
����������
�������

Citation: Kusharki, M.B.; Misra, S.;

Muhammad-Bello, B.; Salihu, I.A.;

Suri, B. Automatic Classification of

Equivalent Mutants in Mutation

Testing of Android Applications.

Symmetry 2022, 14, 820. https://

doi.org/10.3390/sym14040820

Academic Editor: SeongKi Kim

Received: 23 March 2022

Accepted: 10 April 2022

Published: 14 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Automatic Classification of Equivalent Mutants in Mutation
Testing of Android Applications
Muhammad Bello Kusharki 1 , Sanjay Misra 2,*, Bilkisu Muhammad-Bello 3 , Ibrahim Anka Salihu 3

and Bharti Suri 4

1 Department of Information and Communication Technology, National Defence College,
Abuja 900128, Nigeria; mbkusharki@ndc.gov.ng

2 Department of Computer Science and Communication, Østfold University College, P.O. Box 700,
NO-1757 Halden, Norway

3 Software Engineering & Information Technology Department, Nile University of Nigeria,
Abuja 900001, Nigeria; bilkisu.muhammad-bello@nileuniversity.edu.ng (B.M.-B.);
ibrahim.salihu@nileuniversity.edu.ng (I.A.S.)

4 University School of Information and Communication Technology, GGS Indraprastha University,
Delhi 110078, India; bhartisuri@ipu.ac.in

* Correspondence: sanjay.misra@hiof.no

Abstract: Software and symmetric testing methodologies are primarily used in detecting software
defects, but these testing methodologies need to be optimized to mitigate the wasting of resources. As
mobile applications are becoming more prevalent in recent times, the need to have mobile applications
that satisfy software quality through testing cannot be overemphasized. Testing suites and software
quality assurance techniques have also become prevalent, which underscores the need to evaluate
the efficacy of these tools in the testing of the applications. Mutation testing is one such technique,
which is the process of injecting small changes into the software under test (SUT), thereby creating
mutants. These mutants are then tested using mutation testing techniques alongside the SUT to
determine the effectiveness of test suites through mutation scoring. Although mutation testing is
effective, the cost of implementing it, due to the problem of equivalent mutants, is very high. Many
research works gave varying solutions to this problem, but none used a standardized dataset. In this
research work, we employed a standard mutant dataset tool called MutantBench to generate our data.
Subsequently, an Abstract Syntax Tree (AST) was used in conjunction with a tree-based convolutional
neural network (TBCNN) as our deep learning model to automate the classification of the equivalent
mutants to reduce the cost of mutation testing in software testing of android applications. The result
shows that the proposed model produces a good accuracy rate of 94%, as well as other performance
metrics such as recall (96%), precision (89%), F1-score (92%), and Matthew’s correlation coefficients
(88%) with fewer False Negatives and False Positives during testing, which is significant as it implies
that there is a decrease in the risk of misclassification.

Keywords: software testing; artificial intelligence; mutation testing; android applications; tree-based
convolutional neural networks

1. Introduction

The identification of equivalent mutants is a crucial task in mutation testing for
optimizing the cost of implementing the mutation testing. Strategies such as symmetric
testing have been promising, but it requires the incorporation of other techniques and
methodologies for the effective classification of equivalent mutants. The growing number
of mobile devices, such as iPods, smartphones, androids, and tablets, resulted in the massive
need for mobile solutions in today’s world, which has increased the demand for mobile
software applications. This huge pressure is forcing many applications to reach the market
with significant faults, which often results in failures [1], thereby necessitating the need for

Symmetry 2022, 14, 820. https://doi.org/10.3390/sym14040820 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14040820
https://doi.org/10.3390/sym14040820
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0901-2326
https://orcid.org/0000-0002-4020-7175
https://orcid.org/0000-0001-7015-8741
https://doi.org/10.3390/sym14040820
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14040820?type=check_update&version=1

Symmetry 2022, 14, 820 2 of 14

adequate software quality testing. Software testing is an aspect of agile programming [2]
aimed at checking if an application meets the software requirement and if it will satisfy
the needs of all. The tools that are employed in testing the software under test (SUT) are
equally developing rapidly due to the fast-changing world. This underscores the need for
techniques that will test these test suites.

To achieve this all-important software quality for all test suites, an effective software
testing framework is required, and Mutation Testing is one of the most effective tech-
niques [3]. Mutation Testing is a very effective technique for the testing of test suites and
for generating, prioritizing, and selecting test cases through the utilization of mutation
operators [4]. The SUT is mutated through the use of mutation operators to change some
part of the source codes, thereby increasing the chances of the test suites giving two differ-
ent outputs between the SUT and the Mutant program. If the mutants are killed, then we
compute the mutation score [5], which is the basis for evaluating the test suites. The issue
with this technique is the process involved in identifying the equivalent mutants within
the mutant program after the mutants are killed because the mutation score computation
relies heavily on the identification of these types of mutants. Equivalent mutants are key
to computing the mutation score, and when the equivalent mutant code is not detected,
the mutation score (MS) will be low, and that will imply that the mutation testing is not
effective. The mutation score formula is used for the computation of the effectiveness of the
mutation testing technique. Equation (1) below highlights the MS formula, where P is the
program under test, T is the test suite, K is the number of killed mutants, M is the number
of generated mutants, and lastly, E is the number of equivalent mutants. Research has been
carried out towards solving this equivalent mutant problem (EMP), including machine
learning-related approaches.

MS(P, T) =
K

(M− E)
(1)

The application of Machine Learning (ML) has helped in all strata of the computing
world, thereby creating huge research possibilities in the area of software quality which led
to the proposition of different automation techniques for solving problems. Equally, deep
learning has further redefined the automation of problems in software testing [6], where
Abstract Syntax Tree (AST) techniques are combined with great models and techniques
to handle natural language processing. These have helped in the proposition of models
that automate the EMP [7] with promising results, which subsequently reduced the cost
of mutation testing. Although novel models have been proposed and implemented, there
is little research in the area of equivalent mutant testing for android applications. Since
mutation testing is domain-specific [8], the desktop solution will not necessarily work for
the mobile application domain.

From the above, we can deduce that equivalent mutant classification is key for effective
mutation testing. Equivalent mutant classification will also lead to a reduction in the cost
involved in this software testing technique because obtaining a very good mutation score is
key to this framework (see Equation (1) below) [9]. Hence, this research aims to automate
the classification of EMP in mutation testing of android applications using a deep learning
model based on the Tree-based Convolutional Neural Network (TBCNN) architecture for
an effective reduction in the cost of implementing the mutation testing. To achieve this
aim, we generated a standard mutant dataset using the standardized tool proposed by [10].
Subsequently, as our first contribution, we developed a model based on TBCNN architecture
to automate the classification of the equivalent mutant; secondly, we implemented and
validated our model using cross-validation.

