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The Relationship Between Cusp Region Ion Outflows
and East-West Magnetic Field Fluctuations
at 4,000-km Altitude
S. M. Hatch1 , T. Moretto1 , K. A. Lynch2 , K. M. Laundal1 , J. W. Gjerloev1,3 ,
and E. J. Lund4

1Birkeland Center for Space Science, University of Bergen, Bergen, Norway, 2Department of Physics and Astronomy,
Dartmouth College, Hanover, NH, USA, 3The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA,
4Space Science Center, University of New Hampshire, Durham, NH, USA

Abstract A number of interdependent conditions and processes contribute to ionospheric-origin
energetic (∼10 eV to several keV) ion outflows. Due to these interdependences and the associated
observational challenges, energetic ion outflows remain a poorly understood facet of
atmosphere-ionosphere-magnetosphere coupling. Here we demonstrate the relationship between
east-west magnetic field fluctuations (ΔBEW) and energetic outflows in the magnetosphere-ionosphere
transition region. We use dayside cusp region FAST satellite observations made near apogee (∼4,180-km
altitude) near fall equinox and solstices in both hemispheres to derive statistical relationships between ion
upflow and ΔBEW spectral power as a function of spacecraft frame frequency bands between 0 and 4 Hz.
Identification of ionospheric-origin energetic ion upflows is automated, and the spectral power PEWin each
frequency band is obtained via integration of ΔBEW power spectral density. Derived relationships are of the
form J||,i = J0,iP

𝛾

EW for upward ion flux J||,i at 130-km altitude, with J0,i the mapped upward ion flux for a
nominal spectral power PEW = 1 nT2. The highest correlation coefficients are obtained for spacecraft frame
frequencies ∼0.1–0.5 Hz. Summer solstice and fall equinox observations yield power law indices 𝛾 ≃
0.9–1.3 and correlation coefficients r ≥ 0.92, while winter solstice observations yield 𝛾 ≃ 0.4–0.8 with
r ≳ 0.8. Mass spectrometer observations reveal that the oxygen/hydrogen ion composition ratio near
summer solstice is much greater than the corresponding ratio near winter. These results reinforce the
importance of ion composition in outflow models. If observed ΔBEW perturbations result from
Doppler-shifted wave structures with near-zero frequencies, we show that spacecraft frame frequencies
∼0.1–0.5 Hz correspond to perpendicular spatial scales of several to tens of kilometers.

1. Introduction
Energetic ion outflow is a complex phenomenon within the coupled atmosphere-ionosphere-
magnetosphere system that can occur via a number of multistage pathways. These stages depend on both
large-scale system properties such as levels of insolation, geomagnetic and substorm activity, interplan-
etary magnetic field strength and orientation, solar wind parameters (Howarth & Yau, 2008; Lee et al.,
2016; Moore & Horwitz, 2007; Peterson et al., 2008; Su et al., 1999; Wilson et al., 2004; Welling et al., 2015;
Yau & André, 1997), and a host of more localized processes and conditions such as ambipolar electric
fields, thermospheric neutral density enhancements, electron density, soft (<1 keV) electron precipitation,
resonant and/or stochastic wave-particle interactions, polar cap patches, and Joule heating (André et al.,
1990; Burchill et al., 2010; Kervalishvili & Lühr, 2013; Norqvist et al., 1998; Strangeway et al., 2005; Zhang
et al., 2016).

Any particular instance of energetic ion outflow therefore represents interplay between a variable number
of processes and conditions, which themselves vary over spatial scales ranging from tens to thousands of
kilometers, over time scales ranging from seconds to years (Horwitz & Zeng, 2009; Varney et al., 2016), and
with altitude (e.g., André & Yau, 1997; Bouhram et al., 2004; Fernandes et al., 2016; Nilsson et al., 2006;
Nilsson, 2011; Waara et al., 2011).
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Thus, complete monitoring of the energetic ion outflow process represents an enormous observational
challenge, requiring in situ wave and particle observations extending from the base of the thermo-
sphere/ionosphere through altitudes of several Earth radii into the magnetosphere.

