
Geophysical Prospecting, 2020, 68, 631–656 doi: 10.1111/1365-2478.12864

Effects of pore fluids on quasi-static shear modulus caused
by pore-scale interfacial phenomena

Alexander Y. Rozhko∗
Department of Energy Resources, University of Stavanger, Kjell Arholmsgate 41, 4036 Stavanger, Norway

Received April 2019, revision accepted August 2019

ABSTRACT
It is evident from the laboratory experiments that shear moduli of different porous
isotropic rocks may show softening behaviour upon saturation. The shear softening
means that the shear modulus of dry samples is higher than of saturated samples.
Shear softening was observed both at low (seismic) frequencies and high (ultrasonic)
frequencies. Shear softening is stronger at seismic frequencies than at ultrasonic fre-
quencies, where the softening is compensated by hardening due to unrelaxed squirt
flow. It contradicts to Gassmann’s theory suggesting that the relaxed shear mod-
ulus of isotropic rock should not depend upon fluid saturation, provided that no
chemical reaction between the solid frame and the pore fluid. Several researchers
demonstrated that the shear softening effect is reversible during re-saturation of rock
samples, suggesting no permanent chemical reaction between the solid frame and
the pore fluid. Therefore, it is extremely difficult to explain this fluid–rock interac-
tion mechanism theoretically, because it does not contradict to the assumptions of
Gassmann’s theory, but contradicts to its conclusions. We argue that the observed
shear softening of partially saturated rocks by different pore fluids is related to pore-
scale interfacial phenomena effects, typically neglected by the rock physics models.
These interface phenomena effects are dependent on surface tension between immis-
cible fluids, rock wettability, aperture distribution of microcracks, compressibility of
microcracks, porosity of microcracks, elastic properties of rock mineral, fluid satura-
tion, effective stress and wave amplitude. Derived equations allow to estimate effects
of pore fluids and saturation on the shear modulus and mechanical strength of rocks.

Key words: Shear softening, Interface phenomena, Partial saturation.

INTRODUCTIO N

Understanding of fluid saturation effect on seismic and acous-
tic velocities are among key tasks for geoscientists. The
Gassmann’s theory is the most common way to explain how
the seismic rock properties will be changed with the change of
fluid saturation. According to Gassmann’s theory, the relaxed
shear modulus of isotropic porous rock should not depend on
the fluid saturation, if there is no chemical reaction between
the solid frame and the pore fluid (Gassmann 1951; Pride,

∗E-mail: alexander.y.rozhko@uis.no

Berryman and Harris 2004; Mavko, Mukerji and Dvorkin
2009; Müller, Gurevich and Lebedev 2010). The Gassmann’s
theory is applicable in the low frequency (or quasi-static) limit,
when there is enough time for the wave-induced pore pressures
to equilibrate. If the frequency is high, there is not enough time
for the wave-induced pore pressures to equilibrate. This would
lead to increase of shear modulus due to the unrelaxed re-
sponse at high frequencies (e.g. Mavko et al. 2009). Thus, ac-
cording to available rock physics models, one should expect:

1. relaxed shear modulus of saturated rock is equal to shear
modulus of dry rock μsat = μdry in the low frequency limit
(Gassmann 1951);
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632 A.Y. Rozhko

2. unrelaxed shear modulus of saturated rock is higher than
shear modulus of dry rock μsat > μdry in the high frequency
limit (e.g. Berryman 2005; Mavko et al. 2009).

There are several experimental studies which demon-
strate a violation of our theoretical expectations due to so-
called shear softening effect, when μsat < μdry, which was
observed both at seismic and ultrasonic frequencies (e.g.,
Khazanehdari and Sothcott 2003; Adam, Batzle and Brevik
2006; Adam et al. 2009; Fabricius, Bächle and Eberli 2010;
Adam and Otheim 2013; Bauer et al. 2016; Mikhaltsevitch,
Lebedev and Gurevich 2016). Shear softening is stronger at
seismic frequencies than at ultrasonic frequencies, where the
softening is compensated by hardening due to unrelaxed squirt
flow. Adam et al. (2006, 2009) reported shear modulus, mea-
sured on isotropic carbonate rocks at seismic and ultrasonic
frequencies. Shear softening was observed for all samples at
seismic frequencies and low confining pressure, whereas at
high confining pressure shear softening is negligibly small for
most of the samples. However, samples revealed either soft-
ening or stiffening at ultrasonic frequencies. Mikhaltsevitch
et al. (2016) report both stiffening and softening of shear
modulus both at seismic and ultrasonic frequencies for car-
bonate rocks. Furthermore, they demonstrated that stiffening
or softening behaviour of shear modulus may depend on the
pore fluid, which cannot be explained by Gassmann’s theo-
ries. Vo-Thanh (1995) came to the same conclusion regarding
the effect of pore fluid chemistry and saturation on acoustic
velocities ultrasonic frequencies. Yin et al. (2019) report the
shear softening of clay bearing sandstone at seismic and ul-
trasonic frequencies. Bauer et al. (2016) report experimental
data at seismic and ultrasonic frequencies for sand, sandstone
and shales suggesting that the Gassmann equations under-
estimate the observed velocity dispersion. Diethart-Jauk and
Gegenhuber (2018) reported the shear softening behaviour
at ultrasonic frequencies for different lithologies: limestone,
dolomite, quartzite and basalt. Adam and Otheim (2013) re-
ported shear softening effect observed at seismic frequencies
on basalt rock and negligibly small stiffening effect at ultra-
sonic frequency. Lebedev, Wilson and Mikhaltsevitch (2014)
reported softening of shear modulus of limestone sample ob-
served at seismic frequencies.

Furthermore, several researchers reported the softening
of elastic moduli observed during triaxial testing at large
strains (e.g. Tutuncu, Podio and Sharma 1998; Risnes and
Flaageng 1999; Baud, Zhu and Wong 2000; Risnes et al.

2003, 2005; David et al. 2015). Shear softening at ultra-
sonic frequencies for carbonate rocks were reported by Assefa,
McCann and Sothcott (2003), Japsen et al. (2002), Røgen

et al. (2005) and Sharma et al. (2013). Both shear softening
and shear stiffening at ultrasonic frequencies for carbonate
rocks were reported by Baechle et al. (2005, 2009), Ver-
wer, Braaksma and Kenter (2008), Fabricius et al. (2010),
Vega, Prajapat and Al Mazrooei (2010), Verwer et al. (2010),
Regnet et al. (2015) and Gegenhuber (2015), and for sand-
stone samples by Khazanehdari and Sothcott (2003), Bhuiyan
and Holt (2016), Li et al. (2017, 2018).

To investigate if the reduction of frame modulus in car-
bonate rock is driven by chemical interaction, Baechle et al.

(2005) conducted series of experiments in which saturation of
carbonate samples were changed several times. They demon-
strated that experimental results are reversible during re-
saturation of rock samples. These results imply that there is
no permanent frame moduli reduction due to chemical inter-
action of pore fluid with the rock frame. Risnes and Flaageng
(1999), Risnes et al. (2003, 2005) obtained the same con-
clusion suggesting that the elastic moduli and strength are
reversible during re-saturation of chalk with different pore
liquids. These experiments suggest that dissolution and pre-
cipitation of calcite is not significant on the time scale when
these experiments are conducted (Risnes and Flaageng 1999;
Risnes et al. 2003, 2005; Baechle et al. 2005). Several re-
searchers pointed out that the shear softening can be ex-
plained by chemical reaction of water with clay minerals (Yin
et al. 2019). The chemical interaction of water with clay is
well-documented in literature (e.g., Fjær et al. 2008); how-
ever, in our opinion it will lead to irreversible effect, and
thus not relevant to explain the reversible effect of pore fluid,
reported by Risnes and Flaageng (1999), Risnes et al. (2003,
2005) and Baechle et al. (2005). Murphy (1984) and Murphy,
Winkler and Kleinberg (1986) conducted series of experiments
to demonstrate that the water softening effect is taking place
even in unconsolidated sandstones, which excludes water-
softening mechanisms, such as swelling of clay cement, os-
motic suction and dissolution and precipitation of calcite. The
literature outlined above shows that physicochemical reasons
for shear softening are not clear as it was stated in several pub-
lications (e.g. Japsen et al. 2002; Adam et al. 2006; Fabricius
et al. 2010), especially when there is no evidence to chemical
interaction of pore fluid with the rock frame.

In this paper, we demonstrate that the shear softening
effect is related to the effect of hysteresis of liquid bridges in
rocks containing partially saturated cracks. Here we are fo-
cusing on shear moduli of partially saturated rock, whereas
bulk moduli were investigated by our previous publication
(Rozhko 2019). The hysteresis of liquid bridges (described
in the next section) is related to interface phenomena effects

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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Shear softening caused by interfacial phenomena 633

Figure 1 Pure shear loading of isotropic (a) fully saturated rock and (b) partially saturated rock. Cracks # 1 and # 2 are identical and
interconnected.

between immiscible fluid phases (such as water, gas or oil) and
the solid inside compliant pores (cracks). The article is orga-
nized as follows. First, we introduce the hysteresis of liquid
bridges effect in isotropic rock containing partially saturated
cracks and argue that due to this effect the relaxed shear
modulus is sensitive to the fluid saturation. Second, we derive
mathematical equations to describe this effect numerically.
Third, we introduce Betti–Rayleigh-reciprocity theorem (e.g.,
Schmeling 1985) for calculation of the effective shear mod-
ulus and attenuation of partially saturated rock. Then, we
present numerical investigation of different input parameters
of the model on the shear softening effect and shear atten-
uation. Next, we made the dimensional analysis of derived
non-linear equations to demonstrate that the shear softening
effect can be described by relatively simple equation. And fi-
nally, we discuss applications of the theory to reservoir rocks
with log-normal distribution of micro-crack aperture.

FLUID EFFECT ON RELAXED S HEAR
M O D U L U S D U E T O H Y S T E R E S I S O F L I Q U I D
B R I D G E S

Mavko et al. (2014, p. 138) suggested the following expla-
nations for why Gassmann’s relations only work at low fre-
quencies and for isotropic rock. Imagine an isotropic sample
of rock with cracks at all orientations. Under ‘pure shear’
loading, there is no volume change of the rock sample or the
pore space, because some cracks open, whereas others close.
According to Fig. 1(a), crack #1 decreases in volume, its pore
pressure locally increases if the fluid cannot flow out of the
crack, whereas crack #2 increases in volume, its pore pressure

locally decreases if the fluid cannot flow into the crack. If
the frequency is too high, there is a tendency for local pore
pressures to increase in some pores and decrease in others:
hence, the shear modulus depends on the fluid bulk modulus.
Greater bulk modulus of fluid makes it more difficult to de-
form undrained pores, thus the shear modulus increases with
increase of fluid bulk modulus at high frequencies. However,
if the frequency is low enough, the fluid has time to flow and
adjust: there is no net pore volume change and thus no change
of pore pressure, therefore the shear modulus is independent
of the fluids. If the rock is anisotropic, under pure shear condi-
tions, some cracks will be more open in one direction, whereas
others less closed in perpendicular direction: hence, the shear
modulus depends on the fluid bulk modulus.

