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Abstract. The rapid depletion of fossil-based energy supplies, along with the growing reliance
on renewable resources, has placed supreme importance on the predictability of renewables.
Research focusing on wind park power modelling has mainly been concerned with point
estimators, while most probabilistic studies have been reserved for forecasting. In this paper, a
few different approaches to estimate probability distributions for individual turbine powers in a
real off-shore wind farm were studied. Two variational Bayesian inference models were used, one
employing a multilayered perceptron and another a graph neural network (GNN) architecture.
Furthermore, generative adversarial networks (GAN) have recently been proposed as Bayesian
models and was here investigated as a novel area of research. The results showed that the two
Bayesian models outperformed the GAN model with regards to mean absolute errors (MAE),
with the GNN architecture yielding the best results. The GAN on the other hand, seemed
potentially better at generating diverse distributions. Standard deviations of the predicted
distributions were found to have a positive correlation with MAEs, indicating that the models
could correctly provide estimates on the confidence associated with particular predictions.

1. Introduction
Wind energy projections are rapidly accelerating and in order to rely on these variable resources,
better prediction models are required to maintain the security of power grids and curb the
reliance on conventional power plants [1, 2]. Wind turbines are characterised by their power
curves, which indicate the expected power production at different wind speeds. However, in non-
ideal conditions and when turbines are situated close together, actual values deviate from power
curve predictions. Wake losses are the reduction in power for turbines situated downstream in a
farm, where some of the power is extracted by upstream turbines. Various analytical models aim
to model these interaction losses [3, 4], but despite their appealing simplicity, their accuracy for
real wind farms are becoming unsatisfactory. As increased computational resources have become
readily available, once impractical numerical methods have now become available for advanced
studies. Computational fluid dynamics can for example provide high resolution flow fields [5],
but still impose significant assumptions on the systems and come at a high computational cost,
making them less viable for real-time systems.

Recently, there has also been a surge in the historical data available for modern wind farms,
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making machine learning (ML) methods gain traction, as these can significantly reduce run-
times after training, while providing accurate results. Various ML methods have been studied,
such as support vector regressors [6], fuzzy logic [7] and k-nearest neighbour algorithms [8],
with a plethora of studies focusing on deep learning (DL) [9]. Yan et al. [10] used a multilayer
perceptron (MLP) model to predict power at different wind speeds and directions for a real wind
farm. Some have also improved farm predictions by considering multiple sites jointly to capture
global wind characteristics [11, 12]. Convolutional Neural Networks (CNN) have been used to
learn spatial relations in wind farms, where the features of each turbine were represented by
a cell in a two dimensional grid [13, 14]. In contrast to CNNs, graph neural networks (GNN)
can model arbitrary structures, such as wind farms, where turbines might not be arranged in a
regular grid. Bleeg [15] used a GNN model to predict individual turbine powers for farms with
considerable wake losses, using data simulated with a Reynolds-avereged Navier-Stokes model.
Furthermore, Park et al. [16] proposed the physics-induced GNN, which was shown to yield
excellent prediction performance. Finally, Yu et al. [17] constructed the superposition GNN,
which considered both spatial and temporal characteristics, trained on real wind measurements.

For real measurements, there is a significant degree of uncertainty associated with the data.
In particular, for a specific wind speed and direction value, the recorded wind power will not be
exactly the same, due to factors such as sensor drifts, non-stationary atmosphere, non-uniform
wind fields across a farm and recorded values being averaged over some time interval. Even
though the previously described work achieved adequate prediction performance, they did not
consider the inherent uncertainty associated with making predictions for real systems. Various
other work address the issue by having models also output the prediction uncertainty [18, 19].
Bayesian methods show great promise for probabilistic wind power prediction [20, 21, 18]. Liu et
al. [21] used a convolutional operator to capture spatial and temporal dynamics, and variational
Bayesian inference to make the model probabilistic. Nevertheless, most studies considering
Bayesian models have been concerned with forecasting, while the applications to wind park
modelling, for which power production is predicted from the current wind condition, have been
scarce [22, 23]. Furthermore, recent advancements within the field of Bayesian DL makes this
an interesting area for further investigation.