The current state-of-the-art methods in solving EMP for automatic classification of
equivalent mutants were reviewed and evaluated against our research objectives which
raised the following research questions: (1) Will the proposed deep learning model enhance
the use of mutation testing techniques in the testing of android applications? (2) What are
the benefits of the classification of equivalent mutants in the mutation testing of software

Symmetry 2022, 14, 820 3 of 14

under test (SUT)? (3) Will automated identification of equivalent mutants solve all the
problems associated with the high cost of mutation testing in android applications?

The remaining sections of this paper are structured as follows: Section 2 details the
related works; Section 3 details our materials and methods; the implementation, results,
and discussions are detailed in Section 4; Section 5 concludes the paper.

2. Related Works

Mutation testing, a powerful testing tool, is a technique of assessing and improving
the quality of test suites [11] and is carried out through the creation of a modified version of
a program, called a mutant, and then applying mutation operators that make small changes
to the software by either simulating faults or guiding the tester to edge cases [12]. During
the testing, testers are expected to find or design tests that cause these mutants to fail, that
is, behave differently from the SUT. If a test case causes a mutant to fail, then that mutant is
said to be killed; otherwise, the mutant remains alive. Mutation can be used to help testers
design high-quality tests or to evaluate and improve existing test suites. Mutation testing
technique has empirically shown that it is a very strong testing tool compared to control
flow-based testing and data flow-based testing [13], but it generally has less usage due to
the high cost of implementation as a result of problems, such as the equivalent mutant
problem, that affect mutation score percentile.

Recently, a lot has been achieved in the area of research that effectively aids the muta-
tion testing of android apps [1,5,12]. To adequately certify the test suites that these studies
recommended, the mutation technique is used to determine the fault detection capabilities
of these tools. In mutation testing, it is expected for testers to find a test suite that will cause
the test on the mutant to fail or behave differently from the SUT [11], and when this happens,
the mutant is said to be killed, otherwise, it is alive. Empirical studies have shown that for
mutation testing to be very effective, mutation operators need to be applied to a specific domain.
In [14], the researchers analyzed some android faults within a group of 2062 such faults, and
they further identified 38 mutation operators that they use to classify their stillborn/trivial
mutants. This research achieved a 77% accuracy in bug taxonomy, but [15] recommended a
tool, MDroid+, to use the same 38 operators in the generation of mutants and testing of test
suites with 8000 mutants generated from over 50 applications. Although ref. [16], in their
paper, highlighted the faults inherent in MDroid+, they further recommended the Monkey tool
as a better tool for generating data. Performance mutation testing framework, as proposed
by [3], introduced the traditional mutation models and emphasized the performance enhance-
ment of tests which the paper by [4] used to evaluate their developed tool, AMOGA, with an
emphasis on about five mutation operators which include ICR (Inline Constant Replacement),
NOI (Negative Operator Inversion), LCR (Logical Connector Replacement), AOR (Arithmetic Operator
Replacement), and ROR (Relational Operator Replacement). All the listed works of literature here
show the importance of mutation testing to the android applications, but none handle the issue
of the cost of implementing the technique as a result of equivalent mutants.

One of the first attempts to handle the equivalent mutant problem was [17], where
they used the manual technique of hand-labeling the equivalent mutants; this work opened
doors to the research into the automation of this classification task. In [18], the researchers
proposed the use of an Abstract Syntax Tree (AST) with combined models of Tree-Based
Convolutional Neural Network (TBCNN) and Support Vector Machine (SVM), and this
gave an accuracy of 92%. Another paper used deep CNN (DCNN) for the same classification
but returned an accuracy of 60% with a great focus on incremental learning [19]. The work
of [8] reduced the mutant testing effort using their MuAPK 2.0 tool through the removal
of dead code mutants with an accuracy of 90%, while [5] used mathematical constraints
in constraint-based testing (CBT) theory and Random Forest to achieve 80% accuracy in
their approach for the classification of equivalent mutants. Furthermore, refs. [2,20] used
K-nearest neighbors (k-NN) and MutantDistiller, respectively, in their attempt to improve
the classification of mutants so that it will enhance the use of mutation testing. In an
attempt to blend neural networks and AST, ref [21] proposed the use of ASTNN, a novel

Symmetry 2022, 14, 820 4 of 14

machine learning model that automatically classified equivalent mutants using two popular
mutation operators and achieved an accuracy of 90%. All these papers did a good job
towards the classification of equivalent mutants but have two things in common: they did
not use a standard dataset based on the FAIR principle as proposed by [10], and they and
very few other studies were in the domain of mobile applications. In addition, the use of
the deep learning approach is also very minimal.

The use of TBCNN in natural language processing has become important because of
the availability of ASTs and the capacity to handle both the semantic and syntactic nature
of program source codes [22]. From combined AST, as used by [6], where they used the
concept of the node and obtained an accuracy of 93% in the bug localization, to [21], which
used TBCNN for incremental learning due to the hierarchical nature of the program source
codes and with an accuracy of 87%, it can be deduced that TBCNN is a very good model
for incremental learning and language processing. Furthermore, ref. [23] has opened more
windows for some techniques that can be combined with ASTs and TBCNN to achieve very
good accuracy in the classification of equivalent mutants. In this paper, drawing strength
from all the above literature, we combined ASTs with TBCNN and incorporated Bi-GRU
and LSTM to achieve our aim.

From these pieces of literature reviewed, we observed that many studies were con-
ducted regarding equivalent mutation problems (EMP) but with limited research work
within the mobile apps’ domain. Furthermore, some literature that covered the automa-
tion of the classification of equivalent mutants used some novel techniques, such as the
ASTNN [21] and MutantDistiller [20], but none handled the classification of the equivalent
mutant from the mobile apps domain perspective or used tree-based convolutional neural
networks. It could equally be deduced that TBCNN has given a high level of accuracy com-
pared to other models, most especially when handling source codes of software programs
as we intend to do [21]. In Section 2, we explained, in detail, the materials and methods
used in solving the problem of automating the classification of equivalent mutants in the
mutation testing of android applications.

3. Materials and Methods

Our research methodology was inspired by the research of [22] but with some modifi-
cations to accommodate our contribution in using a standardized dataset as recommended
by the work of [10], based on the FAIR principle. Figure 1 depicts our research design
methodology. It shows the entire process from data generation and data pre-processing
with word embeddings training and sequence of blocks generation before feeding our
TBCNN network (a model based on a tree-based convolutional neural network, as stipu-
lated by [6,24,25] in their research paper, which gave them accuracy in the region of 85–90%,
respectively), with the vector representation of the mutant dataset.

Symmetry 2022, 14, x FOR PEER REVIEW 5 of 15

Figure 1. The methodology flowchart is deployed in this thesis.

3.1. Data Generation and Processing
The research in the area of mutation testing, based on the domain knowledge of the

android apps, required the generation of mutants as the dataset for any further analysis,
and we achieved that using the FAIR data principles. We sampled 30 programs’ source
codes in generating our dataset. We equally needed to carry out data processing so that
we obtained a dataset in a format suitable for our model. As we elaborated, we used
MutantBench to generate our dataset following the concept of [10] as postulated in
Equation (2) below: ∑ |𝑝| ∗ 𝑀 ∈ (2)

where P is the set of all the programs within the dataset and 𝑀 equals the mutants that
are with the program. Even though mutation testing is deep in strategy, it comes with a
high cost for data generation, most especially in source codes of android applications, as
they are usually large. Though the solution is to store the filename of each of the
equivalent mutants and present a method of the mutant generation where they are
generated within the same set of mutants and with the same file, it is still tedious as it will
require the running of the same generation tool with same attributes and possibly with
same environments.