Next, we apply the same approach as described above
by Mavko et al. (2014) to demonstrate the opposite, that is
why Gassmann’s relations will not work at low frequencies
for isotropic, but partially saturated rock (see Fig. 1b). The
wetting phase (water) occupies narrow parts of the crack,
whereas the non-wetting phase (gas or oil) occupies wide
(central) parts of the crack. At the equilibrium condition,
the fluid pressure in each fluid phase is different due to
interface tension between immiscible fluids. It is not difficult
to understand that the low frequency shear modulus of
isotropic partially saturated rock would depend on the fluid
saturation due to physical phenomenon: hysteresis of liquid
bridges (e.g.: De Souza et al. 2008; Chen, Amirfazli and Tang
2013; Zhang 2016; Shi et al. 2018). Due to this phenomenon,
the positive change of pore volume in one direction will
not be compensated by a negative change of pore volume
in the perpendicular direction and hence the shear modulus

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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634 A.Y. Rozhko

Figure 2 Deformation of the liquid bridge between two parallel plates.

will depend on the fluid content. Figure 2 shows a typical
experimental setup used to investigate the hysteresis of liquid
bridges between parallel plates (e.g. De Souza et al. 2008;
Chen et al. 2013; Zhang 2016; Shi et al. 2018). The aperture
between two plates is w, the diameter of wetted area is l and
F is the force between two plates. A liquid drop is placed
between two plates. The upper and the lower contact angles
are θa and θr (i.e. advancing and receding angles). Here the

difference between advancing and receding contact angles is
called a contact angle hysteresis. It depends on the contact line
motion velocity. At zero velocity, a spectrum of static contact
angles is observed (Bormashenko 2013a,b), which can be as
large as tens of degrees (Ethington 1990). This effect is called
a static contact angle hysteresis. The advancing contact angle
increases with the contact line advancing velocity, whereas the
receding contact angle decreases with the contact line receding
velocity. This effect is called a dynamic contact angle hystere-
sis. In this paper, we address the Gassmann’s theory which is
a quasi-static theory. Thus, small dynamic corrections to the
contact angle hysteresis during a quasi-static contact-line mo-
tion can be neglected. The change of aperture within a certain
frequency ω is �w. Aperture changes induce changes of the
force �F and the diameter of wetted area �l. Experiments
are typically conducted under conditions when frequency ω

is low enough so that the viscous forces can be neglected.
Figure 3 shows schematically typical experimental results

Figure 3 Effect of oscillation amplitude on hysteresis of liquid bridges (e.g. De Souza et al. 2008; Chen et al. 2013; Zhang 2016; Shi et al. 2018).
If the oscillation amplitude is small, there is no hysteresis (a), whereas if the oscillation amplitude is large, there are four stages of hysteresis (b).
(a1) and (b1) capillary force versus aperture (between two parallel plates); (a2) and (b2) contact angles versus aperture; (a3) and (b3) diameter
of the wetted area (contact line displacement) versus aperture. Note here that Fig. 3(b) is corrected after Fig. 2(c) in Rozhko (2019).

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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Shear softening caused by interfacial phenomena 635

showing the hysteresis of liquid bridges (e.g. De Souza et al.

2008; Chen et al. 2013; Zhang 2016; Shi et al. 2018). Fig-
ure 3(a1–a3) and (b1–b3) shows typical experimental results,
obtained for different amplitudes of the aperture change �w.
Figure 3(a1,b1) shows capillary force versus aperture be-
tween parallel plates; Fig. 3(a2,b2) shows contact angles
versus aperture; and Fig. 3(a3,b3) shows the diameter of
the wetted area versus aperture. When the amplitude of
the periodic aperture change is small, the contact line is
pinned (i.e.�l = 0, see Fig. 3a3) and the contact angle
is changing within the range θr < θi + �θ < θa (Fig. 3a2), θi is
the initial contact angle, which will be introduced later in this
section. The change of the capillary force shows no hysteresis
(Fig. 3a1), when the periodic amplitude of aperture change is
small. The loading path (Fig. 3a1) coincides with unloading
path. If the amplitude of the aperture change is increased,
the amplitude of the contact angle change will increase as
well. The amplitude of the contact angle change cannot
exceed this range θr ≤ θi + �θ ≤ θa , thus when the aperture
change amplitude is sufficiently large, the contact angle will
change between advancing and receding angles, as shown
in Fig. 3(b2). At the time moment when the contact angle
reaches advancing or receding angle, the contact line will
slip (Fig. 3b3). Overall, the hysteresis of liquid bridges can
be divided into four continuous stages, when the amplitude
of the aperture change is sufficiently large, as shown in
Fig. 3(b1–b3):
1. Pinning (stretching)
2. Slipping (receding)
3. Pinning (compression)
4. Slipping (advancing)

When the contact angle is greater than the receding angle,
the aperture increase will result in an increase in the force due
to pinning (Stage 1). This will be accompanied by a reduction
in the contact angle until the receding angle is achieved when
the force starts to decrease and the contact line starts to
slip inward (Stage 2). If the aperture starts to decrease, the
contact angle begins to increase until it reaches the advancing
angle (Stage 3). In this stage, the pinning stage occurs again,
which correspond to the reduction of capillary force. If the
aperture keeps decreasing to the initial aperture, the contact
line will slip outward with the contact angle equal to the
advancing angle (Stage 4). The hysteresis of the capillary
force leads to the energy dissipation due to the contact line
friction mechanism. The contact line friction is the dominant
mechanism of energy dissipation in these experiments. The
intermolecular forces acting between molecules of the solid
and those of the liquid, which pin the contact line to the

substrate, are responsible for the contact line friction, which
occurs not over the entire solid–liquid interface, but only at
the three-phase line (Yaminsky 2000; Bormashenko 2013a,b).
Contact line friction occurs due to slippage and rolling of
fluid molecules over the surface of the solid at the contact line
location, that is in one dimensional (Ren and Weinan 2007).
It is interesting to note here that viscous dissipation occurs in
three dimensional due to interaction of fluid molecules mov-
ing with different velocities, whereas frictional dissipation
between two solids in a contact occurs over a certain surface
area in two dimensional. Thus, fundamentally, the contact
line friction is different from other dissipation mechanisms.

Next, let us discuss the choice of initial contact angle
(θi ). In calculations, we assume that the initial contact an-
gle is equal to the most stable Young’s angle θi = θY. It is
important to note here that any contact angles within this
range θr < θ < θa are equilibrium contact angles; however,
there is a most stable configuration of the equilibrium contact
angle (e.g. Ruiz-Cabello, Rodrı́guez-Valverde and Cabrerizo-
Vı́lchez 2014). The Young’s contact angle is related to three
coefficients of interfacial tension formed by the fluid–fluid in-
terface with the solid surface (de Gennes, Brochard-Wyart and
Quéré 2013). The equilibrium Young’s contact angle can also
be calculated from the advancing and receding contact angles,
as was shown theoretically by Tadmor (2004) and confirmed
experimentally by Chibowski (2008).

cos (θY) = �acos (θa) + �r cos (θr )
�a + �r

, (1)

where �a = sin(θa)
3
√

2 − 3 cos(θa) + cos3(θa)
and

�r = sin(θr )
3
√

2 − 3 cos(θr ) + cos3(θr )
.

Next, after introducing the hysteresis of liquid bridges
phenomenon, we come back to the Fig. 1(b), showing two
orthogonal partially saturated cracks under pure shear
stress perturbation. It is clear without any mathematical
calculations that due to hysteresis of the capillary forces
(Fig. 3b1) the net change of pore volume in isotropic partially
saturated rock will not be equal to 0. Hence, the shear
modulus depends on the fluid saturation. The net change
of the pore volume will be equal to 0 only if there is no
hysteresis of capillary forces, that is when the contact line is
pinned for small �w. Hence, the net volume change of the
partially saturated rock depends on the wave amplitude and
will vanish in the limit when the wave amplitude is 0. It will
be no dependence of shear modulus on the fluid if the surface

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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636 A.Y. Rozhko

Figure 4 (a) Initial equilibrium configuration of two identical (plane-strain) cracks: σ initial hydrostatic far-field compressive stress; pwe and
pnw initial pressure in the wetting and non-wetting fluid phases; θ initial contact angle for the wetting phase; c initial contact line location. (b)
Perturbation of the initial equilibrium configuration by the pure shear stress perturbation (�τ ). Perturbations of �pwe and �pnw are identical
in both (interconnected) cracks (in the low the frequency limit), whereas perturbations of contact angles �θi and contact line locations �ci are
different in both cracks.

tension between immiscible fluid is 0, thus the change of the
capillary force will be 0, that is �F = 0 for any �w.

MATHEMATICA L FOR MUL A T I ON

In this section, we develop mathematical model, describing the
hysteresis of liquid bridges in the rock containing two partially
saturated cracks, shown in Fig. 4(a). The aim of this paper to
demonstrate that the shear softening is caused by the hystere-
sis of liquid bridges in compliant cracks; that is why we are
focusing only on the minimum number of input parameters
required to describe this effect. Thus, we neglect porosity of
channels which connect two cracks together, because other-
wise we would also need to consider the distribution of pore
throats and compressibilities of pore throats. Furthermore,
real rocks contain cracks-like pores of different aspect ratio
which are closed at different confining stress (e.g. Zimmerman
1990), while for simplicity we are considering only two identi-
cal cracks, which is sufficient for explanation of the shear soft-
ening effect by the hysteresis of liquid bridges without mak-
ing the model too complex. Two identical plane-strain cracks
(Crack # 1 and Crack #2) are aligned along x and y directions,
respectively. Initial geometries of two identical cracks are de-
scribed by deformable elliptical cavities with semi-axes a and
b. In calculations, we consider very narrow cracks with a � b.
The distance between two cracks is sufficiently large, so that

the deformation and stress concentrations around one crack is
not affected by deformation and stress concentrations around
another crack (e.g. Zimmerman 1990). The deformation and
stress concentration around cracks are affected only by fluid
pressure inside cracks and stresses on the external boundary
of the representative elementary volume (REV). The wetting
fluid phase occupies thin parts of the crack (i.e. tips), whereas
the non-wetting fluid phase occupies wide parts of the crack
(centre). Pressures in the non-wetting (pnw) and wetting (pwe)
fluid phases are different due to interfacial tension and wetta-
bility effects and denoted here as capillary pressure (pcap) (e.g.
Barenblatt, Entov and Ryzhik 1990):

pcap = pnw − pwe. (2)

Initial saturation of two cracks is identical, as shown in
Fig. 4(a). The fluid pressure acting on the surface of crack #1
is pnw if |x| ≤ c and pwe if c < |x| ≤ a. Analogically, the fluid
pressure acting on the surface of crack #2 is pnw if |y| ≤ c

and pwe if c < |y| ≤ a (Fig. 4a). The coordinate c defines the
location of the contact line, as shown in Fig. 4(a). We con-
sider a uniform initial far-field confining stress σ , acting on
the external boundary of the REV, as shown in Fig. 4(a). Non-
uniform initial far-field confining stress will result in different
compressibilities along x and y directions, but we are not
interested in this anisotropic case, because it contradicts to as-
sumptions of Gassmann’s theory, as it was discussed around

