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Background: Accurate and robust feedback control of human heart rate is important for
exercise testing and prescription. Feedback controllers can be designed using first-order,
linear, time-invariant models of heart rate dynamics, but it remains to investigate whether
second-order models lead to better identification and control performance. The
distinguishing contribution of this research is the direct employment of established
physiological principles to determine model structure, and to focus the feedback-
design goals: cardiac physiology proposes a two-phase second-order response,
delineated into fast and slow components; the natural phenomenon of broad-
spectrum heart-rate variability motivates a novel feedback design approach that
appropriately shapes the input-sensitivity function.

Aim: The aim of this work was to compare the fidelity of first- and second-order models of
heart rate response during cycle-ergometer exercise, and to compare the accuracy and
dynamics of feedback controllers that were designed using the two model structures.

Methods: Twenty-seven participants each took part in two identification tests to generate
separate estimation and validation data sets, where ergometer work rate was a pseudo-
random binary sequence and in two feedback tests where controllers were designed using
the first- or second-order models.

Results: Second-order models gave substantially and significantly higher model fit (51.9%
vs. 47.9%, p < 0.0001; second order vs. first order) and lower root-mean-square model
error (2.93 bpm vs. 3.21 bpm, p < 0.0001). There was modest improvement in tracking
accuracy with controllers based on second-order models, where mean root-mean-square
tracking errors were 2.62 bpm (second order) and 2.77 bpm (first order), with p = 0.052.
Controllers based on second-order models were found to be substantially and significantly
more dynamic: mean values of average control signal power were 9.61 W2 and 7.56 W2,
p < 0.0001.

Conclusion: The results of this study confirm the hypotheses that second-order models
of heart-rate dynamics give better fidelity than first-order models, and that feedback
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compensator designs that use the additional dynamic mode give more accurate and more
dynamic closed-loop control performance.

Keywords: heart rate dynamics, system identification, feedback control, cycle ergometer, exercise

1 INTRODUCTION

Accurate and robust feedback control of human heart rate can be
achieved using first-order, linear, time-invariant models of heart
rate dynamics (Hunt and Fankhauser, 2016; Hunt et al., 2019a;
Hunt and Hurni, 2019), but data from physiological studies
suggest that at least two dynamic modes contribute to the
overall response (Whipp et al., 1982; Bearden and Moffat,
2001). It is therefore of importance to investigate whether
second-order models give better fidelity and whether feedback
compensator designs that use the additional dynamic mode give
more accurate and/or more dynamic closed-loop control
performance.

It has been observed that heart rate response to step changes in
work load consists of two principal components: a very fast,
short-duration increase, called Phase I, attributed to the
immediate cardiodynamic response; and a slower Phase II
component that gives the major increase in heart rate; these
two components have quite often been combined into a single
exponential with a time constant that is termed the mean
response time (Wasserman et al., 2011).

For work rates above the anaerobic threshold, there may in
addition be a very slow but continuously increasing Phase III
response, implying that a third-order model may be appropriate.
When the dynamic model is to be used for feedback control of
heart rate, however, any Phase III component can be neglected
since integral action in the controller will eliminate these very
slow disturbances (see also (Wang and Hunt, 2021a)). For this
reason, and to deal with potential slow drift of heart rate response
during system identification experiments, the data were
detrended prior to parameter estimation (Section 2.1).

Most previous studies of heart rate control have been model-
based, employing either linear (Su et al., 2010; Hunt et al., 2019b)
or non-linear (Cheng et al., 2008) models. To date, there is a lack
of evidence that non-linear controllers bring performance
benefits, while the following limitations can be identified: the
stability is conditional (Asheghan and Míguez, 2016; Verrelli
et al., 2021); the non-linearity is reduced to derive a robust
controller (Argha et al., 2016); and the performance validation
was only applied in simulation (Mazenc et al., 2011) or in
experiments with small sample sizes (Paradiso et al., 2013).
Furthermore, a systematic, direct comparison of linear and
non-linear controllers in 16 participants found no difference
in performance and that the non-linear approach could be
over-sensitive at low exercise intensity (Hunt and Maurer, 2016).