To solve this anomaly, we adopted the method of [26] but kept in mind the need to
consider semantic and synthetic structures of the software under test (SUT) as proposed
by [21]. In Figure 2 below, we present the process flow of our data generation using the 𝜇𝑗𝑎𝑣𝑎 tool within MutantBench. We then pre-labeled our dataset as a positive class for the
equivalent mutants and a negative class for the generated killed mutants, all from the same
SUT. We limited our selection of mutant operators to absolute value insertions (ABS) [1],
[17] because it is widely used and covers a lot of codes. Several papers used other tools to
generate combined mutants, which include equivalent mutant datasets [16–18,24,27].

Start
Mutant

Generation
Tool

Mutants

Program
Source
Code

Parsed Code
into AST

Training Word
Embeddings

pycparser

Parsed
Code

Split
Dataset

Training
and

Validation

Testing

Word2Vec

Generating
Sequence of

blocks

Embeddings

Training
and

Validation
Blocks

Testing
Blocks

Tree-Based
CNN

Architecture

Training the
Model

Deep Learning
MetricsEvaluationEnd

Feed into the Model

Figure 1. The methodology flowchart is deployed in this thesis.

Symmetry 2022, 14, 820 5 of 14

3.1. Data Generation and Processing

The research in the area of mutation testing, based on the domain knowledge of the
android apps, required the generation of mutants as the dataset for any further analysis, and
we achieved that using the FAIR data principles. We sampled 30 programs’ source codes in
generating our dataset. We equally needed to carry out data processing so that we obtained
a dataset in a format suitable for our model. As we elaborated, we used MutantBench to
generate our dataset following the concept of [10] as postulated in Equation (2) below:

∑p ∈P|p| ∗
∣∣Mp

∣∣ (2)

where P is the set of all the programs within the dataset and
∣∣Mp

∣∣ equals the mutants that
are with the program. Even though mutation testing is deep in strategy, it comes with a
high cost for data generation, most especially in source codes of android applications, as
they are usually large. Though the solution is to store the filename of each of the equivalent
mutants and present a method of the mutant generation where they are generated within
the same set of mutants and with the same file, it is still tedious as it will require the running
of the same generation tool with same attributes and possibly with same environments.

To solve this anomaly, we adopted the method of [26] but kept in mind the need to
consider semantic and synthetic structures of the software under test (SUT) as proposed
by [21]. In Figure 2 below, we present the process flow of our data generation using the
µjava tool within MutantBench. We then pre-labeled our dataset as a positive class for the
equivalent mutants and a negative class for the generated killed mutants, all from the same
SUT. We limited our selection of mutant operators to absolute value insertions (ABS) [1,17]
because it is widely used and covers a lot of codes. Several papers used other tools to
generate combined mutants, which include equivalent mutant datasets [16–18,24,27].

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 15

Figure 2. The Data Generation Dataflow Diagram.

We carried out the processing of our pre-labeled dataset by parsing it using
pycparser, as our dataset was generated from C and C++ programs. The MutantBench
being a flexible tool made this possible. The parsed dataset was then shuffled and split
into training, validation, and test. The training and validation dataset was then trained
with the popular Word2Vec dictionary, ref. [28], in an unsupervised way. Subsequently,
the word embeddings were created using a skip-gram training algorithm with an
embedding size of 128. Using these embeddings, we generated a sequence of blocks for
the training, validation, and testing before feeding our model with these sub-datasets. The
flowchart in Figure 3 below depicts the entire data processing flow.

Figure 3. The Data Processing Dataflow Diagram.

3.2. Model Design and Training
The natural flow of programming languages is a tree-like structure, just like an AST

representation, as shown in Figure 4a, which represents Equation (3). Our mutant dataset
equally follows this structure; therefore, we adopted the use of the TBCNN model
together with AST. 𝐼𝑛𝑡 𝑎 = 𝑏 + 3 (3)

The model used for this classification is based on TBCNN, and we chose this
architecture based on the inspiration of its hierarchical classifiers, where it comprises,
multiple nodes connected in a tree-like pattern [22]. The TBCNN model has some initial
layers of Convolutional Neural Networks (CNN) that learn some of the generic parts of
the features hierarchically, classifying the classes through the use of the upper nodes.
Subsequently, new hierarchies are developed to accommodate new classes [20,29].

Start Generating Mutant
using MutantBench Mutant

Equivalent Mutant

Program Source Code Test Suites

Mutant Killed?

No

Yes Pre – Labelled
Dataset

DISCARD

Start
Pre –

Labeleld
dataset

Parsed Code
into AST

Training Word
Embeddings

pycparser

Parsed
Code

Split
Dataset

Training
and

Validation

Testing

Word2Vec

Generating
Sequence of

blocks

Embeddings

Training
and

Validation
Blocks

Testing
Blocks

Feed into
the Model

Figure 2. The Data Generation Dataflow Diagram.

We carried out the processing of our pre-labeled dataset by parsing it using pycparser,
as our dataset was generated from C and C++ programs. The MutantBench being a flexible
tool made this possible. The parsed dataset was then shuffled and split into training,
validation, and test. The training and validation dataset was then trained with the popular
Word2Vec dictionary, ref. [28], in an unsupervised way. Subsequently, the word embeddings
were created using a skip-gram training algorithm with an embedding size of 128. Using
these embeddings, we generated a sequence of blocks for the training, validation, and
testing before feeding our model with these sub-datasets. The flowchart in Figure 3 below
depicts the entire data processing flow.

3.2. Model Design and Training

The natural flow of programming languages is a tree-like structure, just like an AST
representation, as shown in Figure 4a, which represents Equation (3). Our mutant dataset
equally follows this structure; therefore, we adopted the use of the TBCNN model together
with AST.

Symmetry 2022, 14, 820 6 of 14

Int a = b + 3 (3)

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 15

Figure 2. The Data Generation Dataflow Diagram.

We carried out the processing of our pre-labeled dataset by parsing it using
pycparser, as our dataset was generated from C and C++ programs. The MutantBench
being a flexible tool made this possible. The parsed dataset was then shuffled and split
into training, validation, and test. The training and validation dataset was then trained
with the popular Word2Vec dictionary, ref. [28], in an unsupervised way. Subsequently,
the word embeddings were created using a skip-gram training algorithm with an
embedding size of 128. Using these embeddings, we generated a sequence of blocks for
the training, validation, and testing before feeding our model with these sub-datasets. The
flowchart in Figure 3 below depicts the entire data processing flow.

Figure 3. The Data Processing Dataflow Diagram.