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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Shear softening caused by interfacial phenomena 637

Fig. 1(a) in previous section. Cracks are assumed to be con-
nected hydraulically, thus initial fluid pressure in each fluid
phase is identical in two cracks. Furthermore, we consider a
quasi-static deformation of the external boundary of REV, so
that there is enough time for fluid pressure in each fluid phase
to equilibrate between two cracks. The initial contact angle is
equal to Young’s angle θ = θY in both cracks. Because the ini-
tial far-field normal stress, the initial fluid pressure and initial
contact angles are identical in two identical cracks, the ini-
tial saturation degree is also identical in two cracks. Rozhko
(2016), Rozhko and Bauer (2018) and Rozhko (2019) derived
equations, describing the initial equilibrium saturation and the
capillary pressure of partially saturated crack. The capillary
pressure inside the equilibrium crack is calculated as follows
(Rozhko 2016):

pcap = π

4
(pcl + σn + pwe)

×
1 −

√
1 − 8pcl

γ cos(θ)
πb

(β+cot(β) ln[cos(β)]−π/2)
(pcl +σn+pwe)

2
sin(β)

β + cot (β) ln [cos (β)] − π/2
, (3)

where pcl is the crack closure pressure, calculated as (Rozhko
2016):

pcl = bμ

a (1 − v)
, (4)

where μ and v are the Shear modulus and Poisson’s ratio of
the rock mineral. The capillary pressure in equation (3) is two-
way coupled to the deformation of the crack aperture. This
equation follows from the Laplace equation and the analytical
expression for the crack aperture at the contact line location
(Rozhko 2016). In equation (3), σn is the far-field normal
stress (i.e. normal to the crack surface), equal to σ at the ini-
tial condition, shown in Fig. 4(a). Here we are using a sign
convention when compressive stresses, strains and displace-
ments are negative, whereas compressive pressure is positive.
In equation (3), γ is the surface tension between immiscible
fluids and the angle β defines the location of the contact line:

cos (β) = c
a

. (5)

The total volume of partially saturated crack (Vtot) is cal-
culated as (Rozhko 2016):

Vtot

πab
= 1 +

σn + pwe +
(
1 + sin(2β)−2β

π

)
pcap

pcl
. (6)

Although the volume of the wetting fluid phase inside the
partially saturated crack (Vwe) is calculated as (Rozhko and
Bauer 2018; Rozhko 2019):

Vwe =Ṽwe + δVwe (7)

where

Ṽwe

πab
=
⎛
⎝1 +

σn + pwe + pcap

(
1 + 4

π

[
β sin(2β)−β2+2cos2(β) ln[cos(β)]

2β−sin(2β)

])
pcl

⎞
⎠

× (2β − sin (2β))
π

. (8)

And

δVwe

b2
= − (π − 2θ − sin (2θ ))

cos2 (θ )
sin2 (β)

×
⎛
⎝1 +

σn + pwe +
(

π−2β−2 cot(β) ln[cos(β)]
π

)
pcap

pcl

⎞
⎠

2

. (9)

More details about derivation of above equations can be
found in Rozhko (2016) and Rozhko and Bauer (2018).

The volume of the non-wetting phase inside the crack is
calculated as

Vnw = Vtot − Vwe. (10)

The wetting-phase saturation of the crack (Swe) is defined
as

Swe = Vwe

Vtot
(11)

Above equations are applicable for the following satu-
rations range of the crack (see details in Rozhko and Bauer
2018):

b
a

≤ Swe ≤ 1 − b
a

. (12)

In calculations, we consider very narrow cracks, a � b,
thus above equations are applicable almost for the entire range
of saturations.

Next, following Mavko et al. (2014, p. 138), we con-
sider the perturbations of the equilibrium state caused by a
change in a far-field stress by ‘pure shear’ stress perturba-
tion (�τ ) (Fig. 4.b). The amplitude of stress perturbation in-
duced by seismic waves is very small (comparing to initial
confining stress) typically around �τ ∼ 102 − 104 Pa. This
pure shear stress perturbation induces perturbations of normal
stresses: �σn,1 = �τ in the crack #1 and �σn,2 = −�τ in the
crack #2. Here by sub-indexes i = 1 or i = 2, we will denote

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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638 A.Y. Rozhko

cracks #1 or crack #2, respectively. According to Fig. 4(b),
the far-field ‘pure shear’ stress perturbation (�τ ) will also
induce perturbations to the following parameters: (1) pertur-
bation of the fluid pressure in the wetting phase �pwe, (2)
perturbation of the fluid pressure in the non-wetting phase
�pnw, (3) perturbation of the contact line location �ci and
(4) perturbation of the contact angle �θi . Here, we are con-
sidering the low frequency limit, when the fluid can flow be-
tween two cracks to equilibrate any gradients of fluid pressure
in each fluid phase. Thus, the perturbation of fluid pressure
in the wetting phase would be �pwe and is identical in both
cracks, as well as perturbation of the fluid pressure in the non-
wetting phase would be �pnw and is identical in both cracks.
Thus, perturbation of �pcap = �pnw − �pwe is also identi-
cal in two cracks. Although perturbations of other parame-
ters, shown in Fig. 4(b), are not identical, that is �c1 �= �c2,
�θ1 �= �θ2 and �σn,1 �= �σn,2. Here, to be more specific,
we can say that �σn,1 = −�σn,2 due to pure-shear pertur-
bation of boundary conditions, whereas �c1 �= −�c2 and
�θ1 �= −�θ2 due to non-linearity effects, as it will be discussed
below.

To find perturbations of these parameters we need to
consider perturbations of equilibrium parameters, such as per-
turbations of capillary pressure (in each crack), perturbations
of crack volumes and perturbations of wetting phase volumes
in both cracks. Because the hysteresis of liquid bridges is a
highly non-linear effect, small stress perturbations of ampli-
tude �τ ∼ 102 − 104 Pa are enough to cause this non-linearity
due to deformation of highly compliant cracks. For example,
recent publication of Rozhko and Bauer (2018) have shown
that a small stress perturbation (∼ 102 − 104 Pa) are suffi-
cient to cause large changes in the contact angle �θ of the
order of a few degrees or even larger. Thus, we cannot use
linear (Taylor’s) expansions of equations (3), (6) and (7),
because perturbations of �θi are large. However, we can
consider a much smaller increment of the wave amplitude
�T:

�T = �τ

Niter
, (13)

where �τ is the wave induced pure shear stress perturba-
tion, defined in Fig. 4(b), whereas Niter is the number of
iteration steps (Niter � 1). The number Niter can be suffi-
ciently large so that changes of all parameters, including �θi

will be small. Typically, Niter ∼ 10a/b is sufficient to insure
small deformations around crack aperture per stress increment
�T.

For sufficiently small stress increments, we can use linear
(Taylor’s) expansions of equations (3), (6) and (7) for two
cracks.

For crack # 1, Taylor’s expansion of equilibrium equa-
tions (3), (6) and (7) becomes

�pcap = ∂pcap,1

∂σn,1
�T + ∂pcap,1

∂pwe
�pwe + ∂pcap,1

∂θ1
�θ1

+ ∂pcap,1

∂β1
�β1, (14)

�Vtot,1 = ∂Vtot,1

∂σn,1
�T + ∂Vtot,1

∂pwe
�pwe + ∂Vtot,1

∂pcap
�pcap

+ ∂Vtot,1

∂β1
�β1 (15)

and

�Vwe,1 = ∂Vwe,1

∂σn,1
�T + ∂Vwe,1

∂pwe
�pwe + ∂Vwe,1

∂pcap
�pcap

+ ∂Vwe,1

∂θ1
�θ1 + ∂Vwe,1

∂β1
�β1. (16)

Similarly, for crack #2, Taylor’s expansion of equilibrium
equations (3), (6) and (7) becomes

�pcap = −∂pcap,2

∂σn,2
�T + ∂pcap,2

∂pwe
�pwe + ∂pcap,2

∂θ2
�θ2

+∂pcap,2

∂β2
�β2, (17)

�Vtot,2 = −∂Vtot,2

∂σn,2
�T + ∂Vtot,2

∂pwe
�pwe + ∂Vtot,2

∂pcap
�pcap

+ ∂Vtot,2

∂β2
�β2 (18)

and

�Vwe,2 = −∂Vwe,2

∂σn,2
�T + ∂Vwe,2

∂pwe
�pwe + ∂Vwe,2

∂pcap
�pcap

+ ∂Vwe,2

∂θ2
�θ2 + ∂Vwe,2

∂β2
�β2. (19)

In these equations, changes of normal stresses in two
cracks are �σn,1 = �T and �σn,2 = −�T. All partial deriva-
tives are calculated analytically and can be found in our pre-
vious publication Rozhko (2019).

Next, we are considering undrained boundary condi-
tions, when there is no flow of the wetting and non-wetting

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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Shear softening caused by interfacial phenomena 639

phases in or out of the external boundary of REV, while flu-
ids can flow freely inside REV between two cracks. Thus, in
our model, the masses of the wetting fluid and non-wetting
fluid remain the same in the REV. In this case, changes of vol-
umes of the wetting and non-wetting fluid phases are related
to changes of pressures in those phases via the bulk moduli
of the wetting (Kwe) and non-wetting (Knw) fluid phases as
follows, where those changes are driven by small increment
of the wave amplitude �T:(
�Vwe,1 + �Vwe,2

)
Kwe = − (Vwe,1 + Vwe,2

)
�pwe (20)

and(
�Vtot,1 − �Vwe,1 + �Vtot,2 − �Vwe,2

)
Knw

= − (Vtot,1 − Vwe,1 + Vtot,2 − Vwe,2

)
× (

�pwe + �pcap

)
. (21)

It is interesting to note here that if we set Kwe = 0 and
Knw = 0 in equations (20) and (21), we will get drained
boundary conditions for REV, because perturbations of fluid
pressure in each fluid phase will be equal to 0. Furthermore,
one of the fluid phase can be under drained boundary con-
ditions, whereas another fluid phase can be under undrained
boundary condition. It can be modelled by setting correspond-
ing fluid bulk modulus to 0 in equations (20) or (21). Thus,
equations (20) and (21) embrace different types of bound-
ary conditions for two immiscible fluids in REV: undrained,
drained and mixed-mode boundary conditions.