Previous works (Strangeway et al., 2005; Zheng et al., 2005) have illustrated how covariance of putative
drivers of ion upflow complicate the interpretation of the role of any particular driver. These studies never-
theless also show that drivers such as electron precipitation and Poynting flux are directly correlated with
energetic ion upflow. In particular Strangeway et al. (2005), hereafter S05, reported a correlation coefficient
r = 0.721 between average upward ion flux ⟨J||,up⟩ composed predominantly of oxygen and average “DC”
(i.e., spacecraft frame frequencies 𝑓sc = 0–0.125 Hz) Poynting flux ⟨SDC⟩ based on measurements made dur-
ing 33 Fast Auroral SnapshoT (FAST) satellite passes of the Northern Hemisphere (NH) dayside cusp region
near apogee (∼4,180-km altitude) in local fall equinox. Using the same 33 FAST dayside passes, Brambles
et al. (2011), hereafter B11, reported a correlation coefficient r = 0.795 between ⟨J||,up⟩ and average “AC”
(𝑓sc = 0.125–0.5 Hz) Poynting flux ⟨SAC⟩. From these observations S05 and B11, respectively, derived an
empirical relationship between ⟨J||,up⟩ and ⟨SDC⟩, and between ⟨J||,up⟩ and ⟨SAC⟩.
One likely physical explanation for the correlation between upward ion flux and Poynting flux at frequen-
cies between 0.125 and 0.5 Hz at FAST altitudes is that this spacecraft frame frequency band is associated
with Alfvén waves (Brambles et al., 2011; Hatch et al., 2017; Zhang et al., 2014). Alfvén waves are strongly
associated with and can directly drive ion outflow (Chaston et al., 2006, 2007). Observational and theoretical
studies show that Alfvén wave magnetic field fluctuations are primarily oriented east-west (Chaston et al.,
2003; Stasiewicz et al., 2000). In addition to Alfvén waves, a variety of low-frequency wave modes and other
processes observed at high latitudes have been observed to drive ion heating, upflow, and outflow (André
et al., 1990, 1998; Bouhram et al., 2002; Chernyshov et al., 2017; Chugunin et al., 2018; Kintner et al., 2000;
Seyler & Wahlund, 1996; Wahlund et al., 1998).

These empirical relationships, along with a similar set of relationships derived by Zheng et al. (2005) from
37 Polar satellite passes of the dayside Southern Hemisphere (SH), have either been employed directly
(Brambles et al., 2010, 2011; Moore et al., 2007) or otherwise served as points of reference in ion outflow
simulations and theoretical works (e.g., Brambles et al., 2011; Horwitz & Zeng, 2009; Kronberg et al., 2014;
Moore & Khazanov, 2010; Varney et al., 2016). These works nonetheless all express a need for additional
observational studies to validate and expand these empirical relationships. Such studies have largely not
been performed, due at least in part to a lack of applicable data sets (i.e., simultaneous electric field, mag-
netic field, and ion distribution measurements). There are furthermore no studies demonstrating how these
statistical relationships might vary with season, local time, or interplanetary magnetic field conditions.
There has resultantly been only limited progress in understanding the fundamental causes and processes
of ionospheric-origin ion up/outflows during the past decade (Horwitz & Zeng, 2009; Kronberg et al., 2014;
Varney et al., 2016).

In this study we consider the relationship between cusp region upward ion fluxes and east-west magnetic
field perturbations ΔBEW in nearly arbitrary frequency bands, in both hemispheres during winter and sum-
mer. We also show that ion composition is likely an important factor in predicting energetic outflow fluxes.
In section 2 we describe FAST satellite ion and magnetic field (B field) measurements and how we process
these quantities to calculate average upward ion fluxes and east-west B field fluctuations as a function of
spacecraft frame frequency band. We apply our methodology to the FAST observations that S05 and B11
considered and compare our results to theirs. In section 3 we use our methodology, together with four dif-
ferent groups of FAST observations made between December 1996 and January 1999, to obtain statistical
relationships between average upward ion flux and ΔBEW for nearly arbitrary spacecraft frame frequencies
between 0 and 4 Hz. In section 4 we discuss and summarize the results presented in section 3, including
how our methodology could be applied to current satellite missions; we discuss the role of ion composition
in these as well as previous results; and we show that if we assume observed field perturbations are spa-
tial rather than temporal, the perpendicular length scales associated with outflow near FAST apogee are of
order several to a few tens of kilometers.