In contrast, several cycle ergometer heart rate control studies
based on linear time-invariant models were validated using large
sample sizes and demonstrated highly accurate and robust
performance. Kawada et al. tested 67 participants in three
groups and found good tracking accuracy in terms of root-
mean-square tracking error (RMSE): 55 healthy participants

had a mean RMSE of 2.5 bpm (beats per minute) at an
intensity of 60% of maximal heart rate (HRmax); these same
55 participants achieved a mean RMSE of 3.8 bpm at 70% of
HRmax; and 12 cardiac patients had mean RMSE of 3.0 bpm at a
heart rate intensity of 20 bpm above their resting level (Kawada
et al., 1999). Hunt et al. developed a robust input-sensitivity-
shaping method based on a first-order linear model and tested 49
healthy participants in three cohorts grouped according to the
shape of target HR profile and cadence: the mean RMSE values
were 3.1 bpm (n = 25 participants, square-wave target HR and
constant cadence), 2.5 bpm (n = 24, constant target HR and
constant cadence), and 2.6 bpm (n = 24, constant target HR, self-
selected cadence) (Hunt and Hurni, 2019).

It is also possible to control heart rate on a cycle ergometer
without an explicit dynamic model: Argha et al. developed and
tested a novel method based on auditory biofeedback commands
that instructed participants to change their cycling cadence
(Argha et al., 2017); the choice of cadence as the manipulated
variable is also unique, as most studies use work rate as the
control signal. That work demonstrated good control accuracy in
a total of 24 participants who were randomly divided into two
separate groups: mean RMSE was 3.9 bpm (first group, n = 12)
and 3.7 bpm (second group, n = 12). (Two groups were created in
order to test controller robustness: a controller tuned for the first
group was tested on the second group, and vice versa; no
significant difference in mean RMSE between the groups was
found.)

The mean response time model of heart rate response has
motivated studies that used linear first-order models for
identification and control design, e.g. (Hunt and Hurni, 2019),
but the question arises of whether delineation of Phase I and II
components, that is to say, the employment of second order
models, will lead to better representation of heart rate dynamics
and, in turn, to more accurate and dynamic feedback control:
these are the hypotheses of the present study.

For treadmill exercise, it was previously demonstrated that
goodness-of-fit of empirically identified second-order models was
significantly higher than first-order models (Wang and Hunt,
2021a); but an associated feedback control study, while showing
significantly more dynamic control signal activity, did not
determine any difference in tracking and regulation accuracy
(Wang and Hunt, 2021b); a limitation of the latter work was that
a low sample size was employed (n = 10). For the cycle ergometer
mode of exercise, on the other hand, no comparative study of
first- and second-order identification and control performance
has yet been conducted.

The aim of this work was to compare the fidelity of first- and
second-order models of heart rate response during cycle-
ergometer exercise, and to compare the accuracy and
dynamics of feedback controllers that were designed using the
two model structures.
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2 METHODS

2.1 Plant Model and Feedback Design
The open-loop plant Po was modelled as the general linear, time-
invariant transfer function

Po s( ) � B s( )
A s( ) : u ↦ y (1)

with control signal u (physically, target work rate) and controlled
variable y (heart rate); heart rate variability and other
uncertainties are represented by a disturbance term d
(Figure 1); A and B are polynomials in the complex variable s.

The first- and second-order instances of the plant are,
respectively,

P1 s( ) � k1
τ1s + 1

(2)
and

P2 s( ) � k2
τ21s + 1( ) τ22s + 1( ) (3)

where the k are steady-state gains and τ time constants.
As discussed in the Introduction, raw data obtained from

identification experiments were detrended prior to parameter
estimation in order to eliminate any potential Phase III
component. The gains and time constants of the first- and
second-order models were estimated using a least-squares
optimisation procedure (Matlab System Identification Toolbox;
The Mathworks, Inc., United States).

A feedback control system for heart rate was employed
(Figure 1) that used a strictly-proper, linear, time-invariant
compensator transfer function C,

C s( ) � G s( )
H s( ) : e ↦ u, (4)

where e = r − y is the tracking error. Integral action was
implemented by constraining the compensator denominator as
H(s) = sH′(s).