Generative Adversarial Networks (GAN) were first introduced by Goodfellow et al. [24] and
have since become the quintessential DL architecture for image generation. Recently, GANs
have also been proposed as probabilistic prediction models [25, 26]. Adler et al. [25] used a
GAN for image reconstruction of computed tomography images. By sampling from the model,
the authors managed to obtain probabilistic predictions, with point-wise mean and standard
deviation estimates for the reconstructed images. Similarly, Lee et al. [26] used a conditional
GAN as a probabilistic regression model to estimate the uncertainty, or risk, associated with an
expected return prediction for the stock market. The main contributions of this paper can be
summarised as follows:

• Two Bayesian models, based on a GNN and MLP architecture, are used for predicting
individual turbine powers for different wind conditions, where Flipout was employed for
Bayesian variational inference (VI). These models were able to generate accurate probability
distributions of the turbine power outputs, with the GNN architecture yielding the most
accurate point predictions.

• A novel application of a GAN used for probabilistic wind power modelling was studied. The
model leveraged recent advancements within GAN theory, focusing on a stacked Wasserstein
GAN approach. It was found that the model achieved competitive results with the Bayesian
models, while showing slightly different characteristics.

• All models estimated higher uncertainties for predictions with larger errors, showing that
the models could correctly indicate the confidence associated with a particular prediction.
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2. Theory
2.1. Graph Neural Networks
A graph can be defined as a tuple containing global, node and edge features, as G = (u, V,E)
[27]. E, contains edge-specific features, eij , meaning properties that provide information on the
relationship between two nodes i and j. Similarly, V contains node-specific features, vi, and u
are the global features, which are shared across a graph. GNNs consist of stacked graph blocks,
which update the edge, node and global features. For a single block, the features are updated
using three functions, ϕ(·), in the following order:

e′ij = ϕe(eij , vi, vj , u) (1)

v′j = ϕv(vj , ē
′
j , u) (2)

u′ = ϕu(ē′, v̄′, u). (3)

Updated features, (·)′, are fed as inputs to the next graph block. Three functions, ρ(·)→(·), map
edges-to-nodes, edges-to-globals and nodes-to-globals, to compute aggregated features, (̄·), as

ē′j = ρe→v(E′
j), where E′

j = {e′ij |∀i ∈ Rj} (4)

ē′ = ρe→u(E′), where E′ = {e′ij |∀(i, j) ∈ U} (5)

v̄′ = ρv→u(V ′), where V ′ = {v′i|∀i ∈ I}. (6)

Rj is a set containing indices for all nodes sending to a node, j. U and I are the sets containing
all edges, (i, j), and nodes, i, respectively. These sets define the connectivity of a graph.

2.2. Bayesian Deep Learning and Variational Inference
Bayesian methods propose a prior for the model parameters and updates the belief about these
parameters as more observations are available. A Bayesian neural network (BNN) can simply
be regarded as a neural network for which the weights and biases are sampled from this updated
distribution, known as the posterior, p(θ|D), where D is the dataset and θ the network weights.
However, since computing the posterior directly is typically intractable, approximate inference
is required. Markov Chain Monte Carlo methods for approximating the posterior are often
computationally expensive and our study has instead focused on variational inference (VI),
which is known to scale better [28, 29]. The aim of VI is to find a distribution q(θ) which is a
good approximation of the posterior, by minimising the Kullback-Leibler (KL) divergence [30]:

q∗(θ) = argmin
q(θ)

KL(q(θ) ∥ p(θ|D)). (7)

By writing out the terms of the KL-divergence it can be found that

ln p(D) = Eq(θ) ln
p(θ,D)

q(θ)
+ KL(q(θ) ∥ p(θ|D)). (8)

Even though the evidence, p(D), is difficult to compute, it is constant, meaning that the KL-
divergence can be minimised by maximising the expectation in eq.(8), known as the evidence
lower bound (ELBO). Expanding the terms in eq.(8), the ELBO can be written as

ELBO = Eq(θ) ln p(θ,D)− Eq(θ) ln q(θ). (9)

Flipout is a specific method for weight perturbation to infer q(θ) through gradient ascent
based maximisation of the ELBO loss [31]. In particular, Flipout aims to reduce the variance of
gradients, which is a deficit of the original Bayes by backprop formulation [32], by decorrelating
gradients within a single update-step of model parameters.
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Figure 1: Layout of the Alpha Ventus wind
farm. FINO1 is a wind measurement platform.

Figure 2: Visualisation of a turbine i with two
upstream neighbours j and k.