3.2. Model Design and Training
The natural flow of programming languages is a tree-like structure, just like an AST

representation, as shown in Figure 4a, which represents Equation (3). Our mutant dataset
equally follows this structure; therefore, we adopted the use of the TBCNN model
together with AST. 𝐼𝑛𝑡 𝑎 = 𝑏 + 3 (3)

The model used for this classification is based on TBCNN, and we chose this
architecture based on the inspiration of its hierarchical classifiers, where it comprises,
multiple nodes connected in a tree-like pattern [22]. The TBCNN model has some initial
layers of Convolutional Neural Networks (CNN) that learn some of the generic parts of
the features hierarchically, classifying the classes through the use of the upper nodes.
Subsequently, new hierarchies are developed to accommodate new classes [20,29].

Start Generating Mutant
using MutantBench Mutant

Equivalent Mutant

Program Source Code Test Suites

Mutant Killed?

No

Yes Pre – Labelled
Dataset

DISCARD

Start
Pre –

Labeleld
dataset

Parsed Code
into AST

Training Word
Embeddings

pycparser

Parsed
Code

Split
Dataset

Training
and

Validation

Testing

Word2Vec

Generating
Sequence of

blocks

Embeddings

Training
and

Validation
Blocks

Testing
Blocks

Feed into
the Model

Figure 3. The Data Processing Dataflow Diagram.

Symmetry 2022, 14, x FOR PEER REVIEW 7 of 15

Figure 4. The Tree-Based Convolutional Neural Networks.

In most models that handled the automatic classification of the equivalent mutants,
features extraction is handled separately, but in TBCNN, it is conducted by the model
itself [23]. The TBCNN begins as a single root node and then generates new hierarchies to
accommodate new classes [22]. A typical TBCNN works as described below [7]:
1. Initially, the network is trained to classify data into N categories. The data from a

new class is presented to the network, and the network then expands to
accommodate the new class;

2. The network expands by adding a new leaf/branch node to the existing structure;
3. The goal of reducing training effort has two components: the number of weights

updated and the number of examples, old or new, required for training;
4. Lastly, changes have been restricted to a new branch of the tree.

The TBNN is used for the extraction of features and the classification of the mutants
into equivalent mutants or and nonequivalent mutants. Figure 4b shows the process flow,
where for every non-leaf p and its children, 𝒙𝟏, 𝒙𝟐, … . . , 𝒙𝒏, we would then have Equation
(4). Each node in AST is placed as a real value vector, such that the features of the symbols
are captured as vector representation through a coding criterion as proposed by [18]. 𝑣𝑒𝑐 𝑝 𝑡𝑎𝑛ℎ 𝑙 𝑊 , ∙ 𝑣𝑒𝑐 𝑥 + 𝑏 (4)

where 𝑾𝒄𝒐𝒅𝒆,𝒏 ∈
𝑵𝒇×𝑵𝒇 is the weight matrix that corresponds to the symbol 𝒙𝒏 and 𝒃𝒄𝒐𝒅𝒆 ∈ 𝑵𝒇 is the bias, 𝒍𝒏 which equals #𝒍𝒆𝒂𝒗𝒆𝒔 𝒖𝒏𝒅𝒆𝒓 𝒙𝒏#𝑳𝒆𝒂𝒗𝒆𝒔 𝒖𝒏𝒅𝒆𝒓 𝒑 is the coefficient of the weight.

Because different nodes may have different numbers of branch nodes, that means 𝑾𝒄𝒐𝒅𝒆,𝒏
is not fixed. Therefore, to solve this problem, we introduced the concept of the continuous
binary tree where only two weight matrices, 𝑾𝒄𝒐𝒅𝒆𝒍 and 𝑾𝒄𝒐𝒅𝒆 𝒓 , serve as model
parameters. The weight, 𝑾𝒏, is the linear combination of the two-parameter matrices. The
major closeness between vec(p) and the coded vector is measured by the Euclidean
distance equation: 𝑑 = 𝑣𝑒𝑐 𝑝 − tanh 𝑙 𝑊 , ∙ 𝑣𝑒𝑐 𝑥 + 𝑏 (5)

After the pre-training of the feature vectors for every symbol and using the popular
word embeddings, Word2Vec [27], we fed that, together with the trained embeddings, into
the tree-based convolutional neural network architecture. Figure 4 shows the
representation of the TBCNN and it clearly shows the nodes on the left as a representation
of feature vectors of the symbols in AST. To further explain our techniques, the vectors
were pre-trained based on embeddings, using BI-GRU [28] and max-pooling to pool the
hidden states of the BI-GRU into a single vector representation source code. After the pre-
training of the features of the vectors for every symbol, we fed our model with the pre-
trained dataset together with the word embeddings. The entire model architecture and
the vector presentation architectures are shown in Figures 5 and 6 below.

Figure 4. The Tree-Based Convolutional Neural Networks.

The model used for this classification is based on TBCNN, and we chose this archi-
tecture based on the inspiration of its hierarchical classifiers, where it comprises, multiple
nodes connected in a tree-like pattern [22]. The TBCNN model has some initial layers of
Convolutional Neural Networks (CNN) that learn some of the generic parts of the features
hierarchically, classifying the classes through the use of the upper nodes. Subsequently,
new hierarchies are developed to accommodate new classes [20,29].

In most models that handled the automatic classification of the equivalent mutants,
features extraction is handled separately, but in TBCNN, it is conducted by the model
itself [23]. The TBCNN begins as a single root node and then generates new hierarchies to
accommodate new classes [22]. A typical TBCNN works as described below [7]:

1. Initially, the network is trained to classify data into N categories. The data from a new
class is presented to the network, and the network then expands to accommodate the
new class;

2. The network expands by adding a new leaf/branch node to the existing structure;
3. The goal of reducing training effort has two components: the number of weights

updated and the number of examples, old or new, required for training;
4. Lastly, changes have been restricted to a new branch of the tree.

The TBNN is used for the extraction of features and the classification of the mutants
into equivalent mutants or and nonequivalent mutants. Figure 4b shows the process flow,
where for every non-leaf p and its children, x1, x2,, xn, we would then have Equation (4).

Symmetry 2022, 14, 820 7 of 14

Each node in AST is placed as a real value vector, such that the features of the symbols are
captured as vector representation through a coding criterion as proposed by [18].

vec(p) ≈ tanh

(
∑nlnWcode,n·vec(xn) + bcode

)
(4)

where Wcode,n ∈ RN f×N fN f×N fN f×N f is the weight matrix that corresponds to the symbol xn and
bcode ∈ RN fN fN f is the bias, ln which equals #leaves under xnleaves under xnleaves under xn

#Leaves under pLeaves under pLeaves under p is the coefficient of the weight. Because
different nodes may have different numbers of branch nodes, that means Wcode,n is not
fixed. Therefore, to solve this problem, we introduced the concept of the continuous binary
tree where only two weight matrices, Wl

code and Wr
code , serve as model parameters. The

weight, Wn, is the linear combination of the two-parameter matrices. The major closeness
between vec(p) and the coded vector is measured by the Euclidean distance equation:

d =

∣∣∣∣∣
∣∣∣∣∣vec(p)− tanh

(
∑nlnWcode,n·vec(xn) + bcode

)∣∣∣∣∣
∣∣∣∣∣
2

2

(5)

After the pre-training of the feature vectors for every symbol and using the popular
word embeddings, Word2Vec [27], we fed that, together with the trained embeddings, into
the tree-based convolutional neural network architecture. Figure 4 shows the representation
of the TBCNN and it clearly shows the nodes on the left as a representation of feature
vectors of the symbols in AST. To further explain our techniques, the vectors were pre-
trained based on embeddings, using BI-GRU [28] and max-pooling to pool the hidden
states of the BI-GRU into a single vector representation source code. After the pre-training
of the features of the vectors for every symbol, we fed our model with the pre-trained
dataset together with the word embeddings. The entire model architecture and the vector
presentation architectures are shown in Figures 5 and 6 below.