Synthesis of the feedback compensator C used a frequency-
domain design approach, see (Hunt and Fankhauser, 2016), that
shapes the input sensitivity function Uo to be well behaved (no
peaking) and to satisfy a closed-loop bandwidth requirement. Uo

describes the closed-loop transfer function linking the

disturbance term d (and the reference r) with the control
signal u. The overall idea behind this design concept is
therefore to make the control signal u well behaved in the face
of disturbances d arising from heart-rate variability, but with the
option of freely selecting the response bandwidth.Uo is defined in
general as

Uo s( ) � C s( )
1 + C s( )Po s( ) : d, r ↦ u. (5)

The design goal for input-sensitivity shaping algebraically
constrains the compensator C in such a way that Uo is first
order, and hence is devoid of peaking, and has a specified
bandwidth p, which is the feedback design/tuning parameter.
For both the first- and second-order cases, Uo then reduces to

Uo s( ) � p/k
s + p

, (6)

where k = k1 (first-order plant Eq. 2) or k = k2 (second-order
plant Eq. 3).

FIGURE 1 | Block diagram of control structure for this study. Po(s) is the
plant model andC(s) is the feedback compensator. The controlled variable y is
heart rate, u is the control signal (cycle ergometer work-rate target), and d is a
disturbance term that mainly comprises heart rate variability. r is the
reference/target heart rate.

FIGURE 2 | Identification test protocol. (A) Test phases and cycle
ergometer work rate (PRBS around the mid-level Pmid). (B) Original data
record from one participant (P01). Upper plot - heart rate measurement; lower
plot - target work rate (PRBS signal with Pmid subtracted); the evaluation
period is depicted by the red horizontal bar.
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Derivation of the compensator solutions that achieve this form
for Uo is described in detail elsewhere (Hunt and Fankhauser,
2016; Wang and Hunt, 2021b), and merely summarised here: in
the first-order case, the compensator is (see (Hunt and
Fankhauser, 2016))

C1 s( ) �
p
k1

s + 1
τ1

( )
s s + p + 1

τ1
( ); (7)

and for the second-order case it is (Wang and Hunt, 2021b)

C2 s( ) �
p
k2

s2 + 1
τ21

+ 1
τ22

( )s + 1
τ21τ22

( )
s s2 + p + 1

τ21
+ 1

τ22
( )s + p 1

τ21
+ 1

τ22
( ) + 1

τ21τ22
( ). (8)

Thus, the compensators depend simply on the chosen design
parameter p (bandwidth of Uo) and the plant parameters k1, τ1
(first-order case) or k2, τ21, τ22 (second-order case).

2.2 Equipment
All identification and feedback control experiments were
performed using a computer-controlled cycle ergometer
(model LC7, Monark Exercise AB, Sweden). The ergometer
was connected using a USB serial link to a PC running
Simulink Desktop Real-Time (The MathWorks, Inc.,
United States). Heart rate was monitored using a chest belt
sensor (H10, Polar Electro Oy, Finland) and a receiver module
(Heart Rate Monitor Interface, Sparkfun Electronics,

United States) connected via USB to the PC and Simulink
models. A sample period of 5 s was used for identification and
control.

2.3 Experimental Procedures
In accordance with an a priori statistical power and sample size
estimate (Section 2.5), 27 participants were recruited: 20 males
and 7 females; mean age 31 years; mean height 1.79m; mean body
mass 76 kg.

Each participant took part in two identification tests—to
generate separate estimation and validation data sets—and two
feedback control tests—to compare compensators C1 and
C2—with each test separated by 24 h.

For system identification, cycle-ergometer work rate was
varied using one complete period of a pseudo-random binary
sequence (PRBS) with a mean level of Pmid and an amplitude of
20 W (i.e. P = Pmid ± 20 W). The overall identification test
protocol (Figure 2) included a 15-min warm up which also
served to determine the mid-level work rate Pmid, as follows.
During the warm up, heart rate was controlled using an
existing feedback compensator to reach a constant level
HRmid corresponding to the border between moderate and
vigorous intensities, viz. HRmid = 0.765 × (220 − age) − 20,
(Riebe et al., 2018; Hunt and Hurni, 2019). Pmid was calculated
as the mean work rate of the final 2 minutes of the warm up
and used in the subsequent open-loop identification phase. For
each participant, the first data set was used to estimate first-

FIGURE 3 | (A) Control test protocol with HR-reference profile (HR*). (B) and (C): Exemplary measurements with RMSEC closest to the mean in the two test series
for the two compensator types (participant P01). For each figure, the upper plot shows the reference heart rate signal (HR*, black), the measured heart rate (HR,
magenta) and the nominal (simulated) heart rate response (HRnom, blue); the lower plots show the control signal, i.e., the cycle ergometer work-rate target. The evaluation
period for each measurement is denoted by a red horizontal bar.
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and second-order models P1 and P2 and the second data set to
compute the validation outcomes, namely fit, Eq. 9, and
RMSEI, Eq. 10. The procedure was then reversed by using
the second data set for estimation and the first data set for
model validation. Thus, with a cohort of 27 participants, a total
of 54 pairs of first- and second-order models were available for
comparison.

