based on trial-and-error, which delays response and remission for most
patients. Prolonged unsuccessful therapy raises patient suffering and expenditures.
Long and failed antidepressant trials may lower patient expectations, reinforce
negative cognitions, and train patients not to react in subsequent trials, adding
to treatment resistance. Identifying dependable indicators of antidepressant treat-
ment response may shorten or eliminate unsuccessful trials [22]. Preventive and
therapeutic measures that consider individual variability are known as personal-
ized or precision medicine. As a result of population diversity, personalized therapy
may be able to reduce the length of treatment. An individual patient’s surround-
ings, genes, and way of life are all considered while looking at biomarkers [8].

As per Food and Drug Administration - National Institutes of Health (FDA-NIH)
Biomarker Working Group, biomarkers can be defined as ‘A defining character-
istic that is measured as an indicator of normal biological processes, pathogenic
processes or responses to an exposure or intervention.’ [23]. Inflammatory, neuro-
transmitter, neurotrophic, neuroendocrine, and metabolic indicators may help pre-
dict mental and physical health outcomes in people who are presently depressed.
However, research so far has been inconsistent in its conclusions about their useful-
ness [24]. Using these biomarkers, an algorithm may choose the patient’s therapy
and give the physician data to conduct an individual evaluation of the patient.
Individualized therapy has changed cancer treatment by using the tumour’s ge-
netic profile as a guide. Since there is no medical test to establish a psychological
diagnosis, applying individualized therapy in psychiatry is difficult [9].

The use of medical imaging of the brain allows for the extraction of biomark-
ers. The quantitative imaging biomarkers, which may increase the sensitivity,
specificity, accuracy, and repeatability of observed features utilized for diagnostic
and therapeutic decision making, are driving a push toward the quantification of
imaging data [25]. PET images the brain on a molecular level, functional MR
imaging (fMR imaging) obtains physiological parameters, and MR spectroscopy
extracts perfusion imaging and biochemical properties [9].

Fronto-limbic areas, including the hippocampus, prefrontal, anterior cingulate cor-
tex, amygdala, and insula, are often predictive of therapy response for MDD pa-
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tients. From 95 studies, Fonseka et al. (2018) [13] discovered numerous putative
biomarkers for treatment response from structural and functional neuroimaging
modalities, while Konarski et al. (2008) [26] evaluated 140 magnetic neuroimaging
investigations of either bipolar disorder or MDD and found comparable findings.
Brandt et al. [27] found 16 different sets of biomarkers with significant promise.
Biomarkers were discovered in fronto-limbic areas, including the prefrontal cor-
tex, anterior cingulate cortex, hippocampus, amygdala, and insula; however, the
intensity and direction of the relationship varied. MDD patients had decreased
striatal and amygdala sizes. Lacerda et al. (2004) [28] found less gray matter
in MDD patients’ OFC. In addition, MDD patients had reduced hippocampus
volumes. Kristin et al. (2021) [8] revealed that the orbitofrontal gyrus may pre-
dict depression.

Obtaining useful biomarkers for psychiatric disorders is not as easy as it sounds.
Biomarkers variability, medications, different diagnostic protocols, and costs are
some of the problems [29]. Radiomics is a quantitative approach to medical ima-
ging that uses complex, non-intuitive arithmetic to improve physicians’ data.

2.1.1 Magnetic Resonance Imaging (MRI)

Bloch and Purcell described NMR in 1946 [30]. In 1980, Nottingham and Aberdeen
created the first clinical MRIs, and MRI is today a potent clinical tool. MRI
provides high-resolution pictures without ionizing radiation [31].

MRI leverages the body’s intrinsic magnetic characteristics to provide detailed pic-
tures. For imaging, the abundant hydrogen nucleus (a single proton) is employed
[32]. The hydrogen proton is like a spinning planet with a north-south pole. It’s
like a little bar magnet. Usually, these hydrogen proton ‘bar magnets’ spin in the
body with random axes [32]. Protons’ axes align under a strong magnetic field
like an MRI scanner [32]. This uniform alignment provides an MRI-axis-aligned
magnetic vector. MRI scanners range from 0.5 to 1.5 Tesla [32]. Radio waves
deflect the magnetic vector when applied to a magnetic field. The radio wave fre-
quency (RF) that resonates hydrogen nuclei depends on the element (hydrogen),
and magnetic field intensity [32]. The magnetic field may be electrically adjusted
from head to toe using a series of gradient electric coils. By modifying the local
magnetic field by tiny increments, various body slices will resonate at different
frequencies [32]. Figure 2.1 shows before and after the application of a magnetic
field and how the proton is oriented in space.

When the radiofrequency source is turned off, the magnetic vector returns to its
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Figure 2.1: Before and after the application of a magnetic field and how the proton is
oriented in space [33]

resting condition, emitting a radio wave signal. This signal produces MR pictures.
Receiver coils are wrapped around the body portion to increase signal detection
[32]. Cross-sectional pictures are created by plotting the received signal’s intensity
on a grey scale [32].

Sequential radiofrequency pulses can highlight specific tissues or problems [32].
Various tissues relax at different speeds when the radiofrequency pulse is turned off.
Protons relax in two ways. First, the magnetic vector must come to rest before the
axial spin can [32]. In magnetic resonance (MR) imaging, a T1-weighted (T1W)
image reveals signal changes based on the tissue’s intrinsic T1 relaxation time [34].
When creating contrast in images, repetition time (TR) and echo time (TE) play
a critical role [35]. With short TE and TR periods, T1-weighted pictures can be
generated. In contrast, longer TE and TR periods yield T2-weighted pictures [34].

MR exams use pulse sequences. Various tissues (fat and water) have different
relaxing periods. By utilizing a ‘fat suppression’ pulse sequence, the signal from
fat is eliminated, leaving just abnormalities [32].

fMRI studies structure and function simultaneously [31]. fMRI uses magnetic field
inhomogeneities caused by oxygenated and deoxygenated haemoglobin. Oxygen-
ated haemoglobin is less paramagnetic than deoxyhemoglobin; hence no exogenous
agent is needed. Because oxygenated blood flows to a tissue, an fMRI will look
different before and after (change in blood oxygenation) [31]. This is because ac-
tivated brain regions have increased blood flow. fMRI provides the same functional
information as PET without radionuclides [31].

MRI is sensitive to illness because most diseases increase the water content. In-
fection and tumour might seem similar, making pathology difficult to determine
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[32]. The image analysis performed by a radiologist is often superior to that of a
non-radiologist [32].

MRI has no known biological dangers since, unlike x-rays and CT scans, it employs
harmless radiofrequency radiation [32]. However, pacemakers, metal clips, and
metal valves can move dangerously in MRI scanners. MRI is becoming more
common in clinical practice as costs and availability drop [32].

2.1.2 Radiomics

The growing translational field of study known as ‘radiomics’ has the primary
objective of eliciting high-dimensional data that can be mined from clinical pic-
tures [36]. Images are analyzed by software that uses mathematical techniques
to extract quantitative characteristics, which are then used as descriptors. Image
acquisition is the first phase in the radiomics pipeline, followed by segmentation,
feature extraction, feature selection, and finally, modelling and assessment [37].
The list below describes the steps in the radiomics pipeline.

• Image Acquisition: Computed Tomography (CT) scans, Positron Emission
Tomography (PET) scans, and Magnetic Resonance Imaging (MRI) scans
are the most prevalent types of medical imaging techniques (MRI) [37].

• Segmentation: The process of determining the perimeter of a lesion based
on a picture or a sequence of images, which may be done manually with the
help of interactive computer tools or automatically with the use of image
segmentation algorithms [38].

• Feature Extraction: Extraction of high-dimension feature data to quantitat-
ively describe characteristics of volumes of interest is at the heart of the field
of radiomics. Agnostic features are those that aim to capture lesion hetero-
geneity through quantitative descriptors. In contrast, semantic features are
routinely used in the radiology vocabulary to characterize regions of interest.
Semantic features are used to describe regions of interest [39].

• Feature Selection: As a result of the feature extraction stage, the radiomics
pipeline contains a vital step called feature selection. This is because the
feature extraction step produces a large number of features. In addition, due
to the constraints imposed by clinical trials on the collection of samples, the
dataset only contains a limited number of samples while having a wealth of
attributes. For the following three reasons, feature selection is critical for
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challenges involving short-wide datasets: 1) to solve the problem known as
the ‘curse of dimensionality’; 2) to condense the input data to shorten the
amount of time it takes for the model to run; and 3) to make the outcome
more easily understandable [40].

