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Abstract: Current research endeavors in the application of artificial intelligence (AI) methods in the
diagnosis of the COVID-19 disease has proven indispensable with very promising results. Despite
these promising results, there are still limitations in real-time detection of COVID-19 using reverse
transcription polymerase chain reaction (RT-PCR) test data, such as limited datasets, imbalance classes,
a high misclassification rate of models, and the need for specialized research in identifying the best
features and thus improving prediction rates. This study aims to investigate and apply the ensemble
learning approach to develop prediction models for effective detection of COVID-19 using routine
laboratory blood test results. Hence, an ensemble machine learning-based COVID-19 detection
system is presented, aiming to aid clinicians to diagnose this virus effectively. The experiment
was conducted using custom convolutional neural network (CNN) models as a first-stage classifier
and 15 supervised machine learning algorithms as a second-stage classifier: K-Nearest Neighbors,
Support Vector Machine (Linear and RBF), Naive Bayes, Decision Tree, Random Forest, MultiLayer
Perceptron, AdaBoost, ExtraTrees, Logistic Regression, Linear and Quadratic Discriminant Analysis
(LDA/QDA), Passive, Ridge, and Stochastic Gradient Descent Classifier. Our findings show that
an ensemble learning model based on DNN and ExtraTrees achieved a mean accuracy of 99.28%
and area under curve (AUC) of 99.4%, while AdaBoost gave a mean accuracy of 99.28% and AUC of
98.8% on the San Raffaele Hospital dataset, respectively. The comparison of the proposed COVID-19
detection approach with other state-of-the-art approaches using the same dataset shows that the
proposed method outperforms several other COVID-19 diagnostics methods.

Keywords: diagnostic model; blood tests; COVID-19; deep learning; ensemble learning; small data

1. Introduction

The Internet of Things (IoT) and smart home technologies enable the monitoring
of people in their homes without interfering with their daily routines [1]. Advances in
artificial intelligence (AI) and machine learning (ML) can enable faster patient monitoring,
management, and treatment, as well as convert a hospital-only treatment pathway into
cost-effective combined home-hospital or even outpatient alternatives, improving overall
quality of health care and paving the way for personalized medicine [2]. Digital health
signals recorded at home by sensors provide a wealth of clinical data. Such data could be
sent to cloud computing infrastructure and analyzed remotely, which is especially useful in
the case of various contagious diseases, such as the coronavirus one [3]. However, analyzing
real-time data collected from heterogeneous IoT sensors presents several challenges because
the data contain significant artifacts because of transmission and recording limitations, are
highly imbalanced and incomplete because of subject variability and resource limitations,
and involve multiple modalities [4].
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Currently, the COVID-19 SARS-CoV-2 coronavirus pandemic has hit the world with
more than 400 million confirmed cases and nearly 6 million deaths recorded. It continues
to have numerous negative consequences on health, society, and the environment [5]. The
gold standard measure is the amplification of viral RNA by reverse transcription poly-
merase chain reaction (rRT-PCR) [6]. However, it presents established weaknesses: lengthy
processing times (3–4 h to deliver results), possible reagent shortages, insufficient RT-PCR
test kits, high demand for experts [7], false negative rates of 15–20%, and the requirement
for accredited laboratories, costly infrastructure, and qualified workers. Recently, the CDC
(Centers for Disease Control and Prevention) withdrew the Emergency Use Authorization
(EUA) of the 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic because
of its inability to differentiate between the SARS-CoV-2 and influenza viruses. Therefore,
reliable new substitute tests, quicker, less costly, and more open tests, are required [8].

More attention has been paid to investigating the potential of state-of-the-art AI and
ML methods to tackle COVID-19 (see the reviews of the methods in [9,10]). The focus
of research endeavors is to aid in the diagnosis and prediction of diseases, detection,
care, control, monitoring of diseases, the development of antiviral drugs [11], and image
segmentation techniques [12], as well as to forecast the number of active cases [13] and
death cases [14]. We discuss the applications of ML techniques to assist health professionals
in the detailed and effective timely identification of COVID-19. A prior indicator of the
presence of this virus is provided by the initial screening process, whereas further diagnosis
confirms the existence or nonexistence of the virus. The application of ML algorithms using
some medical images has provided promising results with examples of images such as
computed tomography (CT) scans and X-ray images, while complementing traditional
COVID-19 diagnostic strategies using ensemble methods [15], genetic algorithms combined
with traditional ML algorithms [16], nature-inspired optimization methods [17], and deep
learning methods [18]. However, considering the level of radiation exposure from CT/X-
ray scan equipment, the corresponding minimal number of accessible devices and the high
cost of these devices make them difficult to use for real-time screening.