For feedback control, a square-wave target heart rate profile
was applied with mean level HRmid and amplitude 10 bpm, i.e.
HR* = HRmid ± 10. The overall feedback control test protocol
(Figure 3) incorporated a 10-min warm up that was feedback-

controlled to a constant target heart rate of HRmid. Each
participant was tested with their individual C1 and C2

compensators: the C1 were calculated according to Eq. 7
using the best of the participant’s two identified P1 models,
and C2 were calculated using Eq. 8 and the best of the two
individual P2 models. To avoid possibly confounding order-of-
presentation effects, the order of testing with C1 or C2 (i.e. C1

then C2 vs. C2 then C1) was changed sequentially according to
participant number. Control data from one participant had to
be excluded for reasons of data quality; 26 pairs of outcomes
were therefore available for the C1 vs. C2 comparative analysis.

2.4 Outcome Measures
Identification outcomes: fidelity of the estimated models was
quantified on the validation data sets using a normalised root-
mean-square model error (NRMSE), also called “fit”, and the
absolute RMS model error (RMSEI);

fit NRMSE( ) %[ ] � 1 −
��������������������∑N

i�1 HR i( ) −HRsim i( )( )2∑N
i�1 HR i( ) −HR( )2

√√⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ × 100;

(9)

RMSEI bpm[ ] � ����������������������
1
N

∑N
i�1

HRsim i( ) −HR i( )( )2
√√

; (10)

where HR is the measured heart rate andHRsim is simulated using
the estimated models.

FIGURE 4 | Identification data preprocessing and model validation: exemplary data for participant P01 (the raw data for this test are shown in Figure 2B). Upper
plot: HR measurement from validation data set after de-trending (solid black line), simulated HR response of first-order model (P1sim, green dashed line), and simulated
HR response of second-order model (P2sim, red dashed line). Lower plot: Cycle ergometer work rate after mean removal.

TABLE 1 |Overall outcomes for P1 and P2 from the model identification test series
and comparison of outcome differences (see also Figure 5).

Mean ± SD MD (95% CI) p-value

P1 P2 P2 − P1

RMSEI/bpm 3.21 ± 0.70 2.93 ± 0.59 -0.27 (-∞, -0.22) 2.0 × 10−11

fit/% 47.9 ± 7.0 51.9 ± 8.0 4.0 (3.3, ∞) 7.1 × 10−14

n = 54.
P1: first-order models.
P2: second-order models.
SD: standard deviation.
MD: mean difference.
95% CI: confidence interval for the mean difference.
p-value: paired one-sided t-tests.
RMSEI: root-mean-square model error, Eq. 10.
Fit: normalised root-mean-square error, Eq. 9.
bpm: beats per minute.
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Feedback control outcomes: accuracy of heart rate tracking
was quantified using root-mean-square tracking error (RMSEC),

RMSEC bpm[ ] � ����������������������
1
N

∑N
i�1

HRnom i( ) −HR i( )( )2
√√

, (11)

where HRnom is the nominal (simulated) closed-loop heart rate
response, while intensity of the manipulated variable was
quantified by the average power in changes in the control
signal (P∇u), viz.

P∇u W2[ ] � 1
N − 1

∑N
i�2

u i( ) − u i − 1( )( )2. (12)

2.5 Hypotheses, Statistics and Sample Size
Estimate
The hypotheses of this study were (cf. Section 1): 1) that second-
order models of open-loop heart-rate response would give better
fidelity (i.e. higher fit and lower RMSEI) than first-order models,
and 2) that feedback compensators based on second-order
models would give more accurate (lower RMSEC) and more
dynamic (higher P∇u) control of heart rate.