• Feature selection, a dimensionality reduction strategy, removes unnecessary,
redundant, or noisy characteristics to choose a limited group of valuable
features. Feature selection can improve learning accuracy, computational
cost, and model interpretability [41]. Methods can be categorized according
to feature selection categories: Filters choose features without a classifier,
Wrapper models use classifiers to discover the best features, and Embedded
approaches look for the optimum model feature subset [42].

• Modelling and assessment: The remaining features, which are significant
and independent of one another, may be utilized to train the model for
the reasonable prediction of classification using different machine learning
algorithms.

2.2 RENT

High-dimensional biological datasets may contain duplicate, noisy, and irrelevant
information, lowering classification performance and raising processing costs. Fea-
ture selection is used to reduce noisy information and find diagnostic patterns [43].
Repeated Elastic Net Technique (RENT) is an ensemble-based feature selection
strategy that seeks to identify resilient features for binary classification problems
by utilizing a logistic regression (LR) model with elastic net regularization that is
trained on different subsets of data [14]. The workflow of RENT is shown in the
figure 2.2.

The distinct subsets are produced by randomly selecting the primary training
data while simultaneously replacing some samples. This results in creating one-of-
a-kind subsets for each model in the ensemble. By determining the frequency with
which a feature is picked across numerous models, using multiple models enables
a more accurate evaluation of the relevance of the features being considered [37].
Elastic Net decides which characteristics should be included in each model. The
characteristics that are not selected weight zero, whereas the features that are
picked have a weight that is not zero [44].

Each trained model is equipped with a vector of feature weights denoted by n that
is then included in a weight matrix denoted by B. In a space with N dimensions
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Figure 2.2: The workflow of RENT. RENT splits and trains the input dataset across
K submodels and selects the features based on three criteria that quantify the feature
selection percentage, stability, and weight. The output is the set of selected features
[14].

for features, the weights matrix B will have dimensions of the form (K ∗ N). A
threshold (τ1) that the user provides controls with the frequency with which the
feature should be chosen from among all K models.

τ (βn) = c (βn) (2.1)

where c (βn) determines how important a characteristic is based on how often it
occurs on average [44], given by

c (βn) =
1

k

K∑
k=1

1, [βk,n ̸= 0] (2.2)

The feature is considered stable if just a few instances of the weights’ signals switch
between positive and negative values (τ2). It would be ideal for a feature to have
weights that are all the same sign, either all positive or all negative. Only when
all of the non-zero weights have the same polarity can the value for τ2 reach its
most significant potential of being equal to or greater than the value for τ1. The
user is given the option of indicating the desired number of proportions of feature
weights with the same sign (τ2) [44].

τ2 (βn) =
1

k
|

K∑
k=1

sign (βk,n) | (2.3)
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The feature routinely exhibits non-zero weights across all K submodels while hav-
ing a very low variance (τ3). The τ3 criterium is defined as

τ3 (βn) = tK−1

 |µ (βn) |√
σ2(βn)

K

 (2.4)

where /mu is feature specific mean , /sigma is the variance and tK−1 is is the
cumulative density function of students t-distribution with K1 degrees of free-
dom. The user has the ability to set a significant level threshold value (τ3) for
the analysis. The value τ3 denotes the cumulative distribution function of the
Student’s tdistribution when K1 degrees of freedom are included [44]. Every one
of the quality measurements is confined inside the range of 0 to 1 ([τ1, τ2, τ3] ∈
[0, 1]) [37]. τ3(n) is a t-test, therefore τ3 = 0.975 yields a 5% significance level
[8]. These selection criteria help the user to define the strictness of the feature
selection process.

2.3 Correlation

Correlation evaluates whether two variables fluctuate and reflects the degree of
their relationship. Finally, covariance defines the linear connection between two
properties and how they change together [15].

The correlation coefficient may be calculated by dividing covariance by feature
standard deviations. The Equation shows this,

CORR (xj, xk) =
σjk

σxj
σxj

(2.5)

where, σxj
and σxj

are the sample standard deviations, and σjk is the sample
covariance. Correlation ranges from -1 to 1. The two features are connected if
their correlation is closer to -1 or 1. When the coefficient is negative, a rise in one
property indicates a reduction in the other feature. The correlation coefficient will
be 0 [15] if there’s no link.
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2.4 One-hot encoding

The characteristics of a dataset might be of several data kinds. Similar data can
also be grouped into a restricted number of groups by a characteristic. Most
algorithms demand numerical input. Hence categorical data should be translated
into numeric data. For each category value, One-Hot Encoding produces a new
column. These columns are given the values 0 and 1 [45].

2.5 Outliers

Outliers are considered suspicious because they are so far out of the norm. The
issue is that even a small number of outliers can significantly skew the overall
results (by altering the mean performance, increasing variability, etc.) [46]. Most
machine learning algorithms perform poorly when an outlier is present. It is there-
fore desirable to identify and eliminate any outliers. Every dataset contains some
data that stands out from the rest for some reasons; some of the most prevalent
explanations are: malicious activity, instrumentation error, change in the environ-
ment, and human error [47]. It is essential to eliminate any outliers that are the
product of improper misrepresentation. The interquartile range, also known as
IQR, is a method that can be utilized to assist in locating outliers in data that is
continuously distributed. This method orders the dataset into four equal parts by
dividing it into quartiles and then dividing each of those quartiles into the dataset.
For example, Q1, Q2, and Q3 are first, second, and third quartiles [48].

IQR = Q3−Q1 (2.6)

upper bound = Q3 + 1.5 ∗ IQR (2.7)

lower bound = Q1− 1.5 ∗ IQR (2.8)

The figure 2.3 shows the range of Q1, Q3 and their upper bound and lower
bound.The data points considered to be outliers are those that either fall below
the lower or above the upper bound.
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Figure 2.3: The workflow of outliers detection and how is it calculated. The value
above Q3 + 1.5 ∗ IQR and below Q1− 1.5 ∗ IQR is regarded as outliers [48].

2.6 Variance Threshold

Constant features have the same or comparable values across the dataset. Machine
learning algorithms cannot make reliable predictions about the target based on
these features as they provide little to no information. High predictor variance is
beneficial, but low predictor variance is not.

By utilizing Sklearn’s Variance Threshold, we can eliminate constant features [45].
The Variance Threshold algorithm is a feature selector that removes from the
dataset all of the low variance features that are of little value when it comes
to modelling [45]. It concentrates solely on the characteristics (x), ignoring the
desired response (y) [45]. For example, using a criterion of 0.01 would eliminate
the column in which 99.9 per cent of the values are identical.

2.7 Data Scaling

The data may be transformed in several ways, one of which is by scaling the data
to restrict the value range. The data (/X) are then scaled to be centred around
the mean (/mu) with a standard deviation (/sigma) of one unit as part of the
standardization process [44], shown in Figure 2.4. The numbers do not need to
fall inside a specific range.

X ′ =
X − µ

σ
(2.9)
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Figure 2.4: The basic representation of the split using RSKF with 4 folds and one
repetition. At each iteration, three folds (lightly shaded) are used for training, and the
remaining fold (dark shaded) is used for testing.

2.8 Model validation

2.9 Splitting the dataset

When there is a very small sample size, it is exceedingly challenging to partition
the dataset into training and test datasets. Therefore, the best method for dividing
the data for training and testing is to employ Repeated Stratified K-Fold [45].

2.9.1 Repeated Stratified K Fold

Medical datasets have few samples for many reasons. With few samples, the
splitting approach fails because of inadequate training and validation data. Cross-
validation increases the model’s generalizability in this case. A modest change on
the K Fold cross-validation approach is developed such that each fold has around
the same percentage of target class samples as the whole set. In case of prediction
difficulties, the mean response value is about the same in all folds. Stratified K
Fold describes this variant. Repeated Stratified K-Fold repeats Stratified K-Fold
with different randomizations, which divide data into training and test sets to
examine model generalizability as shown in figure 2.4. K is the model’s training
frequency [45].
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2.10 Score Metrics

Scoring metrics are measurements that represent a model’s performance. Ac-
curacy, F1 score, Matthews correlation coefficient (MCC), and Area under curve
(AUC) were the measures utilized in the thesis to calculate the model’s perform-
ance. True positive, true negative, false positive, and false negative can be used
to determine all measurements [49].

True positives are actual positives that are accurately anticipated positives (TP).
False negatives are actual positives that were incorrectly forecasted as negatives
(FN). True negatives are actual negatives that are accurately anticipated negatives
(TN). False positives are actual negatives incorrectly forecasted as positives (FP).

Accuracy is calculated by

ACC =
TP + TN

TP + FP + TN + FN
(2.10)

Another accuracy indicator is precision (PR), which evaluates how many depressed
patients were properly predicted. Recall (RC) is the ratio of how many patients
were depressed compared to how many people were projected to be depressed [49].
The weighted average of the precision and recall scores is the F1 measure.