Equations (14)–(21) are eight equations with 10 un-
known parameters: �pcap, �pwe, �θ1, �β1, �Vtot,1, �Vwe,1,
�θ2, �β2, �Vtot,2 and �Vwe,2. However, the number of un-
known parameters will be reduced to eight, if we are consid-
ering either contact line pinning or the contact line motion
conditions in two cracks. For example, the change of angle
�βi in equations (14)–(19) is related to the change of the con-
tact line location, according to equation (5). If the contact
line is pinned, we have �βi = 0 and �θi �= 0; whereas if the
contact line moving, we have �βi �= 0 and �θi = 0. Thus, the
system of equations (14)–(21) will have a unique solution if
we are considering either the contact line pinning or the con-
tact line motion conditions. In order to calculate response,
produced by the stress perturbation �τ , we need to solve the
system of equations (14)–(21) Niter times (iterative solution).
After each step, the following variable parameters need to be
updated:

p(k)
we = p(k−1)

we + �pwe, (22)

σ
(k)
n,1 = σ

(k−1)
n,1 + �T, (23)

β
(k)
1 = β

(k−1)
1 + �β1, (24)

θ
(k)
1 = θ

(k−1)
1 + �θ1, (25)

σ
(k)
n,2 = σ

(k−1)
n,2 − �T, (26)

β
(k)
2 = β

(k−1)
2 + �β2, (27)

θ
(k)
2 = θ

(k−1)
2 + �θ2. (28)

In above equation, the super-script (k) denotes the itera-
tion step number, where k = 0 denotes the initial conditions.
We do not need to update other parameters, such as p(k)

cap,
V(k)

tot,i and V(k)
we,i, because those parameters depend on p(k)

we, σ
(k)
n,i ,

β
(k)
i and θ

(k)
i , according to equations (3), (6) and (7), and thus

can be calculated analytically. After applying equation (3) for
both cracks, we will get p(k)

cap,1 = p(k)
cap,2, as expected. After ap-

plying equations (6) and (7), we will get V(k)
tot,1 �= V(k)

tot,2 and
V(k)

we,1 �= V(k)
we,2. After each step, all partial derivatives which

appear in equations (14)–(21) must be re-calculated as well,
because they depend on p(k)

we, σ
(k)
n,i , β

(k)
i and θ

(k)
i . These parame-

ters are identical for both cracks only at the initial conditions
when (k = 0). Furthermore, volumes of the wetting phase Vwe,i

and crack volumes Vtot,i should be updated after each step, in
equations (20) and (21).

Next, we discuss more details about modelling the con-
ditions when the contact line is pinned or moving. First, we
define the contact line displacement, using equation (5) as
follows:

�ci = −a sin
(
β

(k−1)
i

)
�βi . (29)

According to Fig. 4, the contact line moves to the reced-
ing direction if �ci > 0 and to advancing direction if �ci < 0.
Thus, the contact line in crack # i is pinned at the iteration
step k if one of the following three conditions is taking place:
(1) (θr < θ

(k−1)
i < θa); or when (2) ( θ

(k−1)
i = θr and �ci < 0);

or when (3) ( θ
(k−1)
i = θa and �ci > 0). The contact line in

crack # i at the iteration step k will be moving in advancing
direction when (θ (k−1)

i = θa and �ci < 0) and will be moving
in receding direction when (θ (k−1)

i = θr and �ci > 0). Next,
we can derive analytical solutions to the system of linear equa-
tions (14)–(21) under four different conditions.

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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640 A.Y. Rozhko

Case 1: The contact line is pinned in both cracks:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�θ2

�pwe

�pcap

�Vwe,1

�Vtot,1

�θ1

�Vwe,2

�Vtot,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= �T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 VWE 0 Kwe 0 0 Kwe 0

0 VNW VNW −Knw Knw 0 −Knw Knw

0
∂pcap,1

∂pwe
−1 0 0

∂pcap,1

∂θ1
0 0

0
∂Vtot,1

∂pwe

∂Vtot,1

∂pcap
0 −1 0 0 0

0
∂Vwe,1

∂pwe

∂Vwe,1

∂pcap
−1 0

∂Vwe,1

∂θ1
0 0

∂pcap,2

∂θ2

∂pcap,2

∂pwe
−1 0 0 0 0 0

0
∂Vtot,2

∂pwe

∂Vtot,2

∂pcap
0 0 0 0 −1

∂Vwe,2

∂θ2

∂Vwe,2

∂pwe

∂Vwe,2

∂pcap
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−∂pcap,1

∂σn,1

−∂Vtot,1

∂σn,1

−∂Vwe,1

∂σn,1

∂pcap,2

∂σn,2

∂Vtot,2

∂σn,2

∂Vwe,2

∂σn,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30)

Here for simplicity we defined volumes of the wetting
phase inside two cracks as

VWE = Vwe,1 + Vwe,2 (31)

and volumes of the non-wetting phase as

VNW = Vtot,1 − Vwe,1 + Vtot,2 − Vwe,2. (32)

Case 2: The contact line is moving in crack # 1, but pinned
in crack # 2:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�θ2

�pwe

�pcap

�Vwe,1

�Vtot,1

�β1

�Vwe,2

�Vtot,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= �T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 VWE 0 Kwe 0 0 Kwe 0

0 VNW VNW −Knw Knw 0 −Knw Knw

0
∂pcap,1

∂pwe
−1 0 0

∂pcap,1

∂β1
0 0

0
∂Vtot,1

∂pwe

∂Vtot,1

∂pcap
0 −1

∂Vtot,1

∂β1
0 0

0
∂Vwe,1

∂pwe

∂Vwe,1

∂pcap
−1 0

∂Vwe,1

∂β1
0 0

∂pcap,2

∂θ2

∂pcap,2

∂pwe
−1 0 0 0 0 0

0
∂Vtot,2

∂pwe

∂Vtot,2

∂pcap
0 0 0 0 −1

∂Vwe,2

∂θ2

∂Vwe,2

∂pwe

∂Vwe,2

∂pcap
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−∂pcap,1

∂σn,1

−∂Vtot,1

∂σn,1

−∂Vwe,1

∂σn,1

∂pcap,2

∂σn,2

∂Vtot,2

∂σn,2

∂Vwe,2

∂σn,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(33)

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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Shear softening caused by interfacial phenomena 641

Case 3: The contact line is moving in crack # 2, but pinned
in crack # 1:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�β2

�pwe

�pcap

�Vwe,1

�Vtot,1

�θ1

�Vwe,2

�Vtot,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= �T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 VWE 0 Kwe 0 0 Kwe 0

0 VNW VNW −Knw Knw 0 −Knw Knw

0
∂pcap,1

∂pwe
−1 0 0

∂pcap,1

∂θ1
0 0

0
∂Vtot,1

∂pwe

∂Vtot,1

∂pcap
0 −1 0 0 0

0
∂Vwe,1

∂pwe

∂Vwe,1

∂pcap
−1 0

∂Vwe,1

∂θ1
0 0

∂pcap,2

∂β2

∂pcap,2

∂pwe
−1 0 0 0 0 0

∂pcap,2

∂β2

∂Vtot,2

∂pwe

∂Vtot,2

∂pcap
0 0 0 0 −1

∂Vwe,2

∂β2

∂Vwe,2

∂pwe

∂Vwe,2

∂pcap
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−∂pcap,1

∂σn,1

−∂Vtot,1

∂σn,1

−∂Vwe,1

∂σn,1

∂pcap,2

∂σn,2

∂Vtot,2

∂σn,2

∂Vwe,2

∂σn,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(34)

Case 4, the contact line is moving in both cracks:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�β2

�pwe

�pcap

�Vwe,1

�Vtot,1

�β1

�Vwe,2

�Vtot,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= �T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 VWE 0 Kwe 0 0 Kwe 0

0 VNW VNW −Knw Knw 0 −Knw Knw

0
∂pcap,1

∂pwe
−1 0 0

∂pcap,1

∂β1
0 0

0
∂Vtot,1

∂pwe

∂Vtot,1

∂pcap
0 −1

∂Vtot,1

∂β1
0 0

0
∂Vwe,1

∂pwe

∂Vwe,1

∂pcap
−1 0

∂Vwe,1

∂β1
0 0

∂pcap,2

∂β2

∂pcap,2

∂pwe
−1 0 0 0 0 0

∂Vtot,2

∂β2

∂Vtot,2

∂pwe

∂Vtot,2

∂pcap
0 0 0 0 −1

∂Vwe,2

∂β2

∂Vwe,2

∂pwe

∂Vwe,2

∂pcap
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−∂pcap,1

∂σn,1

−∂Vtot,1

∂σn,1

−∂Vwe,1

∂σn,1

∂pcap,2

∂σn,2

∂Vtot,2

∂σn,2

∂Vwe,2

∂σn,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(35)

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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642 A.Y. Rozhko

Next, after solving the system of equations (14)–(21) Niter

times, we will find the response induced by the stress per-
turbation �τ , that is p

(Niter)
we , σ

(Niter)
n,i , β

(Niter)
i and θ

(Niter)
i , where

σ
(Niter)
n,1 = σ

(0)
n,1 + �τ and σ

(Niter)
n,2 = σ

(0)
n,2 − �τ . There is no ex-

plicit time dependence in this algorithm; however, the wave
induced stress perturbation �τ can be a function of time.
When we discretize �τ on much smaller stress increments,
using equation (13) the time axis can also be discretized in the
same manner accordingly. Thus, implicitly we can simulate
any time-dependent signal using this algorithm by discretiz-
ing the wave-form on subintervals with subsequent numerical
integration of equations of this paper.

SHEAR M ODULUS A N D A T T EN UA T I ON
IN PARTIALLY- SA T UR A T ED R OC K

In this section, a set of equations for the relaxed moduli and
attenuation factors for a material containing two partially sat-
urated cracks (Fig. 1b) will be given. Analytical solutions from
the previous section describing wave-induced perturbations of
fluid pressure and crack volumes will be utilized.

The effective elastic moduli of a material containing
arbitrary inclusions can be obtained by using the Betti–
Rayleigh-reciprocity theorem (Schmeling 1985; Mavko and
Jizba 1991). It connects two elastic states of equilibrium of a
linear elastic body. If these two states 1 and 2 are represented
by the surface displacements u1 and u2 and the surface stress
vectors or tractions T1 and T2 acting on the body, the theorem
can be written as∫

F
T1 · u2dF =

∫
F

T2 · u1dF, (36)

where the integration must be carried out over the to-
tal outer and inner surfaces F (e.g. Schmeling 1985). The
shear modulus of the rock containing two partially satu-
rated cracks (Fig. 1b) can be calculated by the following
approach. Figure 5 shows two states of stresses and dis-
placements, which can be connected using reciprocity theo-
rem. Figure 5(a) shows the body containing cracks loaded
by an external ‘pure shear’ tractions �τ and internal wave-
induced perturbations of fluid pressure �pf l,i inside crack #i.
The change of fluid pressure in each crack depends on �pwe

and �pcap, which are identical in both cracks and also de-
pends on the change of the contact line location �ci , which
is different in both cracks, thus volume-average changes
of fluid pressure are not identical in both cracks. �pf l,i

is not uniform along the crack length, as it is shown in
Fig. 5(a) by �pf l,1(x) and �pf l,2(y) for cracks # 1 and #2,

respectively. �U and �u shows body surface and pore wall
displacements. In thin cracks, it is sufficient to consider only
normal components of the crack wall displacements (�uy,1(x)
and �ux,2(y)), because tangential components are negligibly
small. In Fig. 5(b), the body containing cracks is loaded by an
external pure ‘shear tractions’ �τ , the same as in Fig. 5(a). In
Fig. 5(b), the thin cracks are loaded with tractions, the same
as external tractions. Thus, the fluid pressure in crack # 1 is
�pf l,1 = −�τ and inside crack #2 is �pf l,2 = �τ . Here we
remind for clarity that we are using a sign convention when
compressive stresses are negative while compressive pressure is
positive. The resulting displacements �U0 and �u0 (Fig. 5b)
are the same if cracks would contain solid matrix material
(e.g. Schmeling 1985). Two states of stress in Fig. 5 can be
combined by the reciprocity theorem giving:

∫
Fext

�τ · �U0dFext +
2∑

i=1

∫
Fcr,i

�pf l,i (x) n · �u0,idFcr

=
∫

Fext

�τ · �UdFext +
2∑

i=1

∫
Fcr,i

�τ · �uidFcr. (37)

Where, according to Figure 5, shear tractions are given
by

�τ = −

⎛
⎜⎝

�τ 0 0
0 −�τ 0
0 0 0

⎞
⎟⎠n, (38)

n is the surface normal unit vector, Fext is the total outer
surface of representative elementary volume (REV) and Fcr,i

is the surface of crack #i. In equation (37), the summation is
taken over two cracks.