Recently, several researchers have suggested the use of ultrasound screening for chil-
dren and pregnant women to be noninvasive and X-ray radiation-free for the identification
of COVID-19 [19]. Other researchers investigated the processing and analysis of voice
(speech) [20] and cough [21] for the identification of COVID-19. COVID-19 detection from
urine, stool, and feces samples was also considered in several studies [22,23]. Among
other biomarkers notable for COVID-19 identification, lymphocytes, cardiac troponin,
platelet count, and renal biomarkers have been discussed [24]. In [25], the use of blood
tests (hemoglobin, white cells, neutrophil count, and lymphocyte count, platelets, bilirubin,
etc.), blood gas results (such as oxygen saturation, and partial pressure of carbon dioxide)
and vital signs (such as heart rate, oxygen saturation, and oxygen flow rate) for COVID-19
diagnostics were considered. An early warning system based on scoring vital signs and
other variables for predicting the deterioration of the health states of COVID-19 patients
was presented in [26]. A variety of clinical trials have recently revealed that the routine
blood test parameters of COVID-19 patients indicate substantial differences, and that the
detection of these biomarkers can play a crucial role in the initial screening of COVID-19,
such as using decision trees [27,28], Random Forest (RF), Naive Bayes (NB), logistic re-
gression (LR), support vector machine (SVM) and k-nearest neighbors (KNN) [28], and
SVM [29]. As stated in [30], all the details found in routine blood tests are too strenuous to
extract for advanced clinicians.

Recent studies have shown the impact of a critical branch of AI methods, especially the
integration of ML algorithms for effective prediction models [31]. However, ML algorithms
can learn and discriminate between numerous patterns in the parameters of a routine blood
test. In the development of ML algorithms for the identification of COVID-19 from regular
blood samples, some initial efforts have begun, as discussed in depth in the next section.
This area of research is in the initial research period and requires more attention. Therefore,
this study aims to study and compare the performance of different state-of-the-art ML
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models on a blood sample data set. We applied and evaluated different ML classification
algorithms on a different hidden layer. They evaluated the performance of all classifiers
using diverse performance metrics.

The major contributions of this paper are highlighted as follows:

1. The proposed algorithm was able to effectively provide the preliminary classification
of COVID-19 using relevant feature parameters.

2. The proposed algorithm has a lower computational intensity, and the detection time
was in a few seconds.

3. Based on the effectiveness of our proposed model, it can improve pathologist efficiency
and aid effective laboratory examination in pathology departments.

The remaining parts of the paper are prepared and sectioned as follows: an extensive
review of the literature is discussed in Section 2, while Section 3 presents the framework
and detailed description of our proposed methods. The experimental results and the
discussion are presented in Section 4, and the last part of the paper is the conclusion and
future recommendation, as presented in Section 5.

2. Materials and Methods

This section describes in detail the progress and contributions, including the state-of-
the-art methods presented in the previous study on the detection of COVID-19. To further
understand the level of the existing study with the contribution of AI methods, especially
the ML algorithms used, we reviewed the various literature using blood test results in the
detection of COVID-19 with highlights on the methods, contribution, and limitations.

The authors of [32] evaluated the results of the blood tests to perform an initial
screening of likely patients with COVID-19 using the dataset of 598 blood samples from
Albert Einstein Hospital, Brazil. The dataset consists of 81 cases of COVID-19. The authors
based their experiment on 14 blood features using ML models based on random forest,
logistic regression, artificial neural network (ANN), and Lasso elastic-net regularized
generalized linear network (GLMNET). The best-performance model gave an accuracy of
87% for ANN.

A study [33] presented a COVID-19 detection approach based on some ML models,
which are XGBoost, LDA, LR, RF, and Decision Tree. The authors investigated the impact of
feature/variable selection and dimensionality reduction in features from 12 variables to 4.
They concluded that the best accuracies of 89.6% and 85.9% were achieved by XGBoost for
12-variable and 4-variable models, respectively. The later study [25] was conducted using
blood test results from Oxford University Hospitals, UK. The XGBoost classifier achieved
the accuracy, sensitivity, and specificity of 92.3%, 77.4%, and 95.7%, respectively.

Recent work by [34] carried out an analysis using two ML algorithms in the detection
of COVID-19 on routine blood tests. The ML algorithms used by the authors are RF and
SVM on a small data set of 294 blood samples obtained from Wuhan Union Hospital and
Kunshan People’s Hospital, China. Fifteen characteristics were selected for analysis and
the experimental results showed that SVM outperformed random forest classifiers with
accuracy, precision, sensitivity, and specificity of 84%, 92%, 88%, and 80%, respectively.

Five ML algorithms, namely gradient boost trees, neural networks, logistic regression,
random forest, and SVM, were proposed by authors in [35] in the diagnosis of COVID-19. A
dataset containing a total number of 235 blood samples with 102 established cases of COVID-
19 was gathered from Albert Einstein Hospital in Brazil and 15 relevant characteristics were
selected. SVM gave the best classification result with very little significance compared to
previous work reviewed in this study on AUC, sensitivity, and specificity of 85%, 68%, and
85%, respectively.

Another dataset consisting of 279 cases from San Raffaele Hospital, Milan, Italy, was
analyzed for the early detection of COVID-19 by the authors of Brinati et al. [27]. In the
performance of seven ML models such as KNN, DT, NB, extremely randomized trees (ET),
LR, RF, and SVM, the experimental results showed that the RF model outperformed other
classifiers with an accuracy of 86% and a sensitivity of 95%.
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Feng et al. [36] explored decision trees (DT), LR with Ridge regularization, LR with
LASSO, and AdaBoost algorithms for real-time detection of COVID-19 from a set of demo-
graphic, clinical signs, biomarkers, vital signs, and blood test values. The dataset contains
blood test results gathered from 132 patients (26 positives) from First Medical Center
(FMC), Beijing, China. LASSO was used to select 18 features from the original 46 features.
The best-performing model was based on LR with LASSO with an AUC, specificity, and
sensitivity of 93.8%, 77.8%, and 100%, respectively.