PR =
TP

TP + FP
(2.11)

RC =
TP

TP + FN
(2.12)

F1 = 2
PR.RC

PR +RC
(2.13)

The Matthews correlation coefficient (MCC) is a more reliable statistical rate that
produces a high score only if the prediction performed well in all four confusion
matrix categories (true positives, false negatives, true negatives, and false posit-
ives), proportionally to the size of positive (P̂ ) and negative (N̂) elements in the
dataset [50].

MCC =
TP.TN + FP.FN√

P.(TP + FN).(TN + FP ).N
(2.14)
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The receiver operating curve (ROC) is shown in AUC based on the true positive
rate (TPR) and false positive rate (FPR) (FPR). The larger the ROC, the better
the model’s performance [49].

TPR =
TP

TP + FN
(2.15)

FPR =
FP

FP + TN
(2.16)

2.11 Model algorithm

2.11.1 Logistic Regression

Logistic Regression (LR) is a linear classification approach. It presupposes linearity
between the dependent variable’s logit and the independent variable (predictor).
Logistic Regression employs the logistic sigmoid function (z) defined as:

ϕ (z) =
1

1 + e−z
(2.17)

The activation function’s net input is z. It translates net input to [0, 1], repres-
enting the sample’s class probability. A threshold function converts probability to
binary. Logistic Regression’s threshold is mathematically described as:

z =

{
1, if ϕ (z) ≥ 0.5

0, otherwise
(2.18)

2.11.2 Support Vector Machine

Support Vector Machine (SVM) is a powerful machine learning technique for clas-
sifying data. The classification method finds a hyperplane that divides the two
classes, termed the decision boundary, as shown in Figure 2.5. It maximizes the
distance between decision boundaries and samples. Large margins reduce gener-
alization errors in models [15].
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Figure 2.5: The ideal hyperplane, support vectors, and margin employed in the SVM
method are illustrated here. Figure found in [51]

In this particular instance, we are attempting to differentiate between the dark and
the samples samples, which we may refer to as hyperplane. The ideal hyperplane,
support vectors, and margin employed in the SVM method are illustrated in figure
2.5 [51]. The support vectors are the samples nearest to the decision border [44].

2.11.3 Random Forest

The random forest model is an example of an ensemble tree-based learning al-
gorithm; the method takes the predictions from many individual trees and calcu-
lates an overall average [52]. It is feasible to construct a model that generalizes
better than one tree on its own by integrating numerous trees into a single model.
The risk of the model becoming overly dependent on the training data may be
mitigated by ensuring an adequate number of trees [44]. After the tree has been
created, a set of bootstraps that do not include any specific record from the ori-
ginal data [out-of-bag (OOB) samples] are used as the test set [53]. In the figure,
one can find a concise explanation of the algorithm behind the random forest.

Random forest is more stable in the presence of outliers and very high dimensional
parameter spaces when compared to other machine learning algorithms because it
adheres to certain principles for tree building, tree combination, self-testing, and
post-processing [54] [55]. The pseudocode can be seen in figure 2.6. In comparison
to decision trees, the estimation of the error rate produced by the random forest
method is far more precise [52].
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Figure 2.6: The psuedocode of random forest classifier. [52]

.

2.12 PCA

PCA is an unsupervised, non-parametric data analysis approach [56]. Principal
components can decrease a dataset’s dimensionality while keeping systematic in-
formation. The orthogonal transformation turns correlated properties into linearly
uncorrelated ones [15]. PCA creates additional axes, termed principal components
(PC), along the direction of greatest variance. PCA functions as follows: First,
normalize the data since principal component scaling is sensitive. The covariance
matrix is next. Calculating covariance between characteristics yields the covari-
ance matrix. Eigenvalue decomposition decomposes the covariance matrix into
eigenvectors and eigenvalues [44]. Eigenvector elements are the original data’s
weight coefficients or loadings. The following condition holds for an eigenvector,
v⃗, with eigenvalue, λ.

∑
v⃗ = v⃗ (2.19)

For the reduction, choose the subset of eigenvectors v⃗ that contributes most to
variance, then use the eigenvalues λ to compute explained variance. λj is the spe-
cific eigenvalue. For example, If d = 2, the covariance matrix gives 3X3 dimension
matrix where 12 is the covariance for j = 1 and k = 2.

Explained variance ratio =
λj∑d
j=1 λj

(2.20)
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which is the fraction of the given eigenvalue divided by the total sum of all the
eigenvalues[44]. Similarly to eigenvalues, eigenvectors are ordered. The k top
related eigenvectors may be picked from this to represent the new feature subspace.
k must be less than d to reduce dimension. It is best to choose the subset of
eigenvectors that includes most of the data’s information or the number of major
components that most of the variance. Next, build a transformation matrix, W,
from the top k eigenvectors. This matrix can convert the original data set into a
new feature subspace [44].

2.13 PLSR

Partial least squares regression (PLSR) is the statistical technique used to invest-
igate the nature and magnitude of the connections between variables. Regression
analysis estimates characteristics based on past data [57]. The equation that can
be used to describe the regression model is

y = a+ bx (2.21)

in which a represents the intercept of the line that best fits the data, and b rep-
resents the slope of the line. The individual sample’s divergence from the line is
referred to as the residuals. The best-fitting line to the data is determined by
selecting a line that minimizes the sum of the squared residuals. The line that
achieves the lowest possible value for the sum of the squared residuals is known
as the least-squares line, and the equation used to determine its slope is shown
below.

b =
SSxy

SSxx

(2.22)

In this equation, the total of the cross products is denoted by SSXY , while the sum
of the squares for variable x is denoted by SSXX [44]. A supervised method for
conducting exploratory data analysis, partial least squares regression, or PLSR,
uses partial least squares. It projects the data into a new subspace, just like
principal component analysis (PCA); however, in contrast to PCA, it projects
both the X and Y data at the same time [44].
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Materials and Methods

3.1 Data

The purpose of the EMBARC (Establishing Moderators and Biosignatures of An-
tidepressant Response for Clinical Care) study [58] was to discover why antide-
pressant medication works for some people with MDD, but not for others. During
the course of the EMBARC project, participants were observed to monitor the de-
velopment of their symptoms, and they also had MRI scans, the data from which
will ideally enable researchers to identify a collection of biosignatures that can as-
sist in the process of specific treatment planning. Recent improvements in machine
learning allow for the study of vast sets of factors, even if no single MRI variable
has demonstrated adequate predictive ability to predict treatment response when
analyzed individually.

Sertraline is a commonly used medicine in treating a major depressive disorder,
obsessive-compulsive disorder, panic disorder, PTSD, premenstrual dysphoria, and
social anxiety disorder [59]. For sixteen weeks, 309 participants were randomly
allocated to either a placebo or sertraline arm. Baseline MRI scans included T1-
weighted and Diffusion Tensor Imaging (DTI). The degree of anisotropy in the
brain microstructure may be assessed using DTI. MDD and white matter altera-
tions are linked, according to a number of studies [60]. Analytical and processing
methods for DTI data have been detailed at great length [61]. Images of frac-
tional anisotropy (FA) were created for each participant by fitting diffusion tensor
models. The Desikan–Killiany–Tourville atlas was utilized to construct cortical
and subcortical segmentations using FastSurfer [62]. PyRadiomics was used to

21
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construct regional image characteristics called radiomics from these segmentations
and FA-maps [63].

3.1.1 Description of datasets

PhD student Maarten Poirot at Amsterdam University Medical Center provided
the processed data extracted from MR images. There are 297 patients in the
datasets. A total of 28 patients were eliminated because of missing data, resulting
in a dataset of 268 subjects, 138 of which were in the placebo group and 130 of
whom were in the sertraline group (1). In these datasets, we solely used seratline-
treated class (1). Only seven demographic data (age, gender, etc.) were included in
the 10175 attributes; the rest were radiomics features characterizing the anatomy
of the brain (shape, texture, etc.) in dwi-dataset. In anatomical dataset, there are
20340 features for the same patients. Table 3.1 shows the dimension of the data
provided for this thesis. Table 3.2 shows decription of non-radiomics features in
the data.

Data Dimention

dwi dataset (Clinical) (296,10175)

anat dataset (Anatomical) (296,20340)

Table 3.1: The initial size and dimension of the data.

Table 3.2 shows the description of non-radiomics features in the data.
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Feature name Description Data Type

w8 responder Depression or not Categorical

age Age of the patients Continuous

race Race [White, Asian, Black or
African American and Other]

Categorical

gender Gender [Male, Female] Categorical

hispanic Hispani [Hisp-No, Hisp-Yes] Categorical

Stage1X Medicine given on the first stage
of trail [sertaline, Placebo]

Categorical

w0 score 17 Initial Score patients according to
HDRS17

Continuous

w8 score 17 End of week 8 trial Score patients
according to HDRS17

Continuous

w16 score 17 End of Week 16 trial Score of the
patients according to HDRS17

Continuous

Table 3.2: The decription of non-radiomics features in the data.