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 15

Figure 5. The Model Architecture Workflow.

Figure 6. The Vector Representation.

Training and Validation
Since deep learning requires a large amount of data and our pre-labeled dataset

constitutes only 52,000 samples, we handled the training and validation of the model
through supervised learning and deployed the cross-validation training method in
training our model. Cross-validation is a form of K—sampling method where the training
is conducted with k = 10 and then we perform a series of training and validation steps
with hyperparameter tuning using cross-entropy and AdaMax [29] as optimizers. To
obtain very good accuracy, we used 10 epochs, a hidden dimension of 300, and a batch
size of 32; this is good because it is updated frequently enough to promote effective
training without drastically slowing down the process.

As part of training and parameter setting, we tried running our model on 3 different
platforms: (1) Jupyter Notebook; (2) Google Colab; and (3) Amazon SageMaker Studio
Lab. We found out that SageMaker gave the best “Time Cost”, which is one of the two key
problems we intended to solve. With AWS SageMaker, we ran our model with 153 s of
time compared to Jupyter Notebook’s 21,000 s and Google Colab’s 1403 s. This clearly

Figure 5. The Model Architecture Workflow.

Symmetry 2022, 14, 820 8 of 14

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 15

Figure 5. The Model Architecture Workflow.

Figure 6. The Vector Representation.

Training and Validation
Since deep learning requires a large amount of data and our pre-labeled dataset

constitutes only 52,000 samples, we handled the training and validation of the model
through supervised learning and deployed the cross-validation training method in
training our model. Cross-validation is a form of K—sampling method where the training
is conducted with k = 10 and then we perform a series of training and validation steps
with hyperparameter tuning using cross-entropy and AdaMax [29] as optimizers. To
obtain very good accuracy, we used 10 epochs, a hidden dimension of 300, and a batch
size of 32; this is good because it is updated frequently enough to promote effective
training without drastically slowing down the process.

As part of training and parameter setting, we tried running our model on 3 different
platforms: (1) Jupyter Notebook; (2) Google Colab; and (3) Amazon SageMaker Studio
Lab. We found out that SageMaker gave the best “Time Cost”, which is one of the two key
problems we intended to solve. With AWS SageMaker, we ran our model with 153 s of
time compared to Jupyter Notebook’s 21,000 s and Google Colab’s 1403 s. This clearly

Figure 6. The Vector Representation.

Training and Validation

Since deep learning requires a large amount of data and our pre-labeled dataset
constitutes only 52,000 samples, we handled the training and validation of the model
through supervised learning and deployed the cross-validation training method in training
our model. Cross-validation is a form of K—sampling method where the training is
conducted with k = 10 and then we perform a series of training and validation steps with
hyperparameter tuning using cross-entropy and AdaMax [29] as optimizers. To obtain
very good accuracy, we used 10 epochs, a hidden dimension of 300, and a batch size of 32;
this is good because it is updated frequently enough to promote effective training without
drastically slowing down the process.

As part of training and parameter setting, we tried running our model on 3 different
platforms: (1) Jupyter Notebook; (2) Google Colab; and (3) Amazon SageMaker Studio
Lab. We found out that SageMaker gave the best “Time Cost”, which is one of the two
key problems we intended to solve. With AWS SageMaker, we ran our model with 153 s
of time compared to Jupyter Notebook’s 21,000 s and Google Colab’s 1403 s. This clearly
shows that the environment and tools are key players in improving the time cost of finding
equivalent mutants in the mutation testing of android applications.

To evaluate our model, we used performance evaluation metrics, such as confusion
matrix, recall, precision, F1-score, and Matthew’s correlation coefficient (MCC). We set the
confusion matrix as below:

1. True Positive (TP)—Mutant is equivalent, as anticipated by our model;
2. False Positive (FP)—Mutant is not equivalent, but our model predicted it was equivalent;
3. True Negative (TN)—Mutant is not equivalent, and our model predicted it was

not equivalent;
4. False Negative (FN)—Mutant is equivalent, but our model predicted it was not equivalent.

The following equations were then used for the above-stated evaluation parameters.
The table listed the software resources necessary for this model implementation and to
achieve the minimum results like ours.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

Symmetry 2022, 14, 820 9 of 14

F1− Score = 2 ∗
(

Precision ∗ Recall
Precision + Recall

)
(9)

Given that we used a binary classification in solving the problem of equivalent mutants,
we further evaluated our model using Matthew’s correlation coefficients (MCC). MCC is
not affected by the issue of unbalanced datasets, ref. [30], as this matrix is a method of
calculating the Pearson product-moment correlation coefficient between actual and predicted
values (within the range of −1 as the worst value and +1 as the best value). The MCC is
defined as:

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(10)

MCC is the only binary classification rate that gives a more reliable statistical rate that
yields a high score if the prediction performed well in all four confusion matrix categories
(true positives, false negatives, true negatives, and false positives), according to the number
of positive and negative items in the dataset [31].

Table 1 below shows the required software resources necessary for this model imple-
mentation.

Table 1. List of software resources.

Serial Number Resources Version

1 Android Studio 2020.3.1
2 MutantBench 2021.1.1
3 Gumtre 2.1.2
4 Python 3.10.1
5 Pandas
6 Gensim 3.5.0
7 Pytorch 1.6.0
8 Dataloader
9 Pycparser 2.18
10 Google Colab -

4. Discussion of Results

In this section, we explain our model results and then compare them with other related
research work as captured in our literature review. The absolute value insertion (ABS)
mutation operator was chosen to run our model because it is the most widely used operator,
and it will serve as the baseline for the future implementation of our model. Using this
mutant operator and the MutantBench tool, we generated a standard dataset based on the
FAIR principle [10], for both positive and negative classes as shown in Figure 7.

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 15

4. Discussion of Results
In this section, we explain our model results and then compare them with other

related research work as captured in our literature review. The absolute value insertion
(ABS) mutation operator was chosen to run our model because it is the most widely used
operator, and it will serve as the baseline for the future implementation of our model.
Using this mutant operator and the MutantBench tool, we generated a standard dataset
based on the FAIR principle [10], for both positive and negative classes as shown in Figure
7.

Figure 7. Our Dataset representation after Random Under Sampling.