2. Data Set and Methodology
Launched into a polar orbit on 21 August 1996, the FAST satellite covered the range of altitudes between
∼350 and 4,180 km, covering all magnetic local time (MLT) sectors every ∼3 months due to the 83◦
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Table 1
Groups of FAST Orbits Used in This Study

Group Section Time period Hemisphere Local season Approacha N orbits
1 3.1 23–26 Sep 1998b Northern Fall Poleward 33
2 3.2 30 Dec 1996 to 7 Jan 1997 Northern Winter Equatorward 38
3 3.3 8–15 Jan 1999 Southern Summer Poleward 32
4 3.4 24 May to 5 Jun 1998 Southern Late Fall Poleward 29
aFAST satellite direction of approach to the cusp region. bThe group of 33 orbits used by S05 and B11.

inclination of the orbit (Carlson et al., 2001). The FAST scientific payload included a suite of instruments
capable of measuring in situ magnetic and electric fields, two-dimensional electron and ion pitch angle
distributions, and three-dimensional distributions of select ion species (Carlson et al., 2001; Ergun et al.,
2001; Klumpar et al., 2001). Level 2 particle measurements are available for the duration of the FAST
mission (ended in April 2009); Level 2 magnetic field measurements are available through October 2002
(https://cdaweb.sci.gsfc.nasa.gov/index.html/).

We use Level 1 FAST fluxgate magnetometer B field measurements and ion electrostatic analyzer (IESA)
measurements of ion pitch angle distributions, which are obtained through the SDT software package
(http://sprg.ssl.berkeley.edu/~sdt/SdtReleases.html).

Table 1 summarizes the four groups of FAST orbits that are used in this study. The first consists of the group
of 33 NH orbits during September 1998 considered by S05 and B11. The second consists of NH observations
during local winter, and the third and fourth consist of SH observations during local summer and local fall,
respectively. The latter three groups of orbits were selected based on the following criteria, which mimick
the characteristics of the 33 orbits used by S05 and B11:

1. Availability of ion and B field measurements over magnetic latitudes (MLats) between 60◦ and 87◦ in the
NH (−87◦ to −60◦ in the SH) and over dayside MLTs;

2. Continuous ion and B field measurements at altitudes between 3,800 km and FAST apogee;
3. Satellite trajectory on the dayside that is primarily aligned with the noon-midnight meridian (as opposed

to being aligned with, e.g., the dawn-dusk meridian; see Figure 1a).

MLat and MLT are defined at a reference height hr = 130 km in the Modified Apex coordinate system (here-
after MA130) (Laundal & Richmond, 2016; Richmond, 1995), which we obtain from the apexpy Python
package (van der Meeren et al., 2018). In our experience, inclusion of FAST observations made under con-
ditions not meeting requirements (1)–(3) renders the intercomparison of analysis results from each orbit
group difficult or impossible. In particular relaxing the second and third requirements leads to additional
sources of uncertainty/Doppler shifting of the frequencies of field measurements, as well as difference in
frames of reference between FAST and ionospheric upflows that lead to sometimes overwhelming space-
craft ram ion signatures in IESA measurements. (See Heelis & Hanson, 1998; Moore et al., 1998, for some
discussion of ram ions.) Thus, these requirements are imposed on orbit groups 2–4 in Table 1 to facilitate
comparison with Group 1 observations, whose orbit characteristics are the basis of these requirements.

2.1. Ion Measurements and Upflow Identification Algorithm
The IESA sampled full two-dimensional ion pitch angle distributions at cadences between ∼0.4 and 13 Hz,
depending on the mode of operation. Figure 1a shows an example pitch angle spectrogram derived from
IESA ion measurements on 25 September 1998 during FAST orbit 8276, which is the same orbit repre-
sented in Figures 1 and 2 of S05. In Figure 1a the range of pitch angles is adjusted such that “downward”
(or earthward) ion measurements are correspond to the lower half (−90◦ < 𝜃 < 90◦) of the pitch angle-time
spectrogram. “Upward” or (anti-earthward) ion measurements are those corresponding to the upper half
(90◦ < 𝜃 < 270◦) of the pitch angle time spectrogram.