3.2 Software

In the study, we utilized the Anaconda open source distribution to implement the
study’s software [64]. Python 3.7.13 was used in this project. As far as the data
processing goes, we used Pandas [65] version 1.3.5 and NumPy [66] version 1.21.5.
PCA and PLSR exploratory analysis and visualization were performed using the
Hoggorm [67] and Hoggmplot [68] packages. Matplotlib [69] version 3.5.1, Plotly
[70] version 5.8.0, and Seaborn [71] version 0.11.2 are also used for visualization.
Data processing and machine learning were handled using Scikit-learn [45] and
RENT [14], respectively, versions 0.0.1 and 1.0.2.

3.3 Workflow

The workflow that was utilized for the study may be seen in the figure 3.1. Data
were preprocessed to ensure robustness and reliability. The samples in the test set
can have a big influence on the model’s prediction when using a short wide dataset.
Using the train-test split just once would not give us a legitimate result since the
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Figure 3.1: The workflow used in the study. PCA and PLSR were done at point 1.

split may sometimes produce high performance, and other times may give poor
performance. The data was divided into a training and a test set using RSKF
cross validation with four folds and three repetition to overcome the problem.

3.4 Data preprocessing

In the first stage of the experiment, there were two groups: sertraline and placebo.
First, one hundred forty-six samples, who were given sertraline, were chosen for
the sertraline group. Next, we eliminated 26 samples with the most missing values
in the data. The study’s target, labelled as ’w8 responder’ in the data, shows
whether or not the participants were diagnosed with depression. As the target
column was already binary, it required no preprocessing. The target feature was
separated into its data frame before the rest of the features were subjected to
preprocessing. The getdummies() function in Pandas uses One-hot-encoding to
convert category labels into numerical values, as discussed in Section 2.1. In
addition, pandas’ drop duplicates() technique aids in analysing duplicate values
and removing duplicate features from a data frame. The constant features were
then deleted using Variance Threshold, as mentioned in section 2, using a 0.1
threshold. Next, outliers were identified and removed. Finally, as discussed in
section 2, the next step removed correlated features with greater than 90 percent
correlation. The anatomical dataset also employed the same patients and the same
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steps as the clinical dataset.

3.5 Baseline Model

The PCA analysis on the splits was carried out with the help of the nipalsPCA
function, which is part of the Hoggorm package. The purpose of the exploratory
analysis was to review the data to see if there were any interesting patterns or
patterns of systematic change. Using the dataset of RENT-selected features from
each split, PCA was performed for each split. Visualizations of the scores, loadings
and correlation loadings for each of the various blocks were created using the
Hoggormplot package to seek outliers and feature clustering. Finally, the analysis
was performed on the training data to check the systematic variation and patterns
both before and after splitting and comparable to one another hyperparameter
search.

Table 3.3 shows a list of classifiers together with their hyperparameters and a brief
description of each.

Model Hyperparameter Description

Logistic Regression C Inverse of regularisation strength
(float)

solver Algorithm for optimization prob-
lem [′lbfgs′,′ liblinear′]

Random Forest criterion Function to measure the quality
of a split [′gini′,′ entropy′]

max depth Maximum depth of the tree (int)

max features Maximum number of features to
consider [′auto′,′ sqrt′,′ log′]

n estimators No. of trees in the forest (int)

SVM C Regularisation parameter (float)

kernel Kernel type [′linear′,′ rbf ′]

gamma Kernel coefficient (float)

Table 3.3: The list of classifiers together with their hyperparameters and a brief de-
scription of each.

A baseline is a point of reference that helps put the results of trained models
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Figure 3.2: The distribution of the target column ’w8 responder’.

into context. The models are accessible as part of the Scikit-Learn package. The
hyperparameters of the models can be altered to improve the models’ overall per-
formance. Grid searches were done on each model to discover the optimum hyper-
parameters using the scikit-learn function GridSearchCV. The scikit-learn function
GridSearchCV was used, which did a five-fold cross-validated grid search over a
defined grid of parameters to find the combination of hyperparameters that made
the best predictions on the training data. The estimator, parameter grid, score,
and the number of folds utilized in the cross-validation were all inputs for the
GridSearchCV program. The baseline and feature selected by RENT models were
grid searched to find the optimal parameters.

There were 130 targets, 53 of which had the class label 1, while the other 77 had the
class label 0 as shown in figure 3.2. The scoring measure was the Matthews correl-
ation coefficient (MCC), as detailed in Section 2. The parameters that produced
the best results in the grid search were used to initialize the various classifiers.
We used Scikit-Learn’s RepeatedStratifiedKFold function as cross validation for
evaluation. Finally, we assessed the effectiveness of each classifier by taking the
mean of the scores obtained after the classification process.
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3.6 Feature selection using RENT

The RENT method was applied as a feature selection algorithm on every split.
After several rounds of trial and error, the hyperparameter was optimized to its
optimal value. The C and L1 hyperparameters were adjusted to the values of 0.1
and 0.7, respectively. The values for tau, denoted by τ1, τ2, and τ3, were each
initialized to a value of 0.4, 0.4, and 0.975, respectively. The characteristics picked
on each split are preserved in their unique data frame for use in the future.

The remaining fourth fold, with only the selected features, was tested with differ-
ent classifiers. GridsearchCV was used to find the best hyperparameter for each
classifier. The scores are the mean of each classifier in each fold. MCC score
was used as the performance metric to compare the prediction performance of the
classifiers.
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Chapter 4

Results

This research aimed to identify the radiomics features and brain regions that were
predictive of class labels. The dataset was then divided into a training set and
a test set. First, we performed the Repeated Elastic Net Technique (RENT)
technique on each split to discover the ideal feature set, which was accomplished
by training an ensemble of one hundred elastic net regularized models. And then
selecting features based on the weight distributions of features across all models.
Next, the model made calculations to determine the average level of performance
across all models as well as the frequency the model chose a feature. Following
that, logistic regression was carried out on the test set to validate the effectiveness
of the RENT model. In addition, a validation study was conducted to determine
whether the RENT model performed significantly better than a random model.

4.1 Data preprocessing

The dataset consisted of 296 samples with 10160 columns consisting of radiomics
and demographic features and a target column. The total samples were reduced
to 146 by choosing just the sertraline group, as shown in fig. Out of 146 samples,
26 had the most missing values. Following their exclusion, there were a total of
130 samples. The figure 3.2 depicts the target class distribution, with 77 people
classified as not depressed and 53 as depressed. As indicated in figure 4.6, the
patients were diagnosed in four different centres. Most patients were between the
ages of 20 and 30, followed by 30 to 40 years and 50-60 years. The figure 4.2 and
4.1 display total number of patients in that age group. The table 4.1 reflects the

29
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dimension of the data at every step of preprocessing. Between session 1 and 2,
session 1 features were only selected from anatomical data for the study.

Pre-process dwi dataset
(Clinical)

anat dataset
(Anatomical)

Initial Dimension (296,10175) (296,20340)

Sertraline Group and Session 1
(free from missing values)

(130,10166) (146, 10171)

Only radiomics features (130,10165) (130, 10171)

After duplicate features removal (130, 4767) (130, 10165)

After constant features removal (130, 2346) (130, 5195)

After outliers removal (130, 393) (130, 1487)

After correlated features removal (130, 344) (130, 729)

Table 4.1: Initial dimension of the data and change in dimension after every pre-
processing process.

The figure 4.3, 4.4 and 4.5 shows the pie chart of the columns ‘race’, ‘hispanic’,
and ‘gender’ in the data recpectively.

The dataset and target were split. The columns ‘w8 score 17’ and ‘w16 score 17’
have been removed since doctors utilized them to determine the ultimate goal
which was highly correlated to the target. In addition, ‘Stage2TX’ and ‘Stage1TX’
columns were removed since they specified the study strategy for separating placebo
and sertraline groups. After removing duplicates, constants, outliers, and correl-
ated columns, data preprocessing reduced the data to 130 rows by 344 for clinical
data whereas 130 rows by 729 columns for anatomical data. The MR images were
taken in four different centers as shown in figure 4.6.
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Figure 4.1: Distribution of age group in the data.

Figure 4.2: Bar plot of the distribution of age group in the data.
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Figure 4.3: Distribution of values in column ’race’ in the data. Four different values
wer used in race feature column.

Figure 4.4: Distribution of variables in ’hispanic’ columns in the data.
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Figure 4.5: Bar plot of the distribution of gender, here male or female, in the data.