Hypothesis testing—comparison of sample mean differences
for the outcomes defined above—was done using paired, one-
sided t-tests with a significance level of 5% (α = 0.05). Normality
of sample differences was confirmed using the Kolmogorov-
Smirnov test with Lilliefors correction.

FIGURE 5 | Identification outcomes: data samples and differences for RMSEI and fit between 54 first-order models, P1, and 54 second-order models, P2 (see also
Table 1). Sample pairs for each participant are connected by green lines; mean values are shown as red horizontal bars (with numerical values given in Table 1). Sample-
pair differences are shown as D (P2 - P1). Themean difference (MD) is depicted as a red bar and the blue arrow is the corresponding 95% confidence interval (CI). For both
RMSEI and fit, the 95% CI does not contain the value 0, thus showing a significant improvement for P2 vs. P1 (p < 0.05, Table 1; the notation **** denotes p <
0.0001). (A) Root-mean-square model error, RMSEI. (B) fit (normalised root-mean-square error).

FIGURE 6 | Dispersion of estimated model parameters for 54 first- and 54 second-order models. The stars depict the average models. The 95% confidence
intervals for the mean gains and time constants are shown as dotted rectangular boxes. (A) First-order models. (B) Second-order models.
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The sample size of n = 27 participants was estimated a priori
by a statistical power calculation that used estimates of expected
effect sizes and sample standard deviations obtained from
previous studies in this lab, with the significance level of 5%
and a statistical power of 80% (1 − β = 0.8).

3 RESULTS

3.1 Identification
To aid understanding of the overall identification test analysis, the
results for a single participant (P01) are first illustrated (Figure 4).
In this example, the second-order model provides higher fidelity
than the first-order model: the respective RMSEI values were 2.94
bpm and 3.16 bpm (P2 vs. P1), while the fit values were 51.4% and
47.7% (P2 vs. P1).

Of the 54 identification tests completed, 48 (89%) of the P2
models returned a lower RMSEI and higher fit than the
corresponding P1 models; overall, RMSEI was significantly
lower and fit significantly higher for P2 than for P1:

• RMSEI was 2.93 bpm ± 0.59 bpm (mean ± standard
deviation) vs. 3.21 bpm ± 0.70 bpm (P2 vs. P1) with p =
2.0 × 10−11 (Table 1; Figure 5A),

• Fit values were 51.9% ± 8.0% vs. 47.9% ± 7.0% (P2 vs. P1)
with p = 7.1 × 10−14 (Table 1; Figure 5B).

Graphical illustration of the individually estimated gains and
time constants (Figure 6) shows wide dispersions but quite
narrow bounds on the 95% confidence intervals for mean
estimates. The overall first-order model had gain k1 = 0.46
bpm/W ± 0.14 bpm/W (mean ± standard deviation) and time
constant τ1 = 68.8 s ± 22.0 s. The overall second-order model gain
was k2 = 0.40 bpm/W ± 0.12 bpm/W and the time constants were
τ21 = 35.7 s ± 21.7 s and τ22 = 20.4 s ± 9.6 s. This gives average
first- and second-order model transfer functions as follows:

u ↦ y : P1 s( ) � 0.46
68.8 s + 1

, (13)

u ↦ y : P2 s( ) � 0.40
35.7 s + 1( ) 20.4 s + 1( ). (14)

3.2 Control
As an example, the C1 and C2 test results of a single participant
(P01) are first shown (Figure 3). In this illustrative data set, C2

was found to bemore accurate (lower RMSEC) andmore dynamic
(higher P∇u) than C1: the respective RMSEC values were 2.68 bpm
vs. 2.91 bpm (C2 vs. C1), and the average control signal power
(P∇u) values were 9.53 W2 vs. 5.30 W2 (C2 vs. C1).

TABLE 2 | Overall outcomes for C1 and C2 from the feedback control test series
and comparison of outcome differences (see also Figure 7).

Mean ± SD MD (95% CI) p-value

C1 C2 C2 − C1

RMSEC/bpm 2.77 ± 0.61 2.62 ± 0.45 -0.15 (-∞, 0.002) 0.052
P∇u/(W

2) 7.56 ± 4.26 9.61 ± 5.82 2.05 (1.34, ∞) 2.3 × 10−5

n = 26.
C1: compensator C1.
C2: compensator C2.
SD: standard deviation.
MD: mean difference.
95% CI: confidence interval for the mean difference.
p-value: paired one-sided t-tests.
RMSEC: root-mean-square tracking error, Eq. 11.
Pu: average control signal power, Eq. 12.
bpm: beats per minute.