Another study [37] presented an LR-based ML classifier to detect COVID-19 using
three major component counts. The training set consists of 390 cases including established
COVID-19 cases from Stanford Health Care and a different dataset was used for validation.

Further studies from [38] analyzed and applied six state-of-the-art methods including
MLP, SVM, RT, NB, RF, and Bayesian Networks (BN). The study was carried out using
a dataset consisting of 564 samples, including 559 established COVID-19 samples from
Albert Einstein Hospital in Brazil. The authors performed oversampling using the SMOTE
technique because of the limited data size and, for feature selection, a manual method and
two algorithms based on PSO and evolutionary search were utilized. The performance
model with the highest results was obtained from the BN model with an accuracy, precision,
specificity, and sensitivity of 95.159%, 93.8%, 93.6%, and 96.8%, respectively.

The authors of [39] presented a neural network model for the detection of the severity
of COVID-19 in small data samples from the Tongji Medical College of Huazhong Univer-
sity of Science and Technology, Hubei, in collaboration with the Tumor Center of Union
Hospital, China. The authors evaluated the severity of COVID-19 on 151 images after
selecting features.

An extreme gradient boosting (XGBoost) model was applied by the authors in Kukar et al. [40]
to identify COVID-19. A total of 5333 blood samples, including 160 established COVID-19
samples, were obtained from the University Medical Center Ljubljana, Slovenia. Thirty-five
relevant characteristics were selected for further analysis and the experimental results
showed an improved AUC of 97%, 81.9% sensitivity, and a specificity of 97.9%.

A robust model for oversampling and ensemble learning based on the integration
of the SVM and SMOTEBoost methods was proposed in [41]. The results of 10 SVM-
SMOTEBoost models were used for the ensemble learning, and the overall performance
was determined using the average results of the 10 models. The proposed model was able
to achieve an AUC of 86.78%, a sensitivity of 70.25%, and a specificity of 85.98%.

Aljame et al. [42] proposed an ensemble learning model for the initial screening of
patients with COVID-19 from routine blood tests. The model used the dataset obtained
from 564 patients of the Albert Einstein Israelita Hospital located in Sao Paulo, Brazil, and
achieved an accuracy of 99.88% in discriminating COVID-19 positive cases.

In Wu et al. [43], to identify COVID-19 from a complete blood count, a mixed dynamic
ensemble selection (DES) approach for unbalanced data is suggested. This approach
combines data preparation with enhanced DES. First, the authors balance the data and
reduce noise using the hybrid synthetic minority oversampling approach and edited nearest
neighbor (SMOTE-ENN). Second, a hybrid multiple clustering and bagging classifier
generation (HMCBCG) approach is presented to enhance the variety and local regional
competency of candidate classifiers to improve DES performance. With 99.81% accuracy,
HMCBCG with k-nearests oracles eliminate (KNE) achieves the best performance for
COVID-19 screening.

AlJame et al. [44] propose a ML prediction model for the diagnosis of COVID-19 based
on clinical and regular laboratory data. The model uses an ensemble-based strategy known
as deep forest (DF), which employs numerous classifiers in several layers to foster variety
and increase performance. The cascade level uses layer-by-layer processing and is made
up of three separate classifiers: additional trees, XGBoost, and LightGBM. The DF model
has an accuracy of 99.5% on two publicly accessible datasets.

In Babaei Rikan et al. [45], to diagnose positive instances of COVID-19 from three
regular laboratory blood test datasets, seven ML, and four deep learning models were
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presented. To illustrate the relevance among samples, Pearson, Spearman, and Kendall
correlation coefficients were used. The suggested models were trained, validated, and
tested using a four-fold cross-validation procedure. The deep neural network (DNN) model
earned the highest accuracy values in all three datasets.

Buturovic et al. [46] sought to build a blood-based host gene expression classifier for the
severity of viral infections, including COVID-19. They created a logistic regression-based
classifier for viral infection severity and validated it in a variety of viral infection situations,
including COVID-19. In patients with confirmed COVID-19, the classifier exhibited area
under curve (AUC) values of 0.89 and 0.87 to detect patients with severe respiratory failure
or 30-day mortality, respectively.

In Du et al. [47], several binary classification techniques and classifiers were examined
to develop the ML model for illness classification: categorical gradient boosting (CatBoost),
support vector machine (SVM), and logistic regression (LR). In three validation datasets,
the ML model achieved excellent AUC (89.9–95.8%) and specificity (91.5–98.3%), but low
sensitivity (55.5–77.8%) to predict SARS-CoV-2 infection.

Hu et al. [48] proposed a framework based on enhanced binary Harris hawk opti-
mization (HHO) in conjunction with an extreme kernel learning machine (KELM). They
used specular reflection learning to improve the original HHO algorithm. The experi-
mental findings reveal that the selected indicators, such as age, partial oxygen pressure,
oxygen saturation, sodium ion concentration, and lactic acid, are critical for the early correct
evaluation of COVID-19 by the proposed feature selection method.