Figure 4.6: The number of samples from each of the centers
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4.2 DWI dataset

4.2.1 PCA

Figures showing the scores, loadings, and explained variance are shown as results
from an analysis performed with principal component analysis (PCA) on whole
data after data preprocessing. The plot of the PCA scores can be found in the
figure 4.16.

Figure 4.7: PCA scores of clinical data. The first principal component is along the
horizontal axis, while the second principal component is along the vertical axis. The
proportion of the explained variance each component contributes to is indicated in par-
entheses after the components’ respective axes.

Figure 4.8: The figure displays loading plot from the PCA analysis.

The figure does not illustrate any unique clustering of the data into two groups,
nor does it show any extreme outliers. Following each component’s correspond-
ing axis is a set of parentheses containing an indication of the percentage of the
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explained variance to the component contributes. Finally, a figure 4.17 of the
loadings illustrates the degree to which each characteristic exerts its impact on the
components. For example, it is clear from the figure that the variable 6 referred
to as ‘ses-1 Left-Lateral-Ventricle original-gldm-DependenceEntropy’ has a greater
propensity to be in the initial component. The figure 4.20 displays explained vari-
ance of the principal components. The blue line shows the calibrated variance,
while the red line represents the validated variance. The figure 4.10 shows the
cumulative explained variance as the principal components are included.

Figure 4.9: Explained variance of the principal components.The blue line shows the
calibrated variance, while the red line represents the validated variance.

Figure 4.10: The cumulative explained variance from the PCA analysis.

4.2.2 PLSR

After data preparation, analysis using partial least squares regression (PSLR) was
carried out on the entire dataset. As a consequence of this analysis, figures dis-
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playing the scores, loadings, and explained variance were generated and shown.
The results of PLSR are not the same as those of PCA since PLSR is a supervised
approach and incorporates the target feature into the analysis. The plot of the
PCA scores can be found in the figure 4.16. The first number reflects the explained
variance in x, the features in the data, while the second indicates the explained
variance in y, which is the target variable.

Figure 4.11: PLSR scores of clinical data. The first principal component is along
the horizontal axis, while the second principal component is along the vertical axis.
The proportion of the explained variance each component contributes to is indicated in
parentheses after the components’ respective axes for both x and y.

Figure 4.12: Loading plot from the PLSR analysis on clinical data.

No distinct grouping of the data into two groups is depicted in the figure, and no
extreme outliers are shown either. Following each component’s corresponding axis
is a set of parentheses containing an indication of the percentage of the explained
variance to the component contributes. Finally, the figure 4.17 of the loadings
illustrates the degree to which each characteristic exerts its impact on the com-
ponents. For example, it is clear from the figure that the variable 25 referred to as
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’ses-1 Left-Putamen original-glszm-LargeAreaEmphasis’ has a greater propensity
to be the initial component.

4.2.3 Classification modelling and evaluation

Baseline

After preprocessing, the data was split with RSKF with four folds and three re-
petitions. GridsearchCV was used to determine the best hyperparameters and
performance for each split employing Logistic Regression, Support Vector Ma-
chine, and Random Forest classifiers. The table 4.2 shows the model with the
greatest MCC score in each split with repeated stratified k-fold cross validation.

Overall, Logistic Regression outperformed all other classifiers when computing the
average performance on all splits. The table 4.3 shows the model with the greatest
MCC score in each split with repeated stratified k-fold cross validatoin.

RENT Hyperparameters selection

RSKF was used to partition the data into four folds and one repeat. RENT with
hyperparameters C = 0.1 and L1 = 0.7 was run at each split. After trial and error,
τ1,τ2, and τ3 were set at 0.4, 0.4, and 0.975, respectively. RENT chose a set of
features for each split. The classifiers were trained and tested on the selected
subset of features. The MCC score was employed as the primary performance
metric on both RENT and classifiers. Through many rounds of stratified k-folding,
an average MCC score was calculated.

The table 4.5 lists the features selected by RENT with RSKF four folds and three
repetition, totalling to 12 splits with the number of times the feature was selected.

The figure 4.13 is the plot generated by RENT. The list of features and the number
of times RENT picked each feature are shown on the horizontal and vertical axes.
After 100-fold repetition, the one above the 0.8 horizontal line, for example, was
picked more than 80% of the time. We need to know if the specified characteristics
produce models that outperform random ones to verify them. The figure 4.22 dis-
plays validation plot RENT. Data on MCC scores from 100 runs in two validation
experiments are shown in the blue and green graphs.There are as many random
characteristics drawn in Validation Study 1 (VS1) as RENT has chosen [8]. In the
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Split Model Hyperparameter Value MCC
Score

1 Logistic Regression C 0.0001 0.0000

solver ’lbfgs’

2 Logistic Regression C 0.1 0.2714

solver ’liblinear’

3 Logistic Regression C 0.1 0.1102

solver ’liblinear’

4 Logistic Regression C 0.1 0.3181

solver ’liblinear’

5 Logistic Regression C 0.1 0.2930

solver ’liblinear’

6 Logistic Regression C 0.1 0.2556

solver ’liblinear’

7 Logistic Regression C 0.1 0.3181

solver ’liblinear’

8 Logistic Regression C 10.0 0.1479

solver ’liblinear’

9 Logistic Regression criterion ’gini’ 0.0551

max depth 30

10 Logistic Regression C 100.0 0.2714

solver ’lbfgs’

11 Logistic Regression criterion ’gini’ 0.345

max depth 60

12 SVM C 10.0 0.1102

gamma 0.01

kernel ’rbf’

Table 4.2: The model with the greatest MCC score in each split on clinical data.

second validation study (VS2), the target labels are permuted randomly, but the
sample characteristics are kept. The MCC score for the RENT model is shown in
the red line [8].
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Model F1 1 F1 0 ACC MCC ROC

mean std mean std mean std mean std mean std

LR 0.45 0.17 0.69 0.04 0.61 0.07 0.15 0.19 0.58 0.09

RF 0.26 0.18 0.69 0.08 0.57 0.11 0.03 0.29 0.51 0.11

SVM 0.03 0.07 0.74 0.01 0.59 0.02 0.01 0.15 0.5 0.03

Table 4.3: Average performance of classifiers in all split on all features of clinical
dataset.

Model F1 1 F1 0 ACC MCC ROC

mean std mean std mean std mean std mean std

SVM 0.4158 0.1036 0.6963 0.0622 0.6048 0.0627 0.1497 0.1273 0.5657 0.062

LR 0.477 0.0856 0.635 0.0617 0.5717 0.0646 0.1164 0.1341 0.5584 0.0674

RF 0.4971 0.0886 0.6898 0.0631 0.6202 0.0624 0.2053 0.1322 0.5966 0.0618

Table 4.4: Average score of classifiers on RENT selected features set at every split on
clinical dataset .

Figure 4.13: The figure displays feature selected after 100 fold repetition by RENT on
clinical data. The list of features and the number of times RENT picked each feature
are shown on the horizontal and vertical axes.
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Feature Name Freq.