2.3. Generative Adversarial Networks
GANs were first introduced by Goodfellow et al.[24], and have since become a de facto generative
architecture within DL. A generator and discriminator are trained simultaneously and play a
minimax two-player game, in which the generator aims to learn the underlying data distribution
to generate samples that can fool the discriminator, which classifies samples as real or fake.

GANs are not trained in a conventional supervised manner, but have still showed excellent
results in generating diverse samples that lie close to the input distribution, without replicating
samples [24]. Nevertheless, GANs are inherently difficult to train, as the two competing networks
are optimised simultaneously. The Wasserstein GAN (WGAN) was proposed to improve training
by minimising the Wasserstein distance instead of the Jensen-Shannon (JS) divergence, which
was argued to help avoid vanishing gradients [33, 34]. The game played by the discriminator
and generator in WGANs, with a value function V (G,D), can be summarised as

min
G

max
D

V (G,D) = Ex∼pdata(x)[D(x; θD)]− Ez∼pz(z)[D(G(z; θG); θD)], (10)

where pz(z) is a prior on the input noise variables, pdata(x) the real data distribution and D and
G are the discriminator and generators, parameterised by θD and θG, respectively.

Gulrajani et al. [34] proposed a gradient penalty term to improve the training of WGANs,
instead of weight clipping, to enforce the Lipschitz constraint on the discriminator in WGANs
[33]. Mirza et al. [35] fed a condition to both the generator and discriminator to control the
samples generated. Learning the generator mapping can become increasingly challenging for
complex data distributions. Zhang et al. [36] therefore introduced the StackGAN, where the
process of mapping from the latent to the input space was split over multiple discriminator-
generator (D-G) pairs. In their particular example, the first D-G pair generated 64x64 pixel
images, which were fed to the second stage D-G pair to generate 256x256 full-scale images.

3. Methods
3.1. Dataset
The dataset contained 10-minute averaged power measurements for the 12 turbines in the Alpha
Ventus off-shore wind farm, shown in Fig. 1, where turbines 1-6 and 7-12 were Senvion and
Adwen 5M, respectively. The free stream velocity was estimated by taking the average wind
speed measured by nacelle anemometers at the upstream turbines for a particular wind direction.
With reference to Fig. 1, this meant for a wind direction of 270 degrees (i.e. blowing from left
to right in Fig. 1), the velocity was taken as the mean measurements from turbines 1, 4, 7
and 10. Data were discarded for periods in which any turbine was derated or the wind speed
was higher than the turbines’ rating. The dataset contained 227,004 individual turbine power
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measurements, where 20% of the data was held out for testing. The remaining 80% was split
into training and validation sets, also using an 80-20% split, respectively. Throughout, we refer
to a turbine, j, being upstream of turbine, i, if the angle with respect to the wind direction is
within ±30o (i.e. |αij | < 30o, in Fig. 2).

3.2. Bayesian Models
Two Bayesian models were implemented, based on VI using the ‘DenseFlipout’ layers available
in TensorFlow Probability [31, 37]. Predicted probability distributions for the turbine powers
were obtained by sampling different weights and biases for a particular input.

3.2.1. BMLP Model: The first model, which will be referred to as the Bayesian MLP (BMLP)
model, predicted the power for a single turbine, given the wind speed and location of upstream
neighbours as inputs. Considering the scenario illustrated in Fig. 2, the upstream model would
predict the power for turbine i at time t as

P̂
(i)
t = f(wst, li, d

ik, sin(αik
t ) cos(αik

t ), lk, d
ij , sin(αij

t ) cos(α
ij
t ), lj), (11)

where f is the function represented by an MLP formed by stacked ‘DenseFlipout’ layers, wst the
wind speed, l the turbine type, set to either 1 (Senvion) or 0 (Adwen), d and α, the distance and
angle between turbines, respectively. Even though we refer to ‘time’, t, this was only to indicate
the samples in the dataset, i.e. measurements taken at different times, as temporal correlations
were not considered. Depending on the wind direction and turbine concerned, the number of
upstream neighbours would vary and inputs were therefore padded to ensure constant lengths.

3.2.2. BGNN Model: The second Bayesian model was a GNN (BGNN), in which the update
functions, ϕ(·), in eq. (1-3) were MLPs formed by stacked ‘DenseFlipout’ layers. A set of graphs
were created, where each graph corresponds to a particular time-step, t. For each graph, the
wind speeds, wst, were assigned to the input global features, while the turbine types, l, were
set as node features. The distances and relative angles between turbines were set to the input

edge features as e
(ij)
t = [dij , sin(αij

t ) cos(α
ij
t )]. The BGNN model updates edge, node and global

features, trained to predict turbine powers embedded in the node features.