Kukar et al. [40] built an ML model for the detection of COVID-19 based on regular
blood tests from 5333 patients with various bacterial and viral illnesses, as well as 160
COVID-19-positive patients using the extreme gradient boost machine (XGBoost) and
achieved the AUC value of 0.97. According to the significance score of the XGBoost feature,
the most beneficial routine blood parameters for the diagnosis of COVID-19 were MCHC,
eosinophil count, albumin, INR, and prothrombin activity.

Rahman et al. [49] used a stacking machine learning model to propose a biomarker-
based COVID-19 detection system. This study trained and validated the proposed model
using seven different publicly available datasets. White blood cell count, monocyte and
lymphocyte percentage, and age parameters were discovered to be important biomarkers
for COVID-19 disease prediction. The overall accuracy of the stacking model was 91.45%.

Qu et al. [50] used a logistic regression model to analyze the results of the blood test.
The best prognostic indications for severe COVID-19 were lymphocyte count, hemoglobin,
and ferritin levels.

The summary of related studies with an emphasis on the significant methods used
and the contributions of the studies with their evaluation metrics and values is described
in Table 1. The results of the previous study show the applications of single-level and
ensemble classifiers. However, some of the shortcomings of existing studies include the
challenges of limited dataset samples and imbalance datasets [51], problems with most
datasets with aged and male-dominant patient results [52], insufficient clinical data that
are useful to improve model classification, challenges of a single data source could lead to
model restrictions in generalizability [53], and incomprehensive/inadequate data [54].

Therefore, the need to explore some of the existing feature selection methods for
dimensionality reduction is important for an effective classification model [42]. Besides,
research focus should be targeted toward analyzing the integrated performance of the new
test data using various ML algorithms [35]. Based on some of the existing pitfalls of the
previous study, this study presents a unique ensemble method using an automatic feature
selection method based on PCA, thus improving the classification of models for efficient
COVID-19 detection.
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Table 1. Summary of related work on COVID-19 identification from blood samples.

Ref. Methods Feature Selection
Methods Metrics (Value) Data Samples

(COVID-19 Samples)

[42]

Ensemble learning extra trees,
random forest (RF), logistic
regression (LR), extreme
gradient boosting (ERLX)
classifier

Manual

Accuracy: 99.88%
AUC: 99.38%,
Sensitivity: 98.72%
Specificity: 99.99%

5644
(559)

[47]
Categorical gradient boosting
(CatBoost), support vector
machine (SVM), and LR

Manual
AUC: 89.9–95.8%
Specificity: 91.5–98.3%
Sensitivity: 55.5–77.8%

5148
(447)

[53]
Ensemble learning with RF, LR,
XGBoost, Support Vector
Machine (SVM), MLP

Decision Tree Explainer
(DTX)

Accuracy
(0.88 ± 0.02)

608
(84)

[39] Artificial Neural Network
(ANN) predictive model

Pearson and Kendall
correlation coefficient

Area under curve
(AUC) values of 0.953
(0.889–0.982).

151

[35] ANN, RF, gradient boosting
trees, LR and SVM NA

AUC: 0.85; Sensitivity:
0.68; Specificity: 0.85;
Brier Score: 0.16

235
(102)

[54] RF classifier manual
Accuracy: 96.95%,
Sensitivity: 95.12%,
Specificity: 96.97%

253
(105)

[55]

ANN, Convolutional Neural
Network (CNN), Long-Short
Term Memory (LSTM),
Recurrent Neural Network
(RNN), CNN-LSTM, and
CNN-RNN

CNN and LSTM

AUC: 0.90, Accuracy:
0.9230, FI-score: 0.93,
Precision: 0.9235,
Recall: 0.9368

600
(80)

[56] SVM, LR, DT, RF and deep
neural network (DNN) Logistic regression (LR)

Accuracy: 91%,
Sensitivity: 87%,
AUC: 97.1%,
Specificity: 95%.

921
(361)

[57] ANN, CNN, RNN SMOTE

Accuracy: 94.95%,
F1-score: 94.98%,
precision: 94.98%,
recall: 94.98%,
AUC: 100%

600
(80)

[31] LR
Maximum relevance
minimum redundancy
(mRMR) algorithm

Sensitivity: 98%,
Specificity: 91%

110
(51)

[58] LR, DT, RF, gradient boosted
decision tree NA

Sensitivity: 75.8%,
Specificity: 80.2%,
AUC: 85.3%

3346
(1394)

3. Proposed Methodology

This section discusses in detail the description of the proposed experimental model
and the visual summary of the proposed methodology is depicted in Figure 1. Our study
applied and investigated the performance of different state-of-the-art ML algorithms,
including single and ensemble learning, for effective detection of COVID-19. The proposed
system is divided into four categories, and they are fully described in the subsections.
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3.1. Dataset Description

The dataset used in this study contains 279 cases of patients from San Raffaele Hospital
Milan, Italy [27]. It was made accessible by the Italian Scientific Institute for Research,
Hospitalization and Healthcare (IRCCS) and annotated with 16 hematochemical values
from routine blood tests. The dataset consists of the results of the respiratory tract rRT-PCR
test of the samples for 177 positively established cases of COVID-19 and 102 non-COVID-19
cases based on the asopharyngeal swab. The dataset is summarized in Table 2.

Table 2. Summary and description of the dataset.