ses-1 ctx-rh-rostralmiddlefrontal original-shape-LeastAxisLength 11

ses-1 ctx-lh-superiorfrontal original-shape-LeastAxisLength 8

ses-1 ctx-rh-lingual original-glszm-ZoneEntropy 8

ses-1 ctx-lh-supramarginal original-shape-Maximum3DDiameter 7

ses-1 ctx-rh-caudalmiddlefrontal original-glszm-ZoneEntropy 6

ses-1 ctx-rh-middletemporal original-glszm-ZoneEntropy 6

ses-1 Right-Thalamus-Proper original-shape-Maximum2DDiameterRow 6

ses-1 ctx-rh-parsorbitalis original-shape-Maximum2DDiameterRow 5

ses-1 Right-Inf-Lat-Vent original-shape-MinorAxisLength 5

ses-1 Right-Inf-Lat-Vent original-gldm-LargeDependenceEmphasis 5

ses-1 3rd-Ventricle original-shape-Maximum2DDiameterRow 3

ses-1 ctx-rh-isthmuscingulate original-glszm-ZoneEntropy 3

ses-1 ctx-rh-entorhinal original-shape-LeastAxisLength 3

ses-1 ctx-rh-fusiform original-shape-Maximum2DDiameterRow 3

ses-1 ctx-lh-precentral original-shape-LeastAxisLength 2

ses-1 ctx-rh-superiorparietal original-firstorder-Maximum 2

ses-1 ctx-lh-parstriangularis original-glszm-ZoneVariance 2

ses-1 ctx-rh-superiorfrontal original-glszm-ZoneVariance 2

ses-1 ctx-lh-pericalcarine original-shape-Maximum2DDiameterColumn 2

ses-1 Left-Thalamus-Proper original-shape-LeastAxisLength 2

ses-1 Right-Lateral-Ventricle original-gldm-LargeDependenceEmphasis 2

ses-1 4th-Ventricle original-gldm-LargeDependenceEmphasis 2

ses-1 ctx-lh-parstriangularis original-glszm-ZoneEntropy 2

ses-1 ctx-lh-fusiform original-shape-Maximum2DDiameterSlice 2

ses-1 Right-Hippocampus original-glszm-LargeAreaEmphasis 2

ses-1 ctx-lh-caudalmiddlefrontal original-shape-Maximum2DDiameterRow 1

ses-1 ctx-lh-parahippocampal original-shape-MajorAxisLength 1

ses-1 ctx-lh-superiortemporal original-gldm-LargeDependenceEmphasis 1

ses-1 Right-Hippocampus original-shape-MinorAxisLength 1

ses-1 Left-VentralDC original-firstorder-Energy 1

ses-1 Right-Cerebellum-Cortex original-shape-MajorAxisLength 1

ses-1 ctx-rh-pericalcarine original-gldm-LargeDependenceEmphasis 1

ses-1 Right-Thalamus-Proper original-shape-LeastAxisLength 1

ses-1 ctx-lh-superiorparietal original-firstorder-Maximum 1

ses-1 ctx-rh-inferiorparietal original-shape-LeastAxisLength 1

Table 4.5: List of RENT selected features with their selection frequency from RSKF
split of 12 splits on clinical data.
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Figure 4.14: Validation plot RENT. Data on MCC scores from 100 runs in two val-
idation experiments are shown in the blue and green graphs.There are as many random
characteristics drawn in Validation Study 1 (VS1) as RENT has chosen. In the second
validation study (VS2), the target labels are permuted randomly, but the sample char-
acteristics are kept. The MCC score for the RENT model is shown in the red line.



42 CHAPTER 4. RESULTS

Figure 4.15: Explained variance of the principal components of anatomical data. The
blue line shows the calibrated variance, while the red line represents the validated vari-
ance for x.

Figure 4.16: PCA scores of anatomical data. The first principal component is along
the horizontal axis, while the second principal component is along the vertical axis.
The proportion of the explained variance each component contributes to is indicated in
parentheses after the components’ respective axes.

4.3 ANAT dataset

4.3.1 PCA

Figures showing the scores, loadings, and explained variance are shown as results
from an analysis performed with principal component analysis (PCA) on whole
data after data preprocessing. The plot of the PCA scores can be found in the
figure 4.16. The figure 4.20 displays explained variance of the principal compon-
ents. The blue line shows the calibrated variance, while the red line represents the
validated variance for x, the columns in the data.
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Figure 4.17: Loading plot from the PCA analysis of anatomical data.

Figure 4.18: Explained variance of the principal components of anatomical data.The
blue line shows the calibrated variance, while the red line represents the validated vari-
ance.

The figure does not illustrate any unique clustering of the data into two groups,
nor does it show any extreme outliers. Additionally, the plot does not display
any extreme outliers. Following each component’s corresponding axis is a set of
parentheses containing an indication of the percentage of the explained variance
to the component contributes.

Finally, a figure 4.17 of the loadings illustrates the degree to which each charac-
teristic exerts its impact on the components. For example, it is clear from the
figure that the variable referred to as ‘ses-1 Left-Lateral-Ventricle original-gldm-
DependenceEntropy’ has a greater propensity to be the initial component.

The figure 4.20 displays explained variance of the principal components.The blue
line shows the calibrated variance, while the red line represents the validated vari-
ance.
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Figure 4.19: PLSR scores of anatomical data. The first principal component is along
the horizontal axis, while the second principal component is along the vertical axis.
The proportion of the explained variance each component contributes to is indicated in
parentheses after the components’ respective axes for both x and y.

4.3.2 PLSR

After data preparation, analysis using partial least squares regression (PSLR) was
carried out on the entire dataset. As a consequence of this analysis, figures display-
ing the scores, loadings, and explained variance were generated and shown. The
plot of the PCA scores can be found in the figure 4.19. the first number reflects the
explained variance in x, while the second number indicates the explained variance
in y.

No distinct grouping of the data into two groups is depicted in the figure 4.19, and
no extreme outliers are shown either. Following each component’s correspond-
ing axis is a set of parentheses containing an indication of the percentage of the
explained variance to the component contributes.

The figure 4.20 displays explained variance of the principal components.The blue
line shows the calibrated variance, while the red line represents the validated vari-
ance.
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Figure 4.20: The figure displays explained variance of the principal components.The
blue line shows the calibrated variance, while the red line represents the validated vari-
ance for x.

4.3.3 Classification modelling and evaluation

Baseline

The processes done in clinical data are comparable to steps in clinical data. RSKF
was used to divide the data into four groups with three repeats after preprocessing
for the data splits. For each split, GridsearchCV employed Logistic Regression,
Support Vector Machine, and Random Forest classifiers to identify the optimum
hyperparameters and performance. The table 4.6 The model with the greatest
MCC score in each split with repeated stratified k-fold is shown.

Overall, Logistic Regression outperformed all other classifiers when computing the
average performance on all splits.

Model F1 1 F1 0 ACC MCC AUC

mean std mean std mean std mean std mean std

LR 0.37 0.11 0.67 0.04 0.57 0.05 0.06 0.12 0.53 0.06

RF 0.27 0.12 0.69 0.04 0.56 0.06 0.02 0.16 0.51 0.06

SVM 0.06 0.09 0.72 0.03 0.57 0.03 -0.05 0.13 0.49 0.03

Table 4.6: Average performance of classifiers in all split on all features of anat dataset.
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RENT Hyperparameters selection

RSKF was used to partition the data into four folds and one repeat. RENT with
hyperparameters C = 0.1 and L1 = 0.7 was run at each split. After trial and error,
τ1,τ2, and τ3 were set at 0.4, 0.4, and 0.975, respectively. RENT chose a set of
features for each split. The classifiers were trained and tested on the selected
subset of features. The MCC score was employed as the primary performance
metric on both RENT and classifiers. Through many rounds of stratified k-folding,
an average MCC score was calculated.

The table 4.9 shows the score of each classification model with the highest MCC
score in each split with repeated stratified k-fold and RENT selected features on
anatomical data. The tables 4.7 and 4.8 lists the features selected by RENT with
RSKF four folds and three repetition, totalling to 12 splits with the number of
times the feature was selected.

The table 4.7 and 4.8 has list of features selected with the number of times the
feature was selected by RENT after RSKF 12 splits on anatomical dataset.

From the table 4.9, we can see that performance score of different classifiers on
RENT selected features for anatomical data. The figure 4.21 shows feature selected
after 100 fold repetition by RENT on anatomical data. The list of features and
the number of times RENT picked each feature are shown on the horizontal and
vertical axes. The figure 4.22 displays the validation plot RENT on anatomical
dataset. The figure displays validation plot RENT. Data on MCC scores from 100
runs in two validation experiments are shown in the blue and green graphs.There
are as many random characteristics drawn in Validation Study 1 (VS1) as RENT
has chosen. In the second validation study (VS2), the target labels are permuted
randomly, but the sample characteristics are kept. The MCC score for the RENT
model is shown in the red line.

The table 4.10 has the list of features selected at least 50% times of the time by
RENT on both clinical and anatomical data. Seven features from clinical data and
four features from anatomical data were selected.
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Figure 4.21: Feature selected after 100 fold repetition by RENT on anatomical data.
The list of features and the number of times RENT picked each feature are shown on
the horizontal and vertical axes.