Figure 3: Illustration showing the proposed cStackWGAN architecture used to predict
probability distributions for turbine powers.
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3.3. cStackWGAN Model
For this study, a conditional Stack Wasserstein GAN (cStackWGAN) was proposed, having
generators and discriminators represented by GNNs, with MLPs as the update functions, ϕ(·),
in eq. (1-3). An illustration of how the cStackWGAN operates is given in Fig. 3. The input
conditions were the same as for the GNN model described in Sec. 3.2.2, but with an additional
random variable, z, embedded in the node features, shown as the input to G1 in Fig. 3. The
first stage consisted of one generator and two discriminators, where the generator produced
mean and standard deviation predictions for the power of the entire farm, denoted µ̂ and σ̂ in
Fig. 3, respectively. This was thought to be a simpler task than predicting individual turbine
powers directly. Two discriminators, ‘D1 mean’ and ‘D1 std’, were used to classify the mean
and standard deviation predictions, respectively, as real or fake, given the input conditions.

Outputs from the first stage generator were used as inputs to the second stage, where the
predicted means and turbine types were cast to the node features, and the standard deviation
predictions and wind speeds to the globals. The second stage generated individual turbine
power predictions, P̂ , and a single discriminator was trained to classify samples as real or fake.
By feeding different samples, z, from the latent distribution together with any given condition,
[u, l, E], we can generate multiple turbine power predictions. These predictions can be used to
construct an empirical probability distribution model (histogram) for the predicted power.

A few well known techniques to stabilise the training of GANs were investigated when tuning
hyperparameters. Since some wind conditions were more prevalent than others, oversampling
was used to more frequently select samples with less represented wind conditions during training.
Different gradient penalties and clipping techniques were also implemented [34, 38]. Noisy labels
can be used to make models more robust against noise in the data and avoid saturation of
the discriminator, by flipping the labels according to a small probability, meaning that some
generated samples are labeled as real and vice versa. Furthermore, adding noise to the inputs
of the discriminator can avoid the discriminator learning an optimal behaviour too quickly [39],
and adding noise to the conditions could improve training for continuous conditions [40].

3.4. Training
To arrive at appropriate hyperparameters, tuning processes were conducted in Optuna [41].
Different batch sizes, learning rates, number of hidden layers and units, dropout rate, hidden
activation functions, layer- and batch normalisation were tested for all models. Neither dropout,
layer- or batch normalisation were used for the final Bayesian models, while layer normalisation
was used for the first-stage discriminators and a dropout rate of 20% for the second-stage
generator in the cStackWGAN model. The Adam optimiser yielded the best results for all
models. Furthermore, oversampling was found advantageous for the first-stage D-G pair, as
well as adding some noise to the discriminator inputs. Gradient penalties were implemented
according to the proposed methods outlined in [34] and [38], but slightly altered to facilitate
graph structures. A gradient penalty based on interpolation between real and generated samples,
as in [34], was found to yield the best results for the second-stage discriminator. However, a
slightly different gradient penalty was found favourable for the first stage, computed based on
noise added to real samples [38]. For brevity, we will not go into the exact details of the gradient
penalties, but wish to refer the interested reader to the literature used for this study [34, 38].

4. Results and Discussion
4.1. Prediction Performance
The aim of the models was to predict the probability distributions for the power of individual
turbines, given the wind speed and direction. To asses the performance of the different models,
it was necessary to obtain estimates of the true power distributions for different wind conditions.
Given an input for a specific wind condition, the true power distribution was approximated by
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Figure 4: MAE for the different models
against the number of closest samples in the
dataset used to determine the labels. Results
are the mean ±σ for five runs.