The specific strain energy represented by the first integrals
on either side of equation (37) can be taken to define the
undisturbed shear modulus of rock mineral and effective shear
modulus of REV, (e.g. Schmeling 1985):

1
μmin

= 1
VREV�τ 2

∫
Fext

�τ · �u0dFext (39)

and

1
μeff

= 1
VREV�τ 2

∫
Fext

�τ · �UdFext (40)

where VREV is the volume of REV, which can be related to the
initial crack porosity (nc) as follows:

VREV = 2πab
nc

, (41)

where the initial crack porosity is the porosity at zero effective
stress.

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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Shear softening caused by interfacial phenomena 643

Figure 5 Illustration for the reciprocity theorem. For details, see text.

In equation (37), displacements of the crack wall �u0,i

are the same if the crack would contain the solid rock min-
eral, whereas displacements �ui represent displacements of
open crack that is partially saturated with water and gas.
Because partially saturated crack is much more compressible
than crack ‘filled’ with the solid rock mineral, we have |�ui| �
|�u0,i|, hence the integration term

∑2
i=1

∫
Fcr,i

�pf l,i (x)n ·
�u0,idFcr in equation (37) can be neglected. Similar simpli-
fications were also used in literature for more arbitrary pore
geometries (e.g. Schmeling 1985).

In equation (40), the displacement on the outer boundary
of REV (U) is unknown, however, using equations (37)–(41),
we can still calculate the effective shear modulus of REV as
follows:

1
μeff

= 1
μmin

− 1
VREV�τ 2

2∑
i=1

∫
Fcr,i

�τ · �uidFcr (42)

In equation (42) the traction �τ is uniform inside the
crack, thus the following simplification can be made:

2∑
i=1

(∫
Fcr,i

�τ · �uidFcr

)
=

2∑
i=1

(
�τ ·

∫
Fcr,i

�uidFcr

)
, (43)

where the integral
∫

Fcr,i
�uidFcr represents the change in vol-

ume of crack # I due to deformation of crack aperture. The
initial volume of crack # i is calculated using equation (6)
and input parameters: p(k)

we,i, σ
(k)
n,i , β

(k)
i and θ

(k)
i at the itera-

tion step k = 0, whereas the finale crack volume is calculated
using input parameters in equation (6) at the iteration step
k = Niter. Note here that the capillary pressure, which ap-
pears in equation (6), is calculated using equation (3) and

the same input parameters: p(k)
we,i, σ

(k)
n,i , β

(k)
i and θ

(k)
i . Thus, we

obtain:∫
Fcr,i

�uidFcr = �Vtot,i , (44)

where �Vtot,i = V
(Niter)
tot,i − V(0)

tot,i . Because at initial conditions
two cracks are identical, we have V(0)

tot,1 = V(0)
tot,2, therefore

�V
(Niter)
tot,1 − �V

(Niter)
tot,2 = V

(Niter)
tot,1 − V

(Niter)
tot,2 .

Hence,

2∑
i=1

(∫
Fcr,i

�τ · �uidFcr

)
= −�τ

(
V(Niter)

tot,1 − V(Niter)
tot,2

)
(45)

Hence, equation (45) combined with equation (42)
becomes:

1
μeff

= 1
μmin

+ 1
�τ

V(Niter)
tot,1 − V(Niter)

tot,2

VREV
(46)

The above equation is very general and applicable for
calculation of relaxed and unrelaxed shear modulus (in low
and high frequency limits) of partially saturated, fully satu-
rated and dry rocks. This equation depends on the change
of crack volumes with applied stress perturbations, whereas
the change of crack volumes depends on the fluid content
of cracks. Furthermore, this equation can be applied to
calculate effective shear modulus at any iteration step (k),
that is

1

μ
(k)
eff

= 1
μmin

+ 1
�τ (k)

V(k)
tot,1 − V(k)

tot,2

VREV
, (47)

where

�τ (k) = �τ
k

Niter
. (48)

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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644 A.Y. Rozhko

Thus, the shear strain of REV can be calculated at any
iteration step k using equation:

γ
(k)
REV = �τ (k)

2μ
(k)
eff

= �τ (k)

2μmin
+ V(k)

tot,1 − V(k)
tot,2

2VREV
. (49)

Using equation (49), we can calculate the elastic strain
energy of REV, induced by stress perturbation �τ as follows:

W = 1
2

�τ γ
(Niter)
REV . (50)

Note here that equation (50) does not represent the ab-
solute elastic energy, but only the wave energy, caused by
transient stress �τ .

The attenuation of elastic wave energy can be calculated
by the integration of the elastic energy over period of the
elastic wave, that is

δW =
∮

Period
γ

(k)
REVd�τ. (51)

Equation (51) suggests that elastic wave energy will be
attenuated if there is a hysteresis of shear strain during loading
and unloading cycles. The attenuation factor 1

Q is defined as a
fraction of energy dissipated over wave period (Mavko et al.

2009; Müller et al. 2010).

1
Q

= 1
2π

δW
W

. (52)

Next, it will be interesting to compare results, derived for
partially saturated rock with results, calculated for dry rock
or for fully saturated rock with a single fluid phase. If we are
considering a dry rock with two cracks or fully saturated rock
(single phase) in the low frequency limit (relaxed modulus),
equation (46) yields

1
μdry

= 1
μmin

+ nc

pcl
. (53)

Equation (53) directly follows from equation (6) in which
pwe = pf l = const and pcap = 0 due to full saturation of
cracks. Equation (53) does not depend explicitly on the effec-
tive stress σ ′ = σ + pf l (negative in compression); however,
this equation is applicable as long as cracks are open, when
pcl + σ + pf l > 0. If cracks are closed, the rock will deform
as if there are no cracks, thus effective rock moduli will be
equal to moduli of the rock mineral, that is μdry = μmin. If
the rock contains many cracks of different aspect ratio, those
cracks will be closed at different effective confining stress (e.g.
Zimmerman 1990). Thus, apparent shear modulus of dry
rocks containing cracks of different aspect ratio will depend
on the effective confining stress (e.g. Zimmerman 1990). In

this paper, we are considering only two identical cracks for
simplicity. However, the model can be extended to more re-
alistic case of many cracks with different length and aspect
ratio. This, more realistic case will be considered at the end
of this paper. Furthermore, equation (53) does not depend on
the fluid compressibility, because in the low frequency limit
the change of fluid pressure (induced by pure shear stress per-
turbation) will be 0 in isotropic rock. Thus, in equation (53),
we re-derived conclusion obtained by Gassmann’s that μsat =
μdry, which is valid for isotropic rock at low frequency when
the pore fluid does not interact with the rock frame.

NUMERICAL RESULTS AND D IMENSIONAL
ANALYSIS

In this section, we present numerical results for shear moduli
(μeff) and seismic attenuation ( 1

Q), calculated for representa-
tive elementary volume with two partially saturated cracks.
In calculations, we will apply a periodic ‘pure-shear‘stress
perturbation to the external boundary of representative el-
ementary volume (REV), as shown in Fig. (6a). The first
cycle is shown by continuous black curve, whereas subse-
quent cycles are shown by the red dashed curve in Fig. 6(a).
Figure 6(b) shows calculated stress–strain hysteresis of REV
with two cracks, partially saturated with water and gas sys-
tem with 50% of water saturation (Swe = 0.5). Other input
parameters of the model are given in Table 1. This satura-
tion degree (and input parameters from Table 1) corresponds
to initial capillary pressure of pcap = 0.56 MPa, calculated
using equations (3) and (11). Similar to Fig. 6(a), the first
cycle of the stress–strain hysteresis is shown by continuous
black curve in Fig. 6(b), whereas subsequent cycles are shown
by the red dashed curve. Calculations show that subsequent
cycles do not return to its initial value with γREV = 0 and
�τ = 0. According to equation (49), the effective shear mod-
ulus of REV is inversely proportional to the slope of largest
diagonal of the tetragon, shown in Fig. 6(a), whereas the at-
tenuated energy is proportional to the area of the tetragon, ac-
cording to equation (51). Figure 7 shows calculated changes
of other parameters of the model. Alteration of fluid pres-
sure in the wetting and non-wetting phases are shown in
Fig. 7(a,b), respectively. Calculations show that amplitudes
of the wave-induced fluid pressure perturbations are negli-
gibly small, comparing to the wave amplitude. Similar to
Fig. 6, the first cycle is shown by continuous black curve,
whereas subsequent cycles are shown by the red dashed curve
in Fig. 7. Figure 7(c,d) shows alterations of the contact line
location in the first and second cracks, whereas Fig. 7(e,f)

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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Shear softening caused by interfacial phenomena 645

Figure 6 (a) Applied a periodic ‘pure-shear’ stress perturbation to the
external boundary of REV. (b) Calculated stress–strain hysteresis of
REV with two cracks, partially saturated with water and gas system
with 50% water saturation (Swe = 0.5). Other input parameters of
the model are given in Table 1. In (a) and (b), the first cycle is shown
by continuous black curve, whereas subsequent cycles are shown by
the red dashed curve. See Fig. 7 for changes of other parameters of
the model.

shows alterations of the contact angles in the first and second
cracks. Overall calculations of Figs 6 and 7 show that the
hysteresis of liquid bridges is highly non-linear process, lead-
ing to the attenuation of the wave energy in the low (static)
frequency limit. This non-linearity is highly sensitive to the
wave amplitude, as it was discussed around Fig. 3. Next,
we will investigate how the wave amplitude affect this non-
linearity and how this will affect the effective shear modulus
and attenuation in partially saturated rocks. We will consider
both gas–water and oil–water systems. Assumed input pa-
rameters for both systems are given in Table 1, showing that
the surface tension between gas and water interface is about
2.5 times higher than the surface tension for oil and water
interface. Also, the gas phase is less wetting phase comparing
to oil phase, as it is reflected in assumed input contact angles
for the water phase. Also, the assumed bulk modulus of oil
is much greater than the bulk modulus of gas, as shown in