S/N Features Data Types Number of Missing Values Mean/Average

1 Gender Nominal 0 -
2 Age Numeric 0 61.3
3 WBC 1 Numeric 2 8.6
4 Platelets Numeric 2 226.5
5 CRP 2 Numeric 6 90.9
6 AST 3 Numeric 2 54.2
7 ALT 4 Numeric 13 44.9
8 GGT 5 Numeric 143 82.5
9 ALP 6 Numeric 148 89.9
10 LDH 7 Numeric 85 380.5
11 Neutrophils Numeric 70 6.2
12 Lymphocytes Numeric 70 1.2
13 Monocytes Numeric 70 0.6
14 Eosinophils Numeric 70 0.05
15 Basophils Numeric 71 0
16 Swab Nominal 0 -

1 WBC = Leukocytes; 2 CRP = C-Reactive Protein; 3 AST = Aspartate Transaminases; 4 ALT = Alanine Transami-
nases; 5 GGT = γ-Glutamyl Transferasi; 6 ALP= Alkaline phosphatase; 7 LDH = Lactate dehydrogenase.
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3.2. Data Preprocessing

This is the first phase of our proposed system, and the concept of data preprocessing
has been considered as an important aspect of the generalization performance of supervised
ML algorithms [59]. First, we replaced the categorical variable of gender with numerical
values (0 for ‘male’ and 1 for ‘female’). We also manually checked all datasets and corrected
data typing errors (such as the ‘0–4’ value entered instead of 0.4). After data cleaning, fur-
ther pre-processing was done to remove outliers. We used the Median Absolute Deviation
(MAD)-based outlier removal, which removed the samples that differed by more than three
standard deviations from the median value of the variable across the dataset.

In the data preprocessing phase, the need to handle missing values within the dataset
is extremely important; thus, we applied the KNN imputation method [60], which allows
us to input missing values with the five closest neighbors acting as the best choice, and
then input them based on the mean of the non-missing values. We further explore data
rebalancing, since the dataset suffers from data imbalance comparing the ratio of positive
class to negative class. Previous studies on the impact of class imbalance have shown that
if a dataset suffers from imbalance, then classifier biases could lead to classifier biases and
hence an increasing misclassification rate and classification model degradation. Based on
this, we integrated a synthetic minority oversampling technique (SMOTE) [61], aiming to
balance the data by oversampling the minority class.

3.3. Feature Selection

The feature selection phase is a crucial stage necessary to select the most appropriate
feature representation and improve an ML model. Previous studies have shown that reduc-
ing the dimensionality of the data helps reduce data redundancy, avoid noisy data, and
improve the performance [62]. This study applied an unsupervised linear transformation
technique based on Principal Component Analysis (PCA) to select features with the largest
eigenvalues that represent 95% of the variability. The correlation matrix of the different
features in the selected datasets is depicted in Figure 2.
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Figure 2 shows in detail the correlation of selected features and the highest fea-
ture/parameter is further used and applied to the proposed model. Correlation values
between the selected features are used to decide the range of hyperparameters within the
learning algorithms.
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3.4. Cross-Validation Methods

For this study, we applied holdout cross-validation to evaluate the performance of
our model as follows. The train-test split function was used from the scikit-learn library
to randomly split the data into train/test data samples. The train/test split methods were
used to randomly divide the dataset into 80% for training and 20% for testing. We further
partitioned the training dataset into the train/validate split using 75% for training and 25%
as validation data. Thus, the overall data samples used for training comprise 106 COVID-19
and 62 non-COVID-19 samples, while the validation data comprise 35 COVID-19 and 20
non-COVID-19 samples. To test the performance of our model, the initial holdout of 20%
data was used, which consist of 35 COVID-19 and 20 non-COVID-19. The experimental
procedure was repeated 10 times, and the performance of each model was measured by
calculating the mean average of the recorded scores.

3.5. Ensemble Learning

Ensemble learning is a ML approach in which numerous models (dubbed “weak
learners”) are trained to tackle the same problem and then combined to achieve superior
results [63]. Weak learners (or base models, aka first-stage models) can be used to create
more complicated models by merging multiples of them. Most of the time, these base
models do not perform well on their own, either because they contain too much bias or too
much variation to be robust. The concept behind ensemble techniques is to try to lessen the
bias and variance of such weak learners by merging many of them to form a strong learner
with superior outcomes. We can generate more accurate or reliable models by combining
weak models in the proper way. Base models and a meta-learner (or a second-stage model)
that uses base-model predictions are used to design a stacking ensemble model. The base
models are trained on the training data and are used to produce predictions. The meta-
learner then is trained on the decisions made by base models using previously unseen data
to aggregate the base-model predictions. This is done by feeding the meta-learner with the
input and output pairs of data from the base learners while aiming to predict the correct
output. Therefore, the stacking algorithm has three stages:

1. Construct an ensemble:

• Select base learners B, which must be different,
• Select a meta learner L.

2. Train the ensemble:

• Train each base model on the training dataset D,
• Cross-validate each base model,
• Combine the predictions from the base models to form a new training dataset

D̂ = {Xtr,B1(Xtr),B2(Xtr), . . . ,Bm(Xtr)}, which consists of training inputs Xtr
and the corresponding predictions by k base models Bi(Xtr), i = 1 . . . k,

• Train the meta-learner M on the new dataset D̂ to generate more accurate
predictions on previously unseen data.