FIGURE 7 | Feedback control outcomes: dispersion of samples for RMSEC and P∇u from the control test series, with 26 sample pairs. In each figure, blue and red
dots are the individual outcomeswith compensatorsC1 andC2, respectively, green lines connect sample pairs for each participant, and red bars mark the sample means
(given numerically in Table 2). D denotes the difference between paired samples (C2 - C1) and MD (red horizontal bar) is the mean difference. The 95% confidence
intervals (CIs) are marked as blue arrows. For RMSEC, the value 0 is inside the 95% CI, indicating that the mean value forC2 is not significantly lower than for C1 (p >
0.05). For P∇u, the value 0 is outwith the 95% CI, indicating a significantly higher value for C2 vs. C1 (p < 0.05, Table 2; **** denotes p < 0.0001). (A) Root-mean-square
tracking error, RMSEC. (B) Average control signal power, P∇u.
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From the 26 pairs of feedback control tests, 17 C2 controllers
(65%) were more accurate than C1 while 22 C2 controllers (85%)
were more dynamic than C1. In the overall statistical analysis,
there was moderate evidence that C2 was more accurate than C1

and strong evidence that C2 was more dynamic than C1:

• RMSEC was 2.62 bpm ± 0.45 bpm (mean ± standard
deviation) vs. 2.77 bpm ± 0.61 bpm (C2 vs. C1) with p =
0.052 (Table 2, Figure 7A),

• Average control signal power, P∇u, was 9.61 W2 ± 5.82 W2

vs. 7.56 W2 ± 4.26 W2 (C2 vs. C1) with p = 2.3 × 10−5

(Table 2, Figure 7B).

4 DISCUSSION

The aim of this work was to compare the fidelity of first- and
second-order models of heart rate response during cycle-
ergometer exercise, and to compare the accuracy and
dynamics of feedback controllers that were designed using the
two model structures. This aim was motivated by observations
from the physiological literature that heart rate response is
dominated by two components with distinct time constants—a
fast Phase I response, and a dominant but slower Phase II
response—in concord with the underlying mechanisms
thought to be at work in neural regulation of heart rate. These
considerations led to the hypotheses of this study, namely that
second-order models of open-loop heart-rate response would
give better fidelity than first-order models, and that feedback
compensators based on second-order models would give more
accurate and more dynamic control of heart rate.

It was found that second-order models gave substantially and
significantly better representation of the dynamic heart rate
response to changes in exercise work rate, with mean fit values
of 51.9% and 47.9% (p < 0.0001), respectively, and mean root-
mean-square model error of 2.93 bpm vs. 3.21 bpm (p < 0.0001).
This finding supports the concept of two principal dynamic
modes contributing to the overall heart rate response. The
mean time constants for the second-order models, viz. τ22 =
20.4 s and τ21 = 35.7 s, can be interpreted physiologically as the
faster Phase I and slower Phase II components, respectively.

In the feedback control comparison, there was modest
improvement in tracking accuracy with controllers based on
second-order models, where mean root-mean-square tracking
errors were 2.62 bpm (second order) and 2.77 bpm (first order),
with p = 0.052 being close to the statistical significance threshold.
But controllers based on second-order models were found to be
substantially and significantly more dynamic: mean values of

average control signal power were 9.61W2 and 7.56W2, C2 vs. C1,
and p < 0.0001. The finding that improvements in closed-loop
control accuracy were less clear than open-loop model fidelity is
likely due to the basic characteristic of feedback systems that plant
uncertainty is reduced, at least in frequency ranges where the
closed-loop sensitivity function takes on values less than one
(Åström and Murray, 2008); thus, a given difference in model
fidelity will effectively be “attenuated”when the respective models
are used for feedback design, thus making it more difficult to
experimentally detect improvements in control accuracy.

5 CONCLUSION

The results of this study confirm the hypotheses that second-
order models of heart-rate dynamics give better fidelity than first-
order models, and that feedback compensator designs that use the
additional dynamic mode give more accurate and more dynamic
closed-loop control performance.
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