Figure 4.22: The validation plot RENT on anatomical dataset. The figure displays
validation plot RENT. Data on MCC scores from 100 runs in two validation experiments
are shown in the blue and green graphs.There are as many random characteristics drawn
in Validation Study 1 (VS1) as RENT has chosen. In the second validation study (VS2),
the target labels are permuted randomly, but the sample characteristics are kept. The
MCC score for the RENT model is shown in the red line.
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Feature Name Freq.

ses-1 ctx-rh-rostralmiddlefrontal original-shape-LeastAxisLength 12

ses-1 Right-Inf-Lat-Vent original-firstorder-Energy 10

ses-1 ctx-lh-posteriorcingulate original-glszm-ZoneEntropy 8

ses-1 ctx-lh-supramarginal original-shape-Maximum3DDiameter 7

ses-1 Right-Thalamus-Proper original-shape-Maximum2DDiameterRow 5

ses-1 ctx-lh-superiorfrontal original-shape-LeastAxisLength 5

ses-1 Right-Inf-Lat-Vent original-shape-MinorAxisLength 4

ses-1 ctx-rh-parsorbitalis original-shape-Maximum2DDiameterRow 4

ses-1 CSF original-glszm-ZoneEntropy 3

ses-1 ctx-rh-entorhinal original-shape-LeastAxisLength 3

ses-1 ctx-lh-middletemporal original-gldm-DependenceVariance 3

ses-1 Left-Caudate original-glszm-HighGrayLevelZoneEmphasis 3

ses-1 ctx-rh-fusiform original-shape-Maximum2DDiameterRow 3

ses-1 ctx-lh-superiorfrontal original-gldm- LargeDependenceHighGray-
LevelEmphasis

3

ses-1 ctx-lh-middletemporal original-glszm-ZoneEntropy 3

ses-1 Right-Amygdala original-firstorder-Minimum 3

ses-1 4th-Ventricle original-gldm-LargeDependenceHighGrayLevelEmphasis 3

ses-1 ctx-lh-precuneus original-glcm-Autocorrelation 3

Table 4.7: List of RENT selected features with their selection frequency from RSKF
split of 12 splits on anatomical data.
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Feature Name Freq.

ses-1 4th-Ventricle original-firstorder-Energy 2

ses-1 ctx-lh-inferiorparietal original-glszm-ZoneEntropy 2

ses-1 ctx-lh-rostralanteriorcingulate original-gldm-DependenceVariance 2

ses-1 Right-Inf-Lat-Vent original-glcm-Autocorrelation 2

ses-1 Right-Amygdala original-glcm-Autocorrelation 1

ses-1 Left-Accumbens-area original-glszm-ZoneEntropy 1

ses-1 ctx-rh-posteriorcingulate original-glszm-ZoneVariance 1

ses-1 ctx-rh-transversetemporal original-glszm-ZoneEntropy 1

ses-1 ctx-lh-precuneus original-gldm-LargeDependenceHighGrayLevelEmphasis 1

ses-1 ctx-rh-transversetemporal original-ngtdm-Complexity 1

ses-1 ctx-lh-cuneus original-gldm-DependenceVariance 1

ses-1 ctx-lh-postcentral original-firstorder-Maximum 1

ses-1 ctx-lh-superiorparietal original-glszm-ZoneEntropy 1

ses-1 Right-Hippocampus original-shape-MinorAxisLength 1

ses-1 3rd-Ventricle original-shape-Maximum2DDiameterRow 1

ses-1 ctx-lh-parsorbitalis original-ngtdm-Complexity 1

ses-1 ctx-lh-rostralanteriorcingulate original-glszm-
HighGrayLevelZoneEmphasis

1

ses-1 ctx-lh-rostralanteriorcingulate original-glszm-
SmallAreaHighGrayLevelEmphasis

1

ses-1 ctx-lh-caudalmiddlefrontal original-shape-Maximum2DDiameterRow 1

ses-1 Left-Accumbens-area original-glszm-SmallAreaHighGrayLevelEmphasis 1

ses-1 ctx-lh-parahippocampal original-firstorder-Kurtosis 1

ses-1 Brain-Stem original-glszm-GrayLevelNonUniformity 1

ses-1 ctx-lh-superiorfrontal original-glcm-Autocorrelation 1

ses-1 Left-Thalamus-Proper original-shape-LeastAxisLength 1

ses-1 CSF original-glszm-GrayLevelNonUniformity 1

ses-1 ctx-rh-caudalmiddlefrontal original-glszm-ZoneEntropy 1

Table 4.8: List of RENT selected features with their selection frequency from RSKF
split of 12 splits on anatomical data.
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Model F1 1 F1 0 ACC MCC AUC

mean std mean std mean std mean std mean std

SVM 0.4746 0.1425 0.6852 0.0763 0.61 0.0898 0.1744 0.195 0.5846 0.0941

LR 0.4503 0.1033 0.6401 0.0617 0.5691 0.0601 0.1019 0.1282 0.5509 0.0641

RF 0.4334 0.0959 0.6575 0.0572 0.5767 0.0555 0.1039 0.1187 0.5504 0.0567

Table 4.9: Average score of classifiers on RENT selected features set at every split on
anat dataset .

Feature Name Freq.

Clinical data

ses-1 ctx-rh-rostralmiddlefrontal original-shape-LeastAxisLength 11

ses-1 ctx-lh-superiorfrontal original-shape-LeastAxisLength 8

ses-1 ctx-rh-lingual original-glszm-ZoneEntropy 8

ses-1 ctx-lh-supramarginal original-shape-Maximum3DDiameter 7

ses-1 ctx-rh-caudalmiddlefrontal original-glszm-ZoneEntropy 6

ses-1 ctx-rh-middletemporal original-glszm-ZoneEntropy 6

ses-1 Right-Thalamus-Proper original-shape-Maximum2DDiameterRow 6

Anatomical data

ses-1 ctx-rh-rostralmiddlefrontal original-shape-LeastAxisLength 12

ses-1 Right-Inf-Lat-Vent original-firstorder-Energy 10

ses-1 ctx-lh-posteriorcingulate original-glszm-ZoneEntropy 8

ses-1 ctx-lh-supramarginal original-shape-Maximum3DDiameter 7

Table 4.10: List of RENT selected features selected at least 50% of the times with
their selection frequency from RSKF split of 12 splits on clinical and anatomical data.



Chapter 5

Discussion

5.1 Data

The research uses two different datasets: the dwi-dataset and the anatomical-
dataset. Patients were divided into two categories: those who were diagnosed
with depression after the experiment and those who were not. The class balance
of the variable in question showed that class 0 contributed 40.8% of the total,
while class 1 contributed 59.2%. Utilizing all of the readily available data with
no feature set gaps was a primary concern. Because there were missing values
in both datasets, the samples with the fewest missing values were chosen for the
analysis. Additionally, the same samples (130 in total) were chosen from both
datasets for further examination; therefore, the total number of samples used in
the study was 130. Patients who had received sertraline during the initial phase of
their treatment were selected for this investigation. The study was not repeated
using stage 2 for each patient since there was a constraint on the amount of time
available; nonetheless, doing such a test would be interesting in further analyses.

5.2 Preprocessing

Before the data was preprocessed, the target column ‘w8 responder’ was isolated.
The data were examined for the presence of associated features, duplicate features,
and constant features. A feature can’t deliver helpful information if most of the
samples it is applied to have the same value spreading. As a result, it is essential to
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eliminate the continuous traits. It was decided to exclude features that correlated
greater than 90 per cent.

5.3 Analysis

Exploratory analysis can be carried out with both principal component analysis
and partial least squares regression approaches. Principal component analysis
(PCA), on the other hand, is an unsupervised method. Partial least squares re-
gression (PLSR), on the other hand, is a supervised method that incorporates the
goal into the study. The figure 4.16 does not emphasize any severe outliers or
demonstrate any prominent grouping of the data into two groups for each data
set. Also, the figure does not indicate any extreme outliers. Finally, the figure 4.20
demonstrates that no one point can be used to describe the primary components
in a way that adequately explains the data.

5.4 Classification

The performance of multiple different classifiers was evaluated during the analysis
using three distinct classifiers, LR, SVM and Random Forest, which were trained
and tested separately. Each classifier was utilized throughout the training and
testing phases on the baseline and the RENT processes. By adjusting a parameter
in the kernel, the support vector machine (SVM) can handle both linear and non-
linear problems, and this capability was tested in both cases. After doing a grid
search, it was discovered that the ‘liblinear’ solver produced the best results for
the baseline data regarding Logistic Regression.

5.5 RENT

The Repeated Elastic Net Technique performed well with feature selection. Every
possible combination of C and L1 values was examined on the data sets because
the RENT-selected values for C and L1 did not provide satisfactory performance.
After analysing the performance, it was decided that 0.1 would be a good num-
ber for C, while 0.7 would be an appropriate value for L1. After analysing each
possible combination on the datasets, the values 0.4, 0.4, and 0.975 were selected
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as the optimal values for τ1, τ2, and τ3, respectively. The final call on the cutoff
parameter was reached after consultation with the advisors who were engaged in
developing this thesis. RENT effectively cut the number of features down to fewer
features. RENT selected thirty-five features from the clinical data and forty-two
features from the anatomical data. It was unclear if all of the features chosen by
RENT ought to be included or whether a limit needs to be imposed on the number
of times a feature could be chosen before deciding whether or not a feature needs
to be included. A comparison was made with the prior research and their features.

For feature selection, RENT uses Logistic Regression in conjunction with elastic
net regularisation. The performance of the classifiers was tested by using a re-
peated stratified k-fold, and RENT was used to choose the features used in the
evaluation. When the characteristics suggested by RENT were included, perform-
ance increased across the board for all classifiers. As seen in the table 5.1 and
5.2 there is significant improvement in the performance of the classifiers. Ran-
dom Forest performed the best among other classifiers in clinical data while SVM
performed better in anatomical data.