Since the data generated was in a program language format, we used the Python
library javalang [27] as a tool, together with pycparser, to parse the code into AST. It was
very important to then convert the ASTs into vector representation as our model can only
be fed with the vectors, as earlier explained. With the help of the embeddings, this
encoding was completed before the actual training started. For the shuffling and splitting
stage, the data was placed into 3 sets, training, test, and development, before generating the
blocks for the split data set of training and testing. We constructed our embeddings using
the training dataset concurrently with the unsupervised trained. Lastly, we ran the final
processing of the data for the training proper, and we called this entire process the
pipelining data processing stage.

We followed our data processing design just as we explained earlier, before feeding
our TBCNN with the blocks of training, validation, and testing. We adopted this model
for this research because of how effective it was in [7,23,26] and how they all had a similar
problem area, program source code, although with different objectives. The model, which
we implemented with kernels, paddings, and slides aside the various layers, performed
well with an accuracy of 94% within 10 epochs, as depicted in Figure 8.

Figure 7. Our Dataset representation after Random Under Sampling.

Symmetry 2022, 14, 820 10 of 14

Since the data generated was in a program language format, we used the Python
library javalang [27] as a tool, together with pycparser, to parse the code into AST. It was very
important to then convert the ASTs into vector representation as our model can only be fed
with the vectors, as earlier explained. With the help of the embeddings, this encoding was
completed before the actual training started. For the shuffling and splitting stage, the data
was placed into 3 sets, training, test, and development, before generating the blocks for the
split data set of training and testing. We constructed our embeddings using the training
dataset concurrently with the unsupervised trained. Lastly, we ran the final processing
of the data for the training proper, and we called this entire process the pipelining data
processing stage.

We followed our data processing design just as we explained earlier, before feeding
our TBCNN with the blocks of training, validation, and testing. We adopted this model
for this research because of how effective it was in [7,23,26] and how they all had a similar
problem area, program source code, although with different objectives. The model, which
we implemented with kernels, paddings, and slides aside the various layers, performed
well with an accuracy of 94% within 10 epochs, as depicted in Figure 8.

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 15

Figure 8. Training and Validation Accuracy.

As shown in Figure 8, the validation and training accuracies were around 92% and
94%, respectively. The loss function of both training and validation is shown in Figure 9.
The obtained accuracy of 94% outperforms the models proposed in [2,5,7]. Furthermore,
our results show fewer False Negatives during testing and lower False Positives, which is
significant as it implies that there is a decrease in the risk of labeling a mutant as
equivalent when it is not. This indicates a great measure in strengthening mutation testing
test suites.

Figure 9. Training and Validation Loss.

Furthermore, to adequately evaluate our model, we achieved a 94% accuracy, higher
than other models [2,5,17], which shows it predicted very few False Negatives during
testing, see Figure 10. There were equally lower False Positives, thereby indicating a
decrease in the risk of labelling a mutant as equivalent to the strengthening of the test
suites.

Figure 8. Training and Validation Accuracy.

As shown in Figure 8, the validation and training accuracies were around 92% and
94%, respectively. The loss function of both training and validation is shown in Figure 9.
The obtained accuracy of 94% outperforms the models proposed in [2,5,7]. Furthermore,
our results show fewer False Negatives during testing and lower False Positives, which is
significant as it implies that there is a decrease in the risk of labeling a mutant as equivalent
when it is not. This indicates a great measure in strengthening mutation testing test suites.

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 15

Figure 8. Training and Validation Accuracy.

As shown in Figure 8, the validation and training accuracies were around 92% and
94%, respectively. The loss function of both training and validation is shown in Figure 9.
The obtained accuracy of 94% outperforms the models proposed in [2,5,7]. Furthermore,
our results show fewer False Negatives during testing and lower False Positives, which is
significant as it implies that there is a decrease in the risk of labeling a mutant as
equivalent when it is not. This indicates a great measure in strengthening mutation testing
test suites.

Figure 9. Training and Validation Loss.

Furthermore, to adequately evaluate our model, we achieved a 94% accuracy, higher
than other models [2,5,17], which shows it predicted very few False Negatives during
testing, see Figure 10. There were equally lower False Positives, thereby indicating a
decrease in the risk of labelling a mutant as equivalent to the strengthening of the test
suites.

Figure 9. Training and Validation Loss.

Symmetry 2022, 14, 820 11 of 14

Furthermore, to adequately evaluate our model, we achieved a 94% accuracy, higher
than other models [2,5,17], which shows it predicted very few False Negatives during
testing, see Figure 10. There were equally lower False Positives, thereby indicating a
decrease in the risk of labelling a mutant as equivalent to the strengthening of the test suites.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 15

Figure 10. Confusion Matrix.

The Table 2, summarizes the result of our comparative analysis, and our standard
dataset and the proposed model architecture performed very well in terms of accuracy
and time taken to return results.

Table 2. Model Comparison.

Model Accuracy Recall Precision Time (s)
Binary Classification + Random Forest 80% 96% 89% -
k-Nearest Neighbor 85% - - -
ASTNN 90% 96% 100% 84.5
ASTNN (With our Standard Dataset) 94% 93% 92% 314.64
TBCNN 94% 96% 93% 153.00

The Classification report, as shown in Table 3, is a report of accuracy, recall, precision,
F1-score, and total time, as provided by the performance evaluation metrics of our
implantation. The resultsindicate a huge performance of the proposed model during
testing. We used a dataset that was not part of the training and validation process and
evaluated it with four different metrics. F1-score and accuracy showed good results when
applied to balanced datasets (50-50) and produced misleading results when applied to
imbalanced cases. To further evaluate our results and make sure we obtained a good
model that solves the problem at hand, we used Matthew’s Correlation Coefficient, MCC.

MCC and F1-score are of great interest to us here because they both indicate how
good our classification turned out to be. In particular, when an MCC is close to +1, it means
it has high values for all the other confusion matrix metrics. From the above table, our
MCC value is very high and close to +1, which further affirms the accuracy, F1-score,
precision, and recall values we generated as good and within a perfect range. It further
indicates the fact that the dataset we used is not overfitting or underfitting.

Equally, from the performance evaluation metrics, we will observe that our model
has an F1-Score of 94%, an indication that it will have a minimal error in classifying the
equivalent mutants with fewer False Negatives and False Positives during testing, which
is significant as it implies that there is a decrease in the risk of misclassification.

Table 3. Performance Evaluation Metrics.

Mutation
Operator Accuracy Recall Precision F1-Score MCC Score

Total
Time (s)

ABS 0.94 0.96 0.89 0.92 0.88 153.00

5. Conclusions
Mobile applications are becoming the fulcrum of human daily affairs, and the fast

growth of mobile-based solutions is making the need for software testing of these fast-
released apps key to the survival of the software integrity and efficiency. This paper aims

Figure 10. Confusion Matrix.

The Table 2, summarizes the result of our comparative analysis, and our standard
dataset and the proposed model architecture performed very well in terms of accuracy and
time taken to return results.

Table 2. Model Comparison.