Figure 5: Mean Wasserstein distance between
the generated and real distributions for different
number of closest samples in the real distribu-
tions. Results are the mean ±σ for five runs.

finding the samples in the test set which had the most similar wind speeds and directions to the
input, based on the Euclidean distance. It was assumed that the powers for data points with
very similar wind conditions should be a reasonable estimate for the true power distribution for
a specific wind condition. Fig. 4 shows the variation of mean absolute errors (MAE) over the
entire test set, for different number of closest samples, n, used for the true labels. For n = 10,
the label was taken as the average power for the 9 closest points to the input and the power for
the input itself. To obtain point estimates, we sampled 1000 predictions from the models, given
the same input, and computed the means of the generated power distributions. Each model
was trained five times, using the same test, train and validation sets, with the results given in
Fig. 4. As would be expected, the MAEs improved for all models as the number of samples
used to compute the labels increased. The Bayesian models were superior to the cStackWGAN
model, with the BGNN model yielding the best results. For real datasets, there will always
be some uncertainty associated with the measurements, which could result in single values not
being representable of global characteristics. The fact that MAEs curtailed when considering
the mean of similar data points could indicate that the models did not overfit to single samples.

A potentially more informative measure to evaluate the predicted distributions is the
Wasserstein metric, which is the work required to transform one probability distribution into
another, and can therefore be used as a distance measure. Fig. 5 shows the Wasserstein
distance between the predicted and true distributions. First, the BGNN model achieved very
appreciable results, outperforming the other models, before quickly performing worse as the
true distributions were estimated from more samples. The same behaviour was observed for the
BMLP model, but with results between the other two models. Even though the cStackWGAN
model initially performed worse than the Bayesian models, it seemed better equipped at
predicting the true distributions as more neighbouring samples were considered. Since MAEs did
not significantly increase in Fig. 4, it meant that the mean of the predicted distributions were
not the reason for the degrading performance of the Bayesian models in Fig. 5. It was therefore
thought that the Bayesian models struggled to predict the correct standard deviations or shape
of the true probability distributions, while the GAN model was potentially better at this. When
the true distributions were based on only 1-3 samples, the shape of the predicted distributions
were potentially not very important, as long as the means were reasonably accurate. As more
samples were considered for the true distributions, the shape would become more prominent,
and it seemed that the cStackWGAN model was better at generating these. To confirm this,
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Figure 6: Violin plots of standard deviations (STD) of the predicted distributions against MAEs.
The bottom row illustrates how the MAEs were distributed.

the standard deviations of the predicted and true distributions for the different models were
compared and it was found that all models correctly captured increases in standard deviations,
but had predictions that were generally too small. The GAN model was the best at capturing
the spreads, while the Bayesian models’ estimates on average had standard deviations that were
even smaller than those for the cStackWGAN model. The difference in magnitudes between the
models can for example be seen by the range of standard deviations in Fig. 6.

4.2. Evaluating Uncertainty
A desirable property of probabilistic models, is that the spread of predicted distributions gives an
indication as to the models’ confidence in a particular prediction. For this to hold, there should
be a positive correlation between the standard deviation of predicted probability distributions
and MAEs. In Fig. 6, the violin plots visualise how the standard deviations were distributed
for particular MAE bins, with white dots indicating median values. Generally, the standard
deviations of the predictions increased as the MAE increased, which meant that the spread of
the generated distributions could in fact be used as an indication of the models’ confidence.
However for excessively large errors, it was seen that the standard deviations decreased, which
was undesirable. Nevertheless, considering how the MAEs were distributed, illustrated by the
second row of Fig. 6, most predictions on the test set were associated with MAEs smaller than
0.10. This meant that the plots for larger MAE bins were constructed from very few data points
and might poorly reflect the true characteristics of the models.

Even though probabilistic models often yield slightly inferior results with regards to MAEs,
compared to point estimators, providing more detailed information on the expected probability
distributions could nevertheless help improve the security of prediction systems, as the users
would obtain information on when to trust or disregard a prediction made by the model.

4.3. Investigation of Probability Distributions
Finally, some predicted and true distributions were plotted for two turbines, 4 and 10 (with
reference to Fig. 1), for two wind conditions in Fig. 7. Here, the histograms were scaled in (0,
1) and fitted some approximate distributions, where the red bins correspond to the predicted
distributions. The true powers for the input wind conditions are represented by the single black
bins and the blue histograms are the powers for the 20 samples with the most similar wind
conditions to the two inputs. The maximum and minimum wind speeds amongst the 20 nearest
neighbours were ±0.15 and ±0.20 m/s, for the two wind conditions. Considering turbine 4,
i.e. the bottom row of Fig. 7, the models seemed to capture the distributions fairly well. The
cStackWGAN predicted slightly too small spread and a skewed distribution, while the BGNN’s
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Figure 7: Predicted (red) and true (blue) distributions for turbines 4 and 10 for two randomly
selected wind conditions. Histograms are scaled in (0, 1), while the power for the inputs used
to compute the predicted distributions are shown by single grey bins. True distributions were
taken as the 20 closest neighbours to the inputs based on the wind condition, while the predicted
were constructed by sampling 1000 times from the models for the same input condition.