Classifier All Features Selected features

RF 0.03 0.21

LR 0.15 0.12

SVM 0.01 0.15

Table 5.1: Average MCC score with for all the features in the test data and using the
features selected by RENT on dwi data.

Classifier All Features Selected features

RF 0.06 0.10

LR 0.06 0.10

SVM -0.05 0.17

Table 5.2: Average MCC score with for all the features in the test data and using the
features selected by RENT on anatomical dataset.

The MCC score has the maximum value when evaluated using a random forest,
which is valid for both datasets. After using RENT for feature selection, both
SVM and Random Forest performance saw a substantial improvement. LR, on
the other hand, does not exhibit any signs of performance enhancement. However,
the slight decrease in performance is tolerable because of the simplification of the
characteristics and the improvement in their interpretability.
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The RENT algorithm chose seven features from the DWI data and four features
from the anatomical data, each chosen at least 50% of the time as shown in the
table 4.10. The table 4.5, 4.7 and 4.8 include information on the number of times
each feature was chosen. RENT considered characteristics based on their textures
as well as their shapes.

According to the specified characteristics, the shape of the rostral middle frontal
gyrus may be an important brain area to consider when attempting to diagnose
someone with depression. Because the attributes chosen were from the frontal
gyrus, it may be deduced that the characteristics found in the frontal areas have
the potential to act as biomarkers. The areas of the brain known as the posterior
cingulate cortex, the rostral middle frontal cortex, and the middle temporal cortex
have been suggested as potential biomarker regions by RENT selected features.
Several studies concluded that multiple possible biomarkers in frontolimbic regions,
such as the prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala,
and insula, most frequently influenced response outcome [8]. However, the strength
and direction of the biomarker’s association with clinical response varied, most
likely due to differences in the studies themselves [8]. Because of this, it is necessary
to duplicate and validate brain biomarkers several times in large independent sets
of samples before they can be employed for medical purposes [13].

Two separate validation experiments were carried out to check and make certain
that the characteristics chosen by RENT were crucial to the high level of the
model’s performance [8]. The response target was permuted in validation study
2 (VS2), whereas random features were chosen in validation study 1 (VS1) [14].
RENT developed 100 logistic regression models and tested their accuracy by mak-
ing predictions based on validation data that had not yet been observed[14]. After
that, RENT compared the MCC scores obtained from these tests to predictions
made by RENT based on features that it had chosen. For the purpose of making
a comparison between the MCC scores, a one-sided Student’s t-test was carried
out. It was hypothesized that the RENT MCC would be lower than the average
MCC derived from VS1 and VS2; however, this was not the case [14]. Because the
null hypothesis was not accepted for most of the splits, we can deduce that RENT
chose factors that are pertinent and significant for determining whether or not a
patient suffers from depression [8]. In all of the validation experiments, the MCC
scores for each split, which are indicated by the red line, were often rather high.
The fact that the red line was continuously located further to the right than the
majority of the VS1 and VS2 distributions in most cases is evidence that RENT
worked well even [8].
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5.6 Further work

This section provides an outline of the further work that may be done in the future.

• Analysis using both stage of the trail: Since this study only utilized data
from stage 1, it would be interesting to analyze data from stage 2. Since a
unique medicine was administered to each patient during stage 2, as detailed
in the column labelled ‘Stage2X,’ there is room for more investigation into
the possibility of accurately predicting the effects of the medication.

• Further analysis regarding the feature selected: The data were incomplete
and broad, and there were not enough patients. Therefore, before considering
this feature in a clinical trial, it will need to have its viability established
using a substantial amount of data.

• Standardization MR images in different centers: When taking MR images,
various centres utilize a wide variety of MR equipment, each of which has its
unique configuration. Therefore, there ought to be appropriate standards to
make collecting data less chaotic.

• Investigating preprocessing methods, especially normalisation and tackling
missing values: It is not uncommon for healthcare data to have missing
values. However, it is difficult to decide whether the missing values should
be eliminated or imputed because the data pertains to healthcare, and the
outcome of the prediction is affected by either choice.

• Evaluating RENT and other feature selection methods on different data.
For validating RENT selected features and other feature selection strategies,
additional study and research are necessary mainly when they are utilized
on data on healthcare.
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Chapter 6

Conclusion

The short-wide dataset, which consists of radiomics features taken from MR im-
ages, was effectively reduced from thousands of features to eleven for this thesis.
In addition, RENT cut down the number of features as a feature selector, and
different classifiers were utilized for the prediction process.

The thesis utilized the clinical dataset and the anatomical dataset to select the
features to use. For example, specific properties of the rostral middle frontal gyrus
may be a significant brain location to examine when seeking to identify someone
with major depression. Therefore, according to RENT’s chosen features, the re-
gions of the brain known as the posterior cingulate cortex, the rostral middle frontal
cortex, and the middle temporal cortex are all possible candidates for biomarker
regions.

Random forest outperformed Logistic regression, SVM, and other classifiers in
terms of overall performance in clinical data. Whereas SVM performed better
in anatomical data. After using RENT’s feature selection, the performance was
greatly improved. Repeated stratified K fold was utilized for train test splits and
cross-validation. On the other hand, the predictive performance obtained from this
investigation was not particularly impressive. RENT illuminated the significance
of every aspect, as well as the significance of certain features. Biomarkers men-
tioned in this study must be studied further before they can be used in medicine.
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Appendix A

Appendix

Appendix A: Figures from exploratory PCA during RENT selected fea-
tures Exploratory PCA of first two and last two splits;first, second, second to last
and last split on clinical dataset. Images of only the first two and last two splits
are featured in this part due to a large number of images overall.

CLINICAL DATASET & ANATOMICAL DATASET

Figure A.1: Validation study on Split 1 by RENT selected features based on K = 100
models on clinical data.
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Figure A.2: Classification and misClassification on Split 1 by RENT selected features
on clinical data.

Figure A.3: PCA score plot on Split 1 by RENT selected features on clinical data.

Figure A.4: PCA correlation plot on Split 1 by RENT selected features on clinical
data.
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Figure A.5: Validation study on Split 2 by RENT selected features based on K = 100
models on clinical data.

Figure A.6: Classification and misClassification on Split 2 by RENT selected features
on clinical data.

Figure A.7: PCA score plot on Split 2 by RENT selected features on clinical data.



70 APPENDIX A. APPENDIX

Figure A.8: PCA correlation plot on Split 2 by RENT selected features on clinical
data.

Figure A.9: Validation study on Split 12 by RENT selected features on clinical data.
based on K = 100 models.

Figure A.10: Classification and misClassification on Split 12 by RENT selected features
on clinical data.
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Figure A.11: PCA score plot on Split 12 by RENT selected features on clinical data.

Figure A.12: PCA correlation plot on Split 2 by RENT selected features on clinical
data.

Figure A.13: Validation study on Split 11 by RENT selected features based on K =
100 models on clinical data.
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Figure A.14: Classification and misClassification on Split 11 by RENT selected features
on clinical data.

Figure A.15: PCA score plot on Split 11 by RENT selected features on clinical data.

Figure A.16: PCA correlation plot on Split 11 by RENT selected features on clinical
data.
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Figure A.17: Validation study on Split 1 by RENT selected features based on K =
100 models on anatomical data.

Figure A.18: Classification and misClassification on Split 1 by RENT selected features
on anatomical data.

Figure A.19: PCA score plot on Split 1 by RENT selected features on anatomical
data.
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Figure A.20: PCA correlation plot on Split 1 by RENT selected features on anatomical
data.

Figure A.21: Validation study on Split 2 by RENT selected features based on K =
100 models on anatomical data.

Figure A.22: Classification and misClassification on Split 2 by RENT selected features
on anatomical data.
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Figure A.23: PCA score plot on Split 2 by RENT selected features on anatomical
data.

Figure A.24: PCA correlation plot on Split 2 by RENT selected features on anatomical
data.

Figure A.25: Validation study on Split 11 by RENT selected features on anatomical
data. based on K = 100 models.
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Figure A.26: Classification and misClassification on Split 11 by RENT selected features
on anatomical data.

Figure A.27: PCA score plot on Split 11 by RENT selected features on anatomical
data.

Figure A.28: PCA correlation plot on Split 11 by RENT selected features on anatom-
ical data.
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Figure A.29: Validation study on Split 12 by RENT selected features based on K =
100 models on anatomical data.

Figure A.30: Classification and misClassification on Split 12 by RENT selected features
on anatomical data.

Figure A.31: PCA score plot on Split 12 by RENT selected features on anatomical
data.



78 APPENDIX A. APPENDIX

Figure A.32: PCA correlation plot on Split 2 by RENT selected features on anatomical
data.
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Thank you.
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