3. Test on new data:

• Record output decisions from the base models B,
• Feed base-model decisions into meta-learnerM to make final decision.

The ensemble learning algorithm is summarized in Figure 3. Stacking exploits the
capabilities of any best learner. When base classifiers used for stacking have high variability
and uncorrelated outputs, the largest improvement in performance is usually made.
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3.6. Machine Learning Models

We have experimented on 15 ML models, namely KNN, Linear SVM, RBF SVM, Ran-
dom Forest, Decision Tree, Neural Network (MultiLayer Perceptron), AdaBoost, Extremely
randomized trees (ExtraTrees), Naïve Bayes, LDA, QDA, Logistic Regression, Passive
Classifier, Ridge Classifier, and Stochastic Gradient Descent Classifier (SGDC). These ML
algorithms were used in other classification domains and have achieved the best prediction
performances based on their ability to collaborate the benefits of several different algo-
rithms to a more powerful model. To improve generalizability and robustness compared to
a single ML algorithm, we applied three different ensemble learners.

Some of the ML algorithms used in this study are described as follows:

1. The K-Nearest Neighbor (KNN) model has been used effectively in previous studies,
especially in solving non-linear problems. It is used to assign the class label according
to the smallest distance between the target point and training point(s) in the feature
space. The Euclidean distance (ED) is widely used to determine the distance between
the target point x and the training point y:

ED =
√

∑n
i=1(xi − yi)

2, (1)

2. Support Vector Machine (SVM): This a type of ML technique that has been used effec-
tively in disease detection. This supervised learning algorithm selects the hyper-plane
or the decision boundary defined by the solution vector w to determine the maximum
margins between training data samples and unknown test data. The most popular
variants of SVM are linear SVM and nonlinear SVM with Radial Basis Function (RBF)
kernel. The linear SVM binary classifier [64] is expressed in Equation (2). Nonlin-
ear SVM with RBF kernel (Equation (3)) has shown very encouraging outcomes in
pattern classification with wide application areas. Considering the training samples
{yi, xi}n

i=1, with the label yi ∈ {−1,+1} showing the class of the feature vector xi ∈ Rd

in d feature dimensions, the hyperplane H(x) is defined as follows:

H(x) = wTx + b = ∑n
i=1 wixi + bi, (2)

H(x) = ∑n
i=1 wixik(x, vt) + b, (3)

3. Naive Bayes (NB) is used for classification where the instances of a dataset are dif-
ferentiated using specified features. This model is a probabilistic classifier based on
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strong independence assumptions between features. The mathematical expression for
NB classifier is expressed as the best value of P(x/t) and will be predicted value:

P(x/t) = (P(tx) P(x))/P(t), (4)

where P(x) and P(t) are the prior probabilities, the posterior probability is represented
as P(xt), and P(tx) is the likelihood.

4. Logistic Regression (LR): We presented a logistic regression model to find the optimal
regularization strength and thereby prevent overfitting of the model.

5. Random Forest (RF) is an ensemble algorithm that applies the combination of tree
predictors with the same distribution for all trees in the forest. Considering the
ensemble of classifiers h1(x), h2(x), . . . , hk(x), and with the training set drawn at
random from the distribution of the random vector X, Y, the mathematical definition
for the margin function is expressed in Equation (5):

mg(X, Y) = avk I(hk(X) = Y)−maxj 6=Yavk I(hk(X) = j), (5)

The generalization error is depicted in Equation (6):

PE∗ = PX,Y(mg(X, Y) < 0), (6)

where I(.) is the indicator function, and PX,Y is the probability over X, Y.

6. Linear Discriminant Analysis (LDA) is a Bayes optimal classifier that is used in many
classification problems. LDA finds a one-dimensional subspace in which the classes
are separated well. The discriminant function is given by Equation (7):

dk(x) = 2µT
k ∑−1

k X− µT
k ∑−1

k µk − 2 log π(k), (7)

The parameters of these models are summarized in Table 3.

Table 3. Default parameters values for the machine learning models.

Model Parameters Values

KNN n_neighbors = 3, weights = ‘uniform’, algorithm = ‘auto’, leaf_size = 30, p = 2, metric = ‘minkowski’

SVM
Linear C: 0.025, kernel: [‘linear’]

RBF C: 1, gamma: 2, kernel: [‘rbf’]

Decision Tree criterion = ‘gini’, max_depth = 5, max_features = None, max_leaf_nodes = None, min_samples_leaf = 1,
min_samples_split = 2, random_state = None, splitter = ‘best’, in_weight_fraction_leaf = 0.0

Naïve Bayes (Gaussian) priors = None, var_smoothing = 10−9

Neural Network
(MLP Classifier)

activation = ‘relu’, alpha = 1, batch_size = 1024, hidden_layer_sizes = 100, learning_rate_init = 0.001, max_iter = 1000,
max_iter = 200, power_t = 0.5, random_state = None, shuffle = True, solver = ‘adam’, tol = 0.0001

Discriminant Analysis
Linear n_components = None, priors = None, shrinkage = None, solver = ‘svd’