Model Accuracy Recall Precision Time (s)

Binary Classification + Random Forest 80% 96% 89% -
k-Nearest Neighbor 85% - - -
ASTNN 90% 96% 100% 84.5
ASTNN (With our Standard Dataset) 94% 93% 92% 314.64
TBCNN 94% 96% 93% 153.00

The Classification report, as shown in Table 3, is a report of accuracy, recall, precision,
F1-score, and total time, as provided by the performance evaluation metrics of our implan-
tation. The resultsindicate a huge performance of the proposed model during testing. We
used a dataset that was not part of the training and validation process and evaluated it
with four different metrics. F1-score and accuracy showed good results when applied to
balanced datasets (50–50) and produced misleading results when applied to imbalanced
cases. To further evaluate our results and make sure we obtained a good model that solves
the problem at hand, we used Matthew’s Correlation Coefficient, MCC.

Table 3. Performance Evaluation Metrics.

Mutation Operator Accuracy Recall Precision F1-Score MCC Score Total Time (s)

ABS 0.94 0.96 0.89 0.92 0.88 153.00

MCC and F1-score are of great interest to us here because they both indicate how good
our classification turned out to be. In particular, when an MCC is close to +1, it means it
has high values for all the other confusion matrix metrics. From the above table, our MCC
value is very high and close to +1, which further affirms the accuracy, F1-score, precision,
and recall values we generated as good and within a perfect range. It further indicates the
fact that the dataset we used is not overfitting or underfitting.

Equally, from the performance evaluation metrics, we will observe that our model
has an F1-Score of 94%, an indication that it will have a minimal error in classifying the

Symmetry 2022, 14, 820 12 of 14

equivalent mutants with fewer False Negatives and False Positives during testing, which is
significant as it implies that there is a decrease in the risk of misclassification.

5. Conclusions

Mobile applications are becoming the fulcrum of human daily affairs, and the fast
growth of mobile-based solutions is making the need for software testing of these fast-
released apps key to the survival of the software integrity and efficiency. This paper aims to
automatically classify equivalent mutants in the mutation testing of android applications us-
ing tree-based convolutional neural networks. We went through the trajectory of explaining
the efficacy of using mutation testing based on previous research, where we explained the
need to adopt this technique in testing android applications. We reviewed novel research
papers that helped in giving us an in-depth analysis of the key issues around the equivalent
mutation problem. Furthermore, to accomplish our aim, we used a tool to generate our
standard dataset, transform the data into vector representation, and then generate blocks
of training, development, and testing datasets. We then fed our model, TBCNN, with the
trained block dataset to obtain our classification of the equivalent mutants.

At the end of the implementation, we found out that the automation of the classifica-
tion of equivalent mutants is an area that needs a lot of research. We can proffer a solution
to the problem using a very robust technique that we adopted: tree-based convolutional
neural network (TBCNN), which shows a greater percentage of accuracy than some ma-
chine learning algorithms. Our model gave an accuracy of 94% and a validation accuracy of
92%, and the entire research further affirms the need to use a standard dataset in mutation
testing. Lastly, our work will encourage the use of mutation testing in testing android
applications, thereby enhancing software quality assurance.

This paper aimed to automatically classify the equivalent mutants in the mutation
testing of android applications using deep learning and an abstract syntax tree, with the
objective of incorporating a standardized dataset of mutants to achieve a huge reduction
in the cost of finding these mutants. We adopted the MutantBench tool for generating
our dataset from a collection of C and C++ SUT and, with the aid of our tree-based
convolutional neural networks, achieved an accuracy of 94% and a run time of 153.00 s
using GPU on Amazon SageMaker Studio Lab. We believe that this model could be utilized
as a framework in the software quality industry towards improving the quality of android
applications flooding the market. We recommend that more tools should be developed
towards having a standardized mutant dataset, as this will increase research interest in
other areas of mutation testing. More operators should be used to further implement the
proposed technique, and the framework should be further developed into an android
application to ease access and increase the use of the model. Lastly, other tools, such as
MDroid+, MuJava, and the rest, should incorporate the standard FAIR Principle in their
method of generating mutants.

Author Contributions: Conceptualization, M.B.K., B.M.-B., S.M. and I.A.S.; Methodology, S.M., M.B.K.
and B.M.-B.; Data curation, M.B.K.; Formal analysis, M.B.K., B.M.-B., B.S. and I.A.S.; Writing—original
draft, M.B.K.; Writing—review & editing, S.M., B.S., M.B.K. and B.M.-B. Funding acquisition and project
administration, S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets and code presented in this study are available on https://
github.com/mbkusharki/TBCNN-plus-AST-.git (accessed on 1 March 2022). For any other questions,
please contact the corresponding author or first author of this paper.

Acknowledgments: The authors would like to acknowledge Amazon Web Services (AWS) for grant-
ing us access to use Amazon Sage maker to prepare, build, train, and test our deep learning model.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/mbkusharki/TBCNN-plus-AST-.git
https://github.com/mbkusharki/TBCNN-plus-AST-.git

Symmetry 2022, 14, 820 13 of 14

References
1. Deng, L.; Offutt, J.; Ammann, P.; Mirzaei, N. Mutation operators for testing Android apps. Inf. Softw. Technol. 2017, 81, 154–168.

[CrossRef]
2. Strug, J.; Strug, B. LNCS 7641—Machine Learning Approach in Mutation Testing. In IFIP International Conference on Testing

Software and Systems; Springer: Berlin/Heidelberg, Germany, 2012.
3. Delgado-Pérez, P.; Sánchez, A.B.; Segura, S.; Medina-Bulo, I. Performance Mutation Testing. Softw. Test. Verif. Reliab. 2021,

31, e1728. [CrossRef]
4. Salihu, I.A.; Ibrahim, R.; Ahmed, B.S.; Zamli, K.Z.; Usman, A. AMOGA: A Static-Dynamic Model Generation Strategy for Mobile

Apps Testing. IEEE Access 2019, 7, 17158–17173. [CrossRef]
5. Naeem, M.R.; Lin, T.; Naeem, H.; Liu, H. A machine learning approach for classification of equivalent mutants. J. Softw. Evol.

Process 2020, 32, e2238. [CrossRef]
6. Liang, H.; Sun, L.; Wang, M.; Yang, Y. Deep Learning with Customized Abstract Syntax Tree for Bug Localization. IEEE Access

2019, 7, 116309–116320. [CrossRef]
7. Peacock, S.; Deng, L.; Dehlinger, J.; Chakraborty, S. Automatic Equivalent Mutants Classification Using Abstract Syntax Tree

Neural Networks. In Proceedings of the 2021 IEEE 14th International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), Porto de Galinhas, Brazil, 12–16 April 2021; pp. 13–18.

8. Escobar-Velásquez, C.; Riveros, D.; Linares-Vásquez, M. MutAPK 2.0: A tool for reducing mutation testing effort of Android
apps. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, 8–13 November 2020; pp. 1611–1615.