Table 1 Input parameters

Parameter Value

Shear modulus of mineral (μmin) 12 GPa
Poisson’s ratio (νmin) 0.3
Water (brine) bulk modulus (Kwe) 2.6 GPa
Gas bulk modulus (Knw) 0.002 GPa
Oil bulk modulus (Knw) 1.2 GPa
Surface tension between water and gas (γ ) 0.073 Pa × m
Surface tension between water and oil (γ ) 0.029 Pa × m
Advancing contact angle for wetting phase in

water–gas system (θa)
5°

Receding contact angle for wetting phase in
water–gas system (θr )

1°

Advancing contact angle for wetting phase in
water–oil system (θa)

37°

Receding contact angle for wetting phase in
water–oil system (θr )

35°

Initial crack porosity (nc) 10−3

Major semi-axis (a) 10−3 m
Initial aspect ratio (b/a) 10−4

Effective stress (σ + pwe) −15 MPa

Table 1. Figure 8(a) shows calculated effective shear modulus
as a function of the wave-amplitude calculated for partially
saturated rock with gas–water and oil–water systems, at wa-
ter saturations Swe = 0.3 and Swe = 0.6. Dashed black curve
in Fig. 8(a) shows the shear modulus of dry rock. Calculations
show that the shear softening effect depends on the wave am-
plitude and on the type of fluid and saturation degree. When
the wave amplitude is small, the shear modulus of partially
saturated rock coincides with shear modulus of dry rock. At
small wave amplitude, the contact line is pinned, whereas if
the contact line is slipping, the shear modulus of partially sat-
urated rock is decreased. Wang, Schmitt and Wang (2015)
argued that, due to the slippage at the solid–fluid interface,
the stiffness of the rock will be lower than predicted by Biot–
Gassmann models, which assume Stoke’s no-slip boundary
conditions between fluid and solid. Our theoretical calcula-
tions support Wang et al. (2015) explanation, because the
Stoke’s no-slip boundary conditions are not applicable at the
contact line location (Ren and Weinan 2007). The contact
line motion occurs by slippage and rolling of fluid molecules
over the surface of the solid at the contact line location (Ren
and Weinan 2007), this leads to the shear softening, predicted
only when the contact line is moving. Calculations of Fig. 8(a)
show that the shear softening occurs at certain critical wave
amplitude �τc. At this wave amplitude, the contact line starts
to move causing both shear softening and attenuation of
elastic wave energy by the contact line friction mechanism.

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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646 A.Y. Rozhko

Figure 7 (a) and (b) show calculated changes of fluid pressure in the wetting and non-wetting fluid phases, respectively; (c) and (d) show
calculated changes of the contact line location in the first and second cracks, respectively; (e) and (f) show calculated changes of the contact
angles in the first and second cracks. See also captions to Fig. 6.

Figure 8(a) shows that the shear softening is stronger for gas–
water system as compared to oil–water system. Furthermore,
Fig. 8(a) shows that the shear softening occurs at lower wave
amplitude for gas–water system as compared to oil–water sys-
tem. Figure 8(b) shows calculated attenuation factors for cor-
responding cases shown in Fig. 8(a). Calculations show that
the attenuation is higher for gas–water system as compared to
oil–water system.

Next, we will perform the dimensional analysis to un-
derstand better the impact of different input parameters on
the shear softening and on the wave attenuation in partially
saturated rocks. The shear softening is highly non-linear pro-
cess described by the system of coupled equations, which are
solved iteratively. However, to understand the physics, we
will neglect the non-linearity and iterations. First, we will es-
timate the critical stress perturbation required for the onset
of the contact line motion �τc. To do so, we will use the
system of linear equations (30) in which all coefficients are
calculated at the initial conditions, that is at zero interac-
tion step (k = 0), whereas the change of the contact angle,
required for the onset of the contact line motion, is selected

(approximately) as |�θ1| = θa−θr
2 and �θ1 = −�θ2. The ini-

tial contact angle is equal to Young’s angle and calculated
with equations (1), which predicts approximately interme-
diate angle between advancing and receding angles, that is
θY ≈ θa+θr

2 . Thus, the change of initial angle by �θ1 or by
�θ2 will initiate the contact line slippage. Because we neglect
the non-linearity and iterations, the system of equations (30)
yields the following simplified equations, for the critical
wave amplitude, required for the onset of the contact line
motion:

�τc = (θr − θa)
2

∂pcap
∂θ

∂pcap
∂σ

. (54)

Partial derivatives in this equation are calculated at initial
conditions using equations (A37) and (A39) from Rozhko
(2019).

Next, we will estimate the amplitude of shear softening
using the system of equations (35) when the contact line is
moving in two cracks. In this case, we will assume sufficiently
large wave amplitudes (� �τc) when the contact line motion
is much larger than the amplitude of the meniscus bending.

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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Shear softening caused by interfacial phenomena 647

Figure 8 (a) and (b) show calculated effective shear modulus and attenuation factor as a function of the wave-amplitude for the rock that is
partially saturated with gas–water and oil–water systems, at water saturations of Swe = 0.3 and Swe = 0.6. Dashed black curve in (a) shows the
shear modulus of dry rock. Other input parameters of the model are given in Table 1.

After neglecting the non-linear effects in the system of equa-
tions (35), we can derive the expression for the difference be-
tween �Vtot,1 and �Vtot,2, which will be used in equation (46)
to derive the effective shear modulus of partially saturated
rock. After all simplifications using equations (35), (41), (46),
(53) and equations (A40) and (A41) from Rozhko (2019),
the following expression for the effective shear modulus of
partially saturated rock is derived:

1
μp.sat

= 1
μdry

+
(

1
μdry

− 1
μmin

)

× 2
π

(1 − cos (2β)) pcap

(
∂pcap

∂σ

/
∂pcap

∂β

)
. (55)

All partial derivatives in equation (55) (
∂pcap
∂σ

and
∂pcap
∂β

)
are calculated analytically in Rozhko (2019) (equations A37
and A36). The first partial derivative

∂pcap
∂σ

has a quite clear
physical interpretation showing how the capillary pressure in
the crack is changing with the change of the effective confin-
ing stress when all other parameters are kept constant. The
second partial derivative (

∂pcap
∂β

) has less transparent physical
meaning, because the angle β is related somehow to the con-
tact line location inside the crack, according to equation (5).
Let us understand better the physical interpretation of equa-
tion (55). To do so, let us first consider the equation (6). From
this equation, we can see that the total volume of partially
saturated crack is controlled by the following effective stress
(e.g. Santos et al. 1990):

σ ′
n = σn + pnw − χ pcap. (56)

This effective stress is sometimes referred in literature
to as the generalized effective stress or the Bishop’s effective
stress (e.g. Fjær et al. 2008).

The effective stress coefficient, which appears in equa-
tion (56) is calculated using equation (5) as follows:

χ = 2β − sin (2β)
π

. (57)

Next, using the differentiation rule
∂pcap
∂β

= ∂pcap
∂χ

· ∂χ

∂β
we

can substitute
∂pcap
∂β

= 2
π

(1 − cos(2β))
∂pcap
∂χ

into equation (55) to
derive the following expression for the effective shear modulus
of partially saturated rock:

1
μp.sat

= 1
μdry

+
(

1
μdry

− 1
μmin

)
pcap

(
∂pcap

∂σ

/
∂pcap

∂χ

)
. (58)

This equation (58) is more understandable than equa-
tion (55) from the physical point of view; however, it is still
difficult to see how the capillary pressure is changing with
the effective stress coefficient while all other parameters are
kept constant. In the recent publication of Rozhko (2016),
it was demonstrated that the effective stress coefficient,
controlling the volume of partially-saturated crack can be well
approximated by the wetting-phase saturation:

χ ≈ Swe. (59)

Thus, the equation (58) can be simplified further as

1
μp.sat

≈ 1
μdry

+
(

1
μdry

− 1
μmin

)
pcap

(
∂pcap

∂σ

/
∂pcap

∂Swe

)
. (60)

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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648 A.Y. Rozhko

Figure 9 show collapse of data curves of Fig. 8 after scaling of vertical and horizontal axes (all curves follow the same trend). See text for details.

In this form, all input parameters of equation (60) have
quite clear physical interpretation. Equation (60) shows no
dependence on the fluid bulk moduli. Also, the critical stress
amplitude (�τc) neither depends on the fluid bulk moduli, ac-
cording to equation (54). Thus, the shear softening effect does
not depend on the fluid bulk moduli. We discussed previously
after equation (21) that the current model is applicable both
for drained and undrained boundary conditions for both flu-
ids, where the drained boundary conditions can be set by us-
ing zero values for fluid bulk moduli. Because equations (54),
(55), (60) does not depend on the fluid bulk moduli, it implies
that the shear softening does not depend on the fluid boundary
conditions during pure shear stress-perturbation experiments,
that is the same shear softening effect will be observed for
drained and undrained boundary conditions. Let us now ap-
ply equations (54) and (55) to explain the diversity of exper-
imental data, shown in Figure 8. We will modify the vertical
and horizonal axis of Fig. 8 to demonstrate the ‘data col-
lapse’. The horizontal axis of Fig. 8(a,b) will be scaled by the
critical wave amplitude, calculated with equation (54), that
is �τ → �τ

�τc
. The vertical axis of Fig. 8(a) will be scaled by

μeff → μeff −μp.sat
μdry −μp.sat

, whereas the vertical axis of Fig. 8(b) will

be scaled by Q−1 → Q−1 μdry
μdry −μp.sat

. Figure 9 shows calculated

results, shown in Fig. 8 after scaling of vertical and horizon-
tal axes. Figure 9 shows the ‘‘data collapse’ when all curves
follows the same trend. The data collapse curves do not coin-
cide exactly because the non-linear effects and iterations are
neglected during derivation of equations (54) and (55). How-
ever, these equations capture the most important physics and
neglect input parameters, which are not important (i.e. bulk

moduli of pore fluids). Equations (55) and( (60)) show that
the shear softening effect is strong in rock with compliant
pores in which the capillary pressure is highly sensitive to the
change of the confining stress, while if the rock material does
not contain compliant pores or cracks the partial derivative,
∂pcap
∂σ

will be small in this rock, and thus the shear softening
effect will be small as well.

APPLICATION OF THE M ODEL
TO RESERVOIR ROCKS

In this section, we discuss application of the model to reser-
voir rocks. The reservoir rocks may contain many cracks of
different length and aspect ratio (e.g., Zimmerman 1990;
Anders, Laubach and Scholz 2014). Hooker et al. (2009)
found that the aperture distribution of cracks between grains
is best described by log-normal distribution, suggesting that a
lower cut-off is attributed to the grain scale. Pruess and Tsang
(1990) argued that for the log-normal aperture distribution, a
simple approximation to capillary pressure of microcrack (or
fracture) system is obtained in closed form that resemble the
typical shape of Leverett’s J-function, which is described in
reservoir engineering as follows (e.g. Barenblatt et al. 1990):

pcap = γ cos (θ )√
κc/nc

J (Swe) , (61)

where J (Swe) is the dimensionless Leverett’s J-function and κc

is the permeability of microcrack system and nc is the porosity
of microcrack system. The Leverett’s J-function is a general-
ized approach, valid for capillary pressure description both

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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Shear softening caused by interfacial phenomena 649

in consolidated and unconsolidated rocks and for description
of capillary pressure in fractures and micro-cracks systems. It
must be noted that we are focusing only on microcrack poros-
ity and microcrack permeability in a dual-porosity and dual-
permeability rocks. Such differentiation of pore system on
compliant pores (cracks or fractures) and stiff pores (matrix)
is quite common both in geophysics and reservoir engineer-
ing (e.g. Pride and Berryman 2003; Gerke and van Genuchten
1993).