Quadratic tol = 0.0001, store_covariance = False, reg_param = 0.0, priors = None

Passive C = 1.0, n_iter_no_change = 5, max_iter = 1000, random_state = None

Ridge fit_intercept = True, alpha = 1.0, normalize = False, max_iter = None, random_state = None, solver = ‘auto’,

SGDC loss = ‘hinge’, penalty = ‘l2’, alpha = 0.0001, fit_intercept = True, max_iter = 1000,

Logistic Regression C = 1.0, cv = None, dual = False, fit_intercept = True, max_iter = 100, penalty = ‘l2’, random_state = None, solver =
‘lbfgs’, tol = 0.0001,

Ensemble Learner

Random Forest max_features = 1, n_estimators = 10, max_depth = 5, criterion = ‘gini’, random_state = None, verbose = 0

AdaBoost algorithm = ‘SAMME.R’, learning_rate = 1, n_estimators = 50, random_state = None

Extra Trees criterion = ‘gini’, max_depth = None, max_features = 12, min_samples_leaf = 1, min_samples_split = 2,
min_weight_fraction_leaf = 0.0, n_estimators = 100
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3.7. Performance Metrics

The performance of machine algorithms was evaluated using accuracy, false positive
rate (FPR), false negative rate (FNR), area under curve (AUC), Matthew’s Correlation
Coefficient (MCC), and Cohen’s kappa. The description of the performance metrics used in
this study is summarized in Table 4.

Table 4. Mathematical definition of performance metrics.

Metrics Definition

Accuracy (Acc) Acc = ((TP + TN)/(TP + TN + FP + FN))
False Negative Rate (FNR) FNR = (FN/(TP + FN))
False Positive Rate (FPR) FPR = (FP/(TN + FP))

Matthews Correlation
Coefficient (MCC) MCC = (TP× TN − FP× FN)/

√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

Cohen Kappa K = (Po − Pe)/(1− Pe)

TP—true positives, FP—false positives, TN—true negatives, FN—false negatives, Po—observed accuracy, Pe—
expected accuracy.

3.8. Software and Hardware

The ML algorithms were implemented using the scikit-learn 0.19.1, Keras 2.1.6 in
Python 3.7 (Python Software Foundation, Wilmington, DE, USA) packages. We have
performed all computations in a personal computer with Windows 10 (Microsoft, Redmond,
WA, USA), and 64-bit operating system Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz (Intel
Corporation, San Francisco, CA, USA), and 8.0 GB RAM.

4. Results

This section provides the details of our findings with respect to the performance of
each model along with experimental values of our evaluation metrics.

4.1. Convolutional Neural Network (First Stage of Ensemble Learning)

This study is built on different neural network models using different levels of hidden
layers 1, 2 trained with two different numbers of epochs (10, 50). The activation function
used in this study is ReLu and we used Keras and the Tensorflow library. We used a
sequential class from the Keras library and further applied an Adam (Adaptive Moment
Estimation) optimizer. The train-test split function was used from the scikit-learn library
for performing the random splitting of the data into train/test data samples.

The training of the dataset was done using a simple CNN architecture and this CNN
architecture comprises 10 sequential layers, which includes two convolutional 1D layers,
followed by 1-D max-pooling and again two convolutional 1D layers followed by 1D
max-pooling. The final stage has one flattening layer, and two dense layers, with an
activation function of ReLu and Softmax, respectively. Besides, we added a dropout layer
between them. The initial input size is the maximum input size for this dataset, which
is 12 × 20. We used two different numbers (10 and 50) of epochs to train the network
for all the experiments. The training progress for was at its best within Epoch 50. The
hyperparameters of the CNN model are presented in Table 5.

4.2. Ablation Study of Machine Learning Algorithms (Second Stage of Ensemble Learning)

We implemented the ablation study to determine the best second-stage ML algorithm.
Classification is carried out using 15 ML algorithms and, after all training and testing, the
results of each experimental performance after 10 runs were analyzed, and the summary of
the accuracy performance of each model using the training validation test (TVT) method is
presented in Table 6.



Sensors 2022, 22, 2224 13 of 18

Table 5. Description of the convolutional neural network model.

Parameters Description

Activation Function

Input layer: ReLU
Hidden layer: ReLU
Output layer: Softmax
Loss = sparse_categorical_crossentropy, optimizer = adam,
Input layer: ReLU

Epochs 10
Epoch 2 50
Batch Size 1024
Dropout ratio (Input) 0.5
Dropout ratio (Output) 0.3

Table 6. The results of ablation study: performance of the proposed model using different final stage
ML classifiers. Best values are shown in bold.

ML Model Accuracy (%) FPR (%) FNR (%) AUC (%) MCC (%) Kappa (%)

Nearest Neighbors 78.9 39.86 11.02 74.56 51.48 50.8
Linear SVM 64.66 100 0 50 0 0

RBF SVM 71.44 79.06 1.72 59.62 26.34 21.66
Decision Tree 94.64 9.36 3.2 93.72 88.24 87.94

Random Forest 90.74 22.38 2.2 87.72 79.54 78.64
Neural Net 65.02 99.04 0 50.48 3.48 1.18
AdaBoost 99.28 2.24 0 98.88 98.36 98.32
ExtraTrees 99.28 0 1.04 99.48 98.4 98.4

Naive Bayes 72.14 54.14 13.78 66.06 35.48 34.26
LDA 70.34 67.62 8.86 61.8 30.08 26.44
QDA 91.44 18.4 3.3 89.14 81.26 80.46