9. Mateo, P.R.; Usaola, M.P.; Aleman, J.L.F. Validating Second-Order Mutation at System Level. IEEE Trans. Softw. Eng. 2012, 39,
570–587. [CrossRef]

10. Van Hijfte, L.; Oprescu, A. MutantBench: An Equivalent Mutant Problem Comparison Framework. In Proceedings of the 2021
IEEE 14th International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto de Galinhas,
Brazil, 12–16 April 2021; pp. 7–12. [CrossRef]

11. Delgado-Pérez, P.; Chicano, F. An experimental and practical study on the equivalent mutant connection: An evolutionary
approach. Inf. Softw. Technol. 2020, 124, 106317. [CrossRef]

12. Kintis, M.; Papadakis, M.; Jia, Y.; Malevris, N.; Le Traon, Y.; Harman, M. Detecting Trivial Mutant Equivalences via Compiler
Optimisations. IEEE Trans. Softw. Eng. 2017, 44, 308–333. [CrossRef]

13. Ma, L.; Zhang, F.; Sun, J.; Xue, M.; Li, B.; Juefei-Xu, F.; Xie, C.; Li, L.; Liu, Y.; Zhao, J.; et al. DeepMutation: Mutation Testing of
Deep Learning Systems. In Proceedings of the 2018 IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE), Memphis, TN, USA, 15–18 October 2018; pp. 100–111.

14. Linares-Vásquez, M.; Bavota, G.; Tufano, M.; Moran, K.; Di Penta, M.; Vendome, C.; Bernal-Cárdenas, C.; Poshyvanyk, D. Enabling
mutation testing for Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
Association for Computing Machinery (ACM), Paderborn, Germany, 4–8 September 2017; pp. 233–244.

15. Moran, K.; Tufano, M.; Bernal-Cárdenas, C.; Linares-Vásquez, M.; Bavota, G.; Vendome, C.; Di Penta, M.; Poshyvanyk, D.
MDroid+: A mutation testing framework for android. In Proceedings of the 40th International Conference on Software
Engineering: Companion, Gothenburg, Sweden, 27 May–3 June 2018; pp. 33–36.

16. Da Silva, H.N.; Farah, P.R.; Mendonça, W.D.F.; Vergilio, S.R. Assessing Android Test Data Generation Tools via Mutation Testing.
In Proceedings of the IV Brazilian Symposium on Systematic and Automated Software Testing—SAST 2019, Salvador, Brazil,
23–27 September 2019; pp. 32–41.

17. Yao, X.; Harman, M.; Jia, Y. A study of equivalent and stubborn mutation operators using human analysis of equivalence.
In Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May 2014–7 June 2014;
pp. 919–930. [CrossRef]

18. Phan, A.V.; Chau, P.N.; Le Nguyen, M.; Bui, L.T. Automatically classifying source code using tree-based approaches. Data Knowl.
Eng. 2018, 114, 12–25. [CrossRef]

19. Hu, Q.; Ma, L.; Xie, X.; Yu, B.; Liu, Y.; Zhao, J. DeepMutation++: A Mutation Testing Framework for Deep Learning Systems. In Pro-
ceedings of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), San Diego, CA, USA,
11–15 November 2019; pp. 1158–1161.

20. Baer, M.; Oster, N.; Philippsen, M. MutantDistiller: Using Symbolic Execution for Automatic Detection of Equivalent Mutants and
Generation of Mutant Killing Tests. In Proceedings of the 2020 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), Porto, Portugal, 24–28 October 2020; pp. 294–303. [CrossRef]

21. Tang, D.; Qin, B.; Liu, T. Document Modeling with Gated Recurrent Neural Network for Sentiment Classification. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015;
pp. 1422–1432.

22. Roy, D.; Panda, P.; Roy, K. Tree-CNN: A hierarchical Deep Convolutional Neural Network for incremental learning. Neural Netw.
2020, 121, 148–160. [CrossRef] [PubMed]

23. Mou, L.; Li, G.; Zhang, L.; Wang, T.; Jin, Z. Convolutional Neural Networks over Tree Structures for Programming Language
Processing. 2014. Available online: http://arxiv.org/abs/1409.5718 (accessed on 21 March 2022).

http://doi.org/10.1016/j.infsof.2016.04.012
http://doi.org/10.1002/stvr.1728
http://doi.org/10.1109/ACCESS.2019.2895504
http://doi.org/10.1002/smr.2238
http://doi.org/10.1109/ACCESS.2019.2936948
http://doi.org/10.1109/TSE.2012.39
http://doi.org/10.1109/ICSTW52544.2021.00015
http://doi.org/10.1016/j.infsof.2020.106317
http://doi.org/10.1109/TSE.2017.2684805
http://doi.org/10.1145/2568225.2568265
http://doi.org/10.1016/j.datak.2017.07.003
http://doi.org/10.1109/icstw50294.2020.00055
http://doi.org/10.1016/j.neunet.2019.09.010
http://www.ncbi.nlm.nih.gov/pubmed/31563011
http://arxiv.org/abs/1409.5718

Symmetry 2022, 14, 820 14 of 14

24. Saifan, A.A.; Alzyoud, A.A. Mutation Testing to Evaluate Android Applications. Int. J. Open Source Softw. Process. 2020, 11, 23–40.
[CrossRef]

25. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and Their Composi-
tionality. 2013. Available online: http://arxiv.org/abs/1310.4546 (accessed on 21 March 2022).

26. Vieira, S.T.; Rosa, R.L.; Rodríguez, D.Z. A Speech Quality Classifier based on Tree-CNN Algorithm that Considers Network
Degradations. J. Commun. Softw. Syst. 2020, 16, 180–187. [CrossRef]

27. Bui, N.D.Q.; Jiang, L.; Yu, Y. Cross-Language Learning for Program Classification Using Bilateral Tree-Based Convolutional
Neural Networks. 2017. Available online: http://arxiv.org/abs/1710.06159 (accessed on 21 March 2022).

28. Cai, Z.; Lu, L.; Qiu, S. An Abstract Syntax Tree Encoding Method for Cross-Project Defect Prediction. IEEE Access 2019, 7,
170844–170853. [CrossRef]

29. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. 2014. Available online: https://arxiv.org/abs/1412.6980
(accessed on 21 March 2022).

30. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary
classification evaluation. BMC Genom. 2020, 21, 6. [CrossRef] [PubMed]

31. Chicco, D.; Tötsch, N.; Jurman, G. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker
informedness, and markedness in two-class confusion matrix evaluation. BioData Min. 2021, 14, 1–22. [CrossRef] [PubMed]

http://doi.org/10.4018/IJOSSP.2020010102
http://arxiv.org/abs/1310.4546
http://doi.org/10.24138/jcomss.v16i2.1032
http://arxiv.org/abs/1710.06159
http://doi.org/10.1109/ACCESS.2019.2953696
https://arxiv.org/abs/1412.6980
http://doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477
http://doi.org/10.1186/s13040-021-00244-z
http://www.ncbi.nlm.nih.gov/pubmed/33541410

	Introduction
	Related Works
	Materials and Methods
	Data Generation and Processing
	Model Design and Training

	Discussion of Results
	Conclusions
	References