There Leverett J-function can be approximated in its sim-
plest form by the power-law function (Brooks and Corey
1966):

J (Swe) = s0S
− 1

λ
we , (62)

where λ > 0 and s0 > 0 are empirical dimensionless coeffi-
cients, λ is the crack aperture distribution index and s0 is
related to the crack capillary entry pressure, as follows:

pentry = γ cos (θ )√
κc/nc

s0. (63)

Here for simplicity we consider the following relation-
ships between permeability and porosity of the crack system:

κc = κ0nc
3. (64)

This relationship follows from the assumption that the
crack permeability is proportional to the cube of crack
aperture, whereas the crack porosity is linearly proportion
to the crack aperture. Due to tortuosity effects, the cubic law
scaling relationships between crack porosity and crack per-
meability may not be always applicable, in this case a dif-
ferent power-law scaling exponent needs to be used, that is
κc = κ0nq

c , with q > 3.
The porosity (and permeability) of the crack system is

highly sensitive to the effective stress, which can be described
by crack compressibility (e.g. Zimmerman 1990):

∂nc

∂σ
= ncCpc, (65)

where Cpc is the crack compressibility under constant fluid
pressure (e.g. Zimmerman 1990). In the simplest case, if
Cpc = const, equation (65) can be integrated, yielding: nc =
n0 exp(Cpc(σ + pf l )) (e.g. Zimmerman 1990). It must be noted
here again that we are using a sign convention when com-
pressive stresses are negative, whereas in engineering and
geosciences it is more common to use the sign convention
when compressive stresses are positive. Derived equations (54)
and (60) (and equation (65)) require that the compressive
stress is negative, otherwise these equations must be modified
by ∂

∂σ
→ − ∂

∂σ
.

Walsh (1965) derived the following equation for the
crack:

Cpc = 1
m

1 − ν

μmin
. (66)

Note that according to equation (4), the crack compress-
ibility is reciprocal to crack closure stress, whereas, according
to equation (53) it can be related to the crack porosity, dry
shear modulus and shear modulus of rock mineral. In equa-
tion (66), m is the aspect ratio of the crack, defined as:

m = W
L

. (67)

Here W is the crack aperture at given effective stress
and L is the crack length. Experimental data, outlined in
Zimmerman (1990, p. 133) shows that the typical values for
the aspect ratio distribution function of the sandstone are
in the range 10−5 � m � 10−3 with the most frequent value
around m ∼ 10−4. Similar range for the crack aspect ratio scal-
ing was suggested for carbonate rocks and granite by (Cheng
and Toksöz 1979).

Next, we substitute equations (63)–(66), describing cap-
illary pressure, permeability, porosity and compressibility
of microcrack system in natural rocks, to equations (54)
and (60), describing the critical wave amplitude (�τc) and
the shear modulus of partially saturated rock (μp.sat). After
simplification, we derived the following expressions for �τc

and μp.sat:

�τc = mμmin
θa − θr

1 − ν
tan (θY) (68)

and

1
μp.sat

= 1
μdry

+
(

1
μdry

− 1
μmin

)
γ cos (θY)√

κc/nc

(1 − ν)
μmin

λs0

m
S

1− 1
λ

we ,

(69)

where the Young’s angle (θY) is calculated using equation (1),
which is approximately equal to θY ≈ θa+θr

2 . The contact angles
and interfacial tension can be measured from standard labora-
tory tests, whereas it extremely difficult to measure other input
parameters, such as crack aspect ratio, crack porosity, crack
permeability and crack aperture distribution. It is a general
problem of any dual-porosity and dual-permeability models,
as it is extremely difficult to constrain these input parame-
ters, while at the same time these models can provide physical
insights when single-porosity and single-permeability models
are not able to.

Next, we consider saturation limits in equation (69).
At zero saturation limit (Swe → 0), we have as expected
μp.sat → μdry if λ > 1 and μp.sat → 0 if λ < 1. In granular

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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650 A.Y. Rozhko

material, the typical values for the pore size distribution in-
dex λ are in the range 1 < λ <4.2 (Brooks and Corey 1966;
Laliberte, Corey and Brooks 2007), that is all reported val-
ues for λ index are higher than 1. However, those reported
values include both pore systems: matrix and cracks, thus
one may argue that obtained bounds for λ may not be rep-
resentative for cracks. It is not difficult to demonstrate that
there is a theoretical reason for λ > 1. The value λ < 1 would
imply that the crack porosity is dominated by cracks with
smallest possible aperture that is not possible for consolidated
rocks, because it requires infinitely large crack area if the
crack porosity is finite. In opposite, values λ > 1 imply that
the crack porosity is dominated by cracks with highest pos-
sible aperture, that is more representative for consolidated
rocks. Thus, in the limit Swe → 0, equation (69) predicts the
expected result: μp.sat → μdry. The case of full saturation must
be discussed with more details. When Swe → 1, equation (69)
predicts μp.sat < μdry; however, in the case of full saturation,
we would also expect μp.sat = μdry, according to discussions
around Fig. 1(a). Indeed, in the case of full saturation, the cap-
illary pressure is 0 and after substitution of pcap = 0 into equa-
tion (60), we will get the expected result μp.sat = μdry when
Swe = 1. The reason why equation (69) predicts μp.sat < μdry

when Swe = 1 is due to Brooks and Corey (1966) approxi-
mation for the capillary pressure. Due to this approximation,
the capillary pressure is not 0 in the case of full saturation,
according to equation (62). The capillary pressure of rocks
drops rapidly to 0 when Swe → 1. Thus, Brooks and Corey
(1966) approximation is not applicable to explain this end-
tail behaviour of the capillary pressure at Swe → 1. Thus, ac-
cording to equation (60), we would expect μp.sat → μdry in the
same manner as pcap → 0, when Swe → 1. Thus, if the rock
is literally 100% saturated with a single fluid phase, there
would not be any liquid bridges and thus no shear softening
effect, according to our model. Several authors, who reported
the shear softening effect for saturated rocks argued that it
was extremely difficult to achieve full saturation of rock sam-
ple, especially if the rock sample is tight (e.g. Murphy 1984;
Verwer et al. 2010; Li et al. 2017). Even after applying dif-
ferent advanced saturation techniques, there might be some
pores that are not completely saturated, containing entrapped
oil or gas bubbles. For example, Li et al. (2017) argued that
the maximum wetting-phase saturation which was possible
to achieve during experiments was around 98%, thus Brooks
and Corey approximation is relevant for this case. Further-
more, published literature outlined in Introduction showed
that the shear softening effect was not observed on all tested
samples of the same rock. There might be several explanations

for why some samples do not reveal the shear softening be-
haviour. One of the possible explanations is that those samples
were fully (100%) saturated, thus capillary pressure in those
samples were 0. At the reservoir conditions, when the fluid
pressure is above bubble point, we do not expect to have any
free gas in the formation. However, in the oil reservoir, we
still have the interface menisci between oil and water which
reduce the shear modulus. Thus, pore-scale interface phenom-
ena effects are relevant both at the laboratory conditions and
at the reservoir conditions.

D I S C U S S I O N S

In this section, we would like to discuss the important appli-
cation of this theory: effect of pore fluids and saturation on
mechanical strength. According to linear elastic fracture me-
chanics, the mechanical stiffness (shear modulus) and strength
(tensile or uniaxial compressional) are interrelated properties
(e.g. Paterson and Wong 2005). The tensile rock strength and
uniaxial compression strength are linearly proportional to the
fracture toughness (KIc), whereas the fracture toughness is
related to the shear modulus (μ), Poisson’s ratio and specific
fracture energy (Gc) required to brake molecular bonds during
propagation of fracture, as follows:

KIc =
√

μ
2Gc

1 − ν
. (70)

Thus, the change of shear modulus by pore fluids will
affect the mechanical strength of rocks. In equation (70), we
consider specific fracture energy (Gc) as an intrinsic material
property, independent on the fluid content. However, there
are some publications where authors assume the change of
apparent fracture energy Gc by pore fluids to explain the water
weakening effect (e.g. Bergsaker et al. 2016). In this paper, we
assume that Gc is independent on the fluid content, while the
weakening is due to apparent change of the shear modulus.
Furthermore, because bulk modulus is highly sensitive to pore
fluids (Rozhko 2019), the Poisson’s ratio in equation (70) is
also affected by pore fluids. However, the fracture toughness
in equation (70) is much more sensitive to the change of shear
modulus, compared to Poisson’s ratio, thus at the first-order
approximation we can assume ν and Gc to be independent on
fluids in equation (70). Thus, using equations (69) and (70),
we can estimate the ‘fluid weakening’ effect as

KIc p.sat

KIcdry

=
(

1 +
(

1 − μdry

μmin

)
γ cos (θY)√

κc/nc

(1 − ν)
μmin

λs0

m
S

1− 1
λ

we

)− 1
2

,

(71)

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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Shear softening caused by interfacial phenomena 651

where the ‘weakening’ is referred to the change of strength,
whereas ‘softening’ to the change of stiffness.

Equations (69) and (71) predict the decrease of shear
modulus and mechanical strength with:
1. increase of the wetting phase saturation;
2. increase of the wettability towards wetting phase (i.e. de-
crease of θY);
3. increase of surface tension between the wetting and non-
wetting phases;
4. increase of crack compressibility and crack aperture distri-
bution index.