predictions had a slightly offset mean. However, it would not be sensible to conclude on relative
performances based on a few random samples. Instead, it was more interesting to observe that
all models captured the true distributions reasonably well for the second row of Fig. 7, despite
the power corresponding to the input being very small. Particular measurements might be
offset or seem somewhat random for real datasets, and it would be undesirable for the models to
confidently predict powers to be around 2 MW for turbine 4, given the particular wind condition.

For wind conditions where the turbines produced powers close to the rating of 5 MW, the
Bayesian models tended to predict slightly too small values, while the cStackWGAN performed
very well, as seen for the Turbine 10 predictions in the top row of Fig. 7. The cStackWGAN
model was able to generate slightly more diverse distributions, such as that seen in the top row
of Fig. 7, while the Bayesian models generally seemed to produce Gaussian distributions.

5. Conclusion
Three different DL models were investigated for probabilistic wind park power modelling,
focusing on two Bayesian VI models and a novel GAN architecture. The Bayesian models
adopted recent developments within the field of Bayesian DL, namely VI using Flipout, on an
MLP and GNN architecture, with the latter generally yielding the best results. By investigating
a novel approach to probabilistic wind power modelling using a GAN, it was interesting to
study the relative differences between more traditional Bayesian DL and a new application
of a generative model. The Bayesian models seemed well equipped for predicting individual
turbine powers (MAEs) and generating acceptable probability distributions. Even though
the cStackWGAN model was inferior with regards to MAEs, the model seemed better at
generating diverse distributions. Furthermore, all models showed a positive correlation between
the standard deviation of generated distributions and MAEs, indicating that the models could
provide estimates on the confidence associated with particular predictions. In the future, it
would be particularly interesting to explore how the Bayesian models can be altered to produce
more diverse distributions. Using datasets for farms with more turbines, as well as extending
the scope to consider temporal correlations and forecasting would also be compelling. Further,
aleatoric and epistemic uncertainties were not considered separately in this study, but it would
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be interesting to do so in future work.
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[25] Adler J and Öktem O 2018 arXiv preprint arXiv:1811.05910
[26] Lee M and Seok J 2021 Sensors 21 6194
[27] Battaglia P W, Hamrick J B, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, Tacchetti A, Raposo

D, Santoro A, Faulkner R et al. 2018 arXiv preprint arXiv:1806.01261
[28] Salimans T, Kingma D and Welling M 2015 ICML 1218–1226
[29] Caceres J, Gonzalez D, Zhou T and Droguett E L 2021 Struct Control Health Monit 28 e2811
[30] Blei D M, Kucukelbir A and McAuliffe J D 2017 J Am Stat Assoc J AM STAT ASSOC 112 859–877
[31] Wen Y, Vicol P, Ba J, Tran D and Grosse R 2018 arXiv preprint arXiv:1803.04386
[32] Blundell C, Cornebise J, Kavukcuoglu K and Wierstra D 2015 ICML 1613–1622
[33] Arjovsky M, Chintala S and Bottou L 2017 ICML 214–223
[34] Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V and Courville A 2017 arXiv preprint arXiv:1704.00028
[35] Mirza M and Osindero S 2014 arXiv preprint arXiv:1411.1784
[36] Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X and Metaxas D N 2017 ICCV 5907–5915
[37] Dillon J V, Langmore I, Tran D, Brevdo E, Vasudevan S, Moore D, Patton B, Alemi A, Hoffman M and

Saurous R A 2017 arXiv preprint arXiv:1711.10604
[38] Kodali N, Abernethy J, Hays J and Kira Z 2017 arXiv preprint arXiv:1705.07215
[39] Arjovsky M and Bottou L 2017 arXiv preprint arXiv:1701.04862
[40] Ding X, Wang Y, Xu Z, Welch W J and Wang Z J 2020 arXiv preprint arXiv:2011.07466
[41] Akiba T, Sano S, Yanase T, Ohta T and Koyama M 2019 25th Proc. ACM SIGKDD Int. Conf. Knowl.

Discov. Data Min. 2623–2631