Logistic 65.02 99.04 0 50.48 3.48 1.18
Passive 59.64 60 29.48 55.26 11.48 9.74
Ridge 67.18 92.2 0.52 53.62 17.24 8.82
SGDC 58.96 52.38 34.88 56.36 13.12 15.1

The classifier performance is depicted in Figure 4. The experiment was run 10 times
and all through the experiment the ensemble classifiers have shown consistency with
improved results in the detection of COVID-19. However, the best five performances were
achieved by Adaboost, ExtraTrees, Decision Tree, QDA, and random forest models with
mean accuracies of 99.28%, and 99.28%, 98.5%, 94.6%, and 92.9%, respectively.
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4.3. Computational Complexity

The computational complexity of the entire framework is dominated by backpropaga-
tion training of the convolutional neural network used in the first stage of the
ensemble learning model. The computational cost of the 2D direct convolution is
O(FI ×M× N ×m× n× FO), where M and N are the size of the input feature map, m
and n are the size of spatial two-dimensional kernels, and FI and FO are the input and
output channels within a layer, respectively [65]. The computational complexity of the best
machine learning algorithm used in the second stage of the ensemble learning model (i.e.,
the ExtraTrees classifier) depend linearly on the number of attributes, which is not high.
Formally, it is equal to O(n× p× ntrees), where n is the number of training samples, p is
the number of features, and ntrees is the number of trees.

4.4. Statistical Analysis

To rank the methods, we applied the non-parametric statistical Friedman test and the
post hoc Nemenyi test. The Nemenyi test returns the critical difference (CD), which is used
to evaluate the significance of the difference between the mean ranks of the methods as
presented in Figure 5. If the difference between the mean ranks is smaller than the CD
value, then it is considered as not statistically significant. The results of the Nemenyi test
show that the ExtraTrees and AdaBoost final-stage classifiers achieved the best performance
of 99.28% in accuracy. The result is significantly better than the performance of all other
classifiers, except of Decision Tree, which achieved an accuracy of 94.64%.
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4.5. Comparison with Previous Studies

For further evaluation of our proposed ensemble learning-based method, we bench-
marked the results of our models with previous studies using the same datasets and the
same performance metrics. The proposed model shows a significant improvement com-
pared to the existing study using state-of-the-art methods [27,66–68] that applied a hybrid
fuzzy interference engine and DNN, and a similar study by Brinati et al. [27], which uses
a three-way random forest classifier in the prediction of COVID-19 using the RT-PCR
dataset. In another study, Chadaga et al. [68] used SMOTE for oversampling, and then
evaluated four machine learning algorithms (Random Forest, Logistic Regression, KNN,
and Xgboost), while their hyperparameters were optimized using grid search. The best
result in terms of accuracy was the 92% achieved with the Random Forest classifier. The
summary of related studies with the description of the model type and performance metrics
is shown in Figure 6. Our proposed model is compared with a Hybrid Fuzzy inference
engine and deep neural network (HDS) approach [66], a three-way random forest classifier
(TWFR) approach [27], and Random Forest (RF) [67,68].
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5. Discussion and Conclusions

The need for early and effective methods for the detection of COVID-19 is extremely
important in this era of global pandemic and the application of artificial intelligence meth-
ods can significantly improve prediction and assist the physician in the decision-making
process. In this paper, the viability and clinical soundness of using blood sample test
analysis and machine learning as alternatives to a commonly used RT-PCR test to classify
COVID-19-positive patients with were shown. This is particularly useful in countries suffer-
ing from scarcity of RT-PCR reagents and specialist laboratories, such as developing ones.

This paper provides simple and interesting stages in the detection of the COVID-19
disease using a small dataset. In addition to the small size of the dataset used in this paper,
the problem of missing values, outliers, and class imbalance was also addressed. Our paper
explored and analyzed 15 interesting machine learning algorithms, and the experiments
were run continuously 10 times on the train-validate-test (TVT) datasets. After 10 runs,
we computed the mean metrics and the TVT cross-validation accuracy with the best five
models in their descending order: Adaboost, ExtraTrees, Decision Tree, QDA, and random
forest with 99.28%, 99.28%, 98.5%, 94.6%, and 92.9%, respectively. In addition, the mean
AUC value for ExtraTrees is 99.48%, AdaBoost gave 98.88%, and Decision Tree had 93.72%.

On the basis of our study, we can argue that our proposed ensemble model outper-
forms the state-of-the-art methods, as we can see in the next subsection. The COVID-19
early detection ML system based on blood tests offers a quick, simple, and cheaper alterna-
tive to imaging scan detection. Our results show the great potential of machine learning
with promising results in the detection of the COVID-19 disease. We intend to further
explore other medical disease domains using some of our highly performed models in
collaboration with deep models in clinical settings.

Some of the limitations and future directions of this study are as follows: only one
feature selection technique was applied, thus exploring other feature selection methods can
prove useful in improving the results of other machine learning models, thereby increasing
classification accuracy. Second, by adopting data augmentation methods, we can aid the
performance of training of machine learning methods, with the focus on improving other
state-of-the-art single models and, finally, the need to effectively explore more effective
deep learning methods to reduce overfitting.
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