Next, let us discuss published experimental data, sup-
porting conclusions (1)–(4) of our model. Vutukuri (1974)
was one of the first who experimentally demonstrated that
the tensile strength of limestone, saturated with different liq-
uids, depends on the liquid/vapor (air) surface tension of pore
liquid. His results show that with increasing surface tension in
the liquid the tensile strength of the limestone decreases. Simi-
lar conclusions about the role of surface tension of pore liquid
can be drawn from experimental work of Risnes et al. (2003),
who demonstrated that oil saturated rock sample (such as
chalk) can be significantly stronger than water saturated rock
sample and substantially weaker than dry sample. Same ob-
servations were systematically recorded for poorly consoli-
dated, weakly cemented sandstones (Rhett and Lord 2001;
David et al. 2015). The surface tension between water and
air interface is larger than surface tension of oil and air inter-
face, whereas there is no (zero) surface tension for dry sample,
therefore, the experimental results of Risnes et al. (2003) show
the same trend: the reduction of mechanical strength with in-
crease of liquid/vapor surface tension. Similar trend follows
from experimental work of Risnes et al. (2005), who stud-
ied the effect of water–glycol mixture on mechanical strength
of outcrop chalk. Risnes et al. (2005) demonstrated that the
mechanical strength of chalk decreased with increased water
concentration in water–glycol mixture. Water and ethylene–
glycol are fully miscible liquids at atmospheric conditions,
and the liquid–vapor surface tension of water/ethylene–glycol
mixture increases with water concentration. Thus, experimen-
tal work of Risnes et al. (2005) is consistent with Vutukuri’s
(1974) conclusions. Furthermore, Risnes and Flaageng (1999)
and Hedegaard and Graue (2011) pointed out that wettabil-
ity is an important parameter in the fluid–rock interaction
and demonstrated that water flooding of oil-wet (hydropho-
bic) oil-saturated chalk samples shows strengthening effect,
whereas water flooding of water-wet (hydrophilic) oil satu-
rated samples shows the weakening effect. Because wettability
and contact angle are inter-related properties, the experimen-

tal work of Risnes and Flaageng (1999) and Hedegaard and
Graue (2011) indicates the capillary nature of water weak-
ening phenomenon of carbonates. There are many explana-
tions for the water-weakening effect are suggested in liter-
ature: effect of water activity/salinity/pH and so on (Risnes
et al. 2003; Rostom et al. 2013). These explanations are in-
terrelated to each other, because water activity, salinity and
pH affect surface tension and contact angles. For example,
the addition of inorganic salts to water raises the surface ten-
sion approximately linearly with the salt concentration above
0.01 mole/l, whereas at dilute salt concentrations the interfa-
cial tension decreases with salt concentration due to Jones–
Ray effect (Petersen and Saykally 2006). Aslan, Fathi Na-
jafabadi and Firoozabadi (2016) show a non-monotonic de-
pendence of the contact angle on smooth surfaces of different
rocks as a function of salt concentration. There is a decrease of
the contact angle as the NaCl concentration increases and then
an increase of the contact angle with a further increase in NaCl
concentration. The trend is the same on quartz, mica, and cal-
cite surfaces (Aslan et al. 2016). This implies that different
salts and salt concentrations alter the capillary properties of
pore liquids including surface tension and contact angles.

Several authors argued that the shear softening is lower at
higher confining stress (Adam et al. 2009; Li et al. 2017) due to
closure of microcracks. This is also consistent with our theory
because crack compressibility is decreasing with increase of
confining stress (e.g., Zimmerman 1990). Adam et al. (2009)
observed decrease of shear modulus with increase of brine sat-
uration at seismic frequency of 100 Hz that is also consistent
with our predictions. Vo-Thanh (1995) conducted laboratory
measurements of acoustic velocities of sandstone and lime-
stone, saturated with different pore liquids at the different de-
gree of saturation, however we cannot use Vo-Thanh (1995)
results for validation of our theory because laboratory mea-
surements were conducted at ultrasonic frequency of 1MHz.
The same comment is applied to the recent publication of
Bemer, Hamon and Adelinet (2019), who studied dynamic
properties of carbonate rock at ultrasonic frequency of 0.5
MHz. They found that unrelaxed shear modulus of the rock
saturated with different pore liquids depends on the bulk mod-
uli of pore liquids. It is an expected result as discussed pre-
viously around Fig. 1(a). At ultrasonic frequencies, the shear
strengthening (due to unrelaxed response) is compensated by
shear weakening (due to pore-scale interface phenomena),
thus it is not correct to compare ultrasonic measurements
neither with Gassmann’s theory nor with the model presented
in this paper, because those theories are applicable only for
low (seismic) frequencies, below 200 Hz. Mikhaltsevitch et al.

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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652 A.Y. Rozhko

Table 2 Liquid/air surface tensions of pore liquids and sessile drop
contact angles on calcite

Liquid γ , (mPa·m)

θY

(Okayama
et al. 1997)

θY

(Ethington
1990)

Water 72.8 0° 40° ± 8°
Ethylene Glycol 48 48° ± 2.8° 72° ± 5°
Methanol 23 no data 0°

(2016) conducted dynamic shear modulus measurements at
seismic frequencies on carbonate samples, saturated with wa-
ter, n-decane and dry samples. They found that shear modulus
of water-saturated samples was about 7% lower than shear
modulus of dry samples, whereas the shear modulus of n-
decane saturated samples was about the same as shear modu-
lus of dry samples. The surface tension for water–air interface
is about three times higher than surface tension for n-decane-
air interface, whereas the contact angles (wettability) were not
reported in experiments of Mikhaltsevitch et al. (2016), thus it
is not possible to compare laboratory results with our model.
Contact angles depends on mineralogical composition of rock
samples, saturation history, pressure, temperature, roughness
of the surface and measurement method, whereas the interface
tension between immiscible fluids is the well-defined prop-
erty, depending only on pressure and temperature. Thus, we
cannot use contact angles from external publications to ex-
plain results of Mikhaltsevitch et al. (2016). Table 2 shows
published data by different authors for contact angles of wa-
ter/air, ethylene-glycol/air and methanol/air interfaces on the
calcite (Okayama, Keller and Luner 1997; Ethington 1990).
Reported contact angles are quite different for the same sub-
strate mineral and the same fluids. It will of course affect
predictions by our model significantly.

Let us consider the example of input parameters, given
in Table 3. Those parameters are typical for chalk and taken
from different publications given in Table 3. We assumed that
the crack aspect ratio, reported for the limestone and dolomite
by Cheng and Toksöz (1979) is also representative for chalk.
The mercury injection capillary entry pressure into cracks was
assumed to be similar to entry pressure, measured on chalk
sample reported by Fabricius (2007), whereas the crack aper-
ture distribution index for microcracks in chalk was assumed
to be similar to the pore size distribution index for chalk,
reported by Christoffersen and Whitson (1995). Figure 10
shows (a) calculated shear modulus, (b) fracture toughness
and (c) capillary pressure of chalk, partially saturated with
different liquid and gas system. As it was discussed in the pre-

Table 3 Input parameters for chalk

Property Value Reference

Shear modulus of calcite (µmin) 32 GPa Mavko et al. (2009)
Poisson’s ratio of calcite (vmin) 0.32 Mavko et al. (2009)
Shear modulus of dry chalk

(µdry)
8 GPa Fabricius (2007)

Mercury injection capillary
entry pressure for chalk
(pentry ,Hg)

2.1 MPa Fabricius (2007)

Crack aspect ratio 0.5 × 10−4 Cheng and Toksöz
(1979)

Crack aperture distribution
index (λ)

3.4 Christoffersen and
Whitson (1995)

vious section, due to Brooks and Corey (1966) approximation,
the capillary pressure is not vanishing to zero at full saturation.
Thus, after substitution of pcap = 0 into equation (60), we
will get the expected results μp.sat = μdry and KIc p.sat = KIcdry.
Figure 10(a,b) shows that shear modulus and fracture tough-
ness are highly sensitive both to saturation, surface tension
and contact angle measurement. The reduction of compres-
sive strength by the degree of water saturation is a well-known
effect in rock mechanics (Papamichos, Brignoli and Santarelli
1997; Fjær et al. 2008). Figure 10(b) can be compared with
experimental data for compressive strength of chalk, reported
by Risnes et al. (2005), who demonstrated that methanol-
saturated chalk sample is stronger than water-saturated chalk
sample, but weaker that Ethylene–Glycol saturated chalk sam-
ple, while dry rock sample were the strongest. Dashed curves
of Fig. 10(b) show the same trend, where the dashed curves
are based on contact angle measurements of corresponding
liquids on calcite samples from Mexico (Ethington 1990).
Using equation (68), we can also estimate the critical wave
amplitude when the shear softening is expected. Thus, for the
water saturated sample and the contact angle, reported by
Okayama et al. (1997), we have �τc = 0. This result indicates
that for the complete wetting surface the slippage condition
(and shear softening) will not depend on the wave ampli-
tude. Results would be quite different if we would use contact
angles reported by Ethington (1990). Ethington (1990) re-
ported averaged advancing and receding contact angles for
water air interface on calcite as θa ≈ 470 and θr ≈ 70, those
angles are quite different from Sessile drop contact angle
θY ≈ 720,while the reason for this difference was not dis-
cussed by Ethington (1990). Thus, if we would use advanc-
ing and receding angles in equations (1) and (68) we will
get�τc = 0.852 MPa. The stress amplitude of 0.852 MPa is

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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Shear softening caused by interfacial phenomena 653

Figure 10 Effect of pore liquids (water, ethylene glycol and methanol) and saturation on (a) shear modulus; (b) fracture toughness and (c) capillary
pressure of chalk (calculated results). Horizontal axis in (a), (b) and (c) shows liquid saturation of microcracks in liquid–air system. Continuous
and dashed curves correspond to contact angles measurements on calcite by Okayama et al. (1997) and Ethington (1990), respectively. See
Tables 2 and 3 for input parameters.

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 631–656
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654 A.Y. Rozhko

much larger than stress amplitude typical for seismic waves
(102 − 104 Pa). Thus, the shear softening at seismic wave am-
plitudes may not always be observed, as it is highly sensitive
towards wettability of the rock.

CONCLUSIONS

� The current paper suggests explanation to the effect of pore
fluid on quasi-static shear modulus of isotropic partially
saturated rock. It is demonstrated that the shear softening
is related to the pore-scale interfacial phenomena effects,
specifically, to the slippage and rolling of fluid molecules
over the surface of the solid at the contact line location
during the contact line motion. Classical Biot–Gassmann’s
models assume Stoke’s no-slip boundary conditions be-
tween fluid and solid, while due to slippage at the solid–
fluid interface the shear modulus of partially saturated rock
can be lower than shear modulus of dry rocks. The slippage
condition depends not only on material and fluid proper-
ties, but also on the wave amplitude. Only for the complete
wetting surface, the slippage condition will not depend on
the wave amplitude. It is demonstrated that the quasi-static
shear modulus of partially saturated rock is sensitive to the
following fluid properties: interfacial tension between im-
miscible fluids, fluid saturation and rock wettability (con-
tact angles) towards saturating fluids and independent on
bulk moduli of pore fluids.

� Developed closed form equation allowing to estimate the
shear modulus of a partially saturated rock and consider-
ing the following additional parameters: capillary pressure,
stress sensitivity of capillary pressure and saturation sensi-
tivity of capillary pressure. The shear softening is demon-
strated to be possible only in rocks with dual porosity and
dual permeability. Also, we predicted the critical wave am-
plitude defining the onset of shear softening. If the wave
amplitude is lower than the critical amplitude, the shear
modulus of partially saturated rock will be equal to shear
modulus of dry rock, whereas if the wave amplitude is
higher than its critical value, then the shear softening ef-
fect will take place. This derived equation depends on
advancing and receding contact angles, wettability sensi-
tivity of capillary pressure and stress sensitivity of capillary
pressure.

� Suggested model was applied to estimate the shear soft-
ening and shear weakening effects of pore fluids in natural
rocks with log-normal distribution of micro-crack aperture.
In such rocks, the capillary pressure of microcrack system
was described by Leverett’s J-function with Brook–Corey’s

saturation dependency. Derived closed-form analytical so-
lutions explain alteration of shear modulus and strength by
pore fluids and saturation.
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