Two ion populations are visible in Figure 1a: (i) an isotropic (i.e., covering all pitch angles)
magnetospheric-origin population with mirror points below the altitude of FAST, appearing between
∼00:04:40 and 00:07:50 UT; (ii) an ionospheric-origin intense upflowing ion population appearing between
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Figure 1. Ion and B field quantities derived from FAST observations on 25 September 1998 in the Northern
Hemisphere. (a) Pitch angle spectrogram. (b) Energy spectrogram of antiearthward (“upward”) ions. (c) Energy
spectrogram of earthward (“downward”) ions. (d) Ratio of upward and downward spectrograms in Figures 1b and 1c.
(e) Upward ion energy flux after mapping to 130-km altitude. (f) ΔBEW after mapping to 130-km altitude. (g) Power
spectral density estimate of ΔBEW time series in Figure 1f. The spacecraft frame frequency ranges termed “DC”
(0–0.125 Hz) and “AC” (0.125–0.5 Hz) by S05 and B11 are highlighted in orange and blue, respectively, in Figure 1g.
To avoid spuriously identifying background noise as upflow, for all energy bins in Figure 1b with upward differential
energy fluxes dJE∕dE < 5 × 105 eV/cm2·s·sr·eV the corresponding up/down ratio is set to zero in Figure 1d and in the
upflow identification algorithm.

∼00:04:40 and 00:13:30 UT, corresponding to energies between 4 and 500 eV and anti-earthward pitch
angles (90◦ < 𝜃 < 270◦). In Figure 1a the ionospheric-origin population is superimposed over the isotropic
magnetospheric-origin population.

Figure 1b, which is the “upward ion” energy-time spectrogram that results from averaging over antiearth-
ward pitch angles, shows that the average differential energy fluxes of the lower-energy, ionospheric-origin
ion population are intense (dJE∕dE ≳ 108 eV/cm2·s·sr·eV). This ionospheric population does not appear in
the “downward ion” spectrogram (Figure 1c), which is the ion energy-time spectrogram that results from
averaging over all earthward pitch angles |𝜃| < 90◦.

HATCH ET AL. 4 of 18
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We wish to exclude the contribution from magnetospheric ions to the calculated ionospherically sourced
upward ion flux. To achieve this, S05 and B11 manually inspected the ion energy spectrogram from each
cusp pass and visually determined a cutoff energy. They then integrated the observed ion distributions up
to this cutoff energy and over all pitch angles.

Attempting to exactly reproduce the results of S05 and B11 is difficult because they do not state the ion
cutoff energies that were used for each orbit. We have alternatively developed the following algorithm for
identification of the appropriate upper bound on ion energy.

1. For each point in time, average particle counts in each energy-angle bin over all antiearthward pitch
angles to obtain an “upward ion” energy spectrogram (e.g., Figure 1b). Also average particle counts over
all Earthward pitch angles to obtain a “downward ion” energy spectrogram (e.g., Figure 1c).

2. Divide the upward ion spectrogram by the downward ion spectrogram to obtain an “up/down ratio”
spectrogram (Figure 1d).

3. To avoid noise, set the up/down ratio to zero for all energy bins with upward differential energy flux
dJE∕dE < 5 × 105 eV/cm2·s·sr·eV.

4. Let the bin with the highest energy for which the up-down ratio is at least 5 be denoted Etop. If either (a)
no bins have an up/down ratio of at least 5, or (b) less than 75% of energy bins below Etop have up/down
ratios of at least 1, no upflow is present in this ion distribution.

5. If the ion distribution meets the foregoing criteria, obtain the upward ion flux J||,up by integrating the
original two-dimensional ion distribution over all pitch angles and from the 4 eV lower limit of the IESA
detector energy range up to Etop.

Following S05 and B11, in this study we have elected to integrate each ion distribution over all pitch angles
to obtain the net ion flux. The pink line in Figure 1d indicates Etop as identified by this algorithm. The cor-
responding time series of J||,up is shown in Figure 1e. All J||,up are mapped to 130-km altitude (approximately
the base of the F region ionosphere) via multiplication by the mapping factor R ≡ Di∕DFAST > 1. The quan-
tity D = |d1 × d2| is a function of the altitude-dependent basis vectors d1 and d2 in the MA130 coordinate
system and is defined such that Di and DFAST are respectively proportional to the main-field magnitudes at
130-km altitude and at FAST altitude (Richmond, 1995). (Thus R > 1 for all FAST observations.) Mapped
values of J||,up are then averaged to obtain a single average upward ion flux.

2.2. Magnetic Field Measurements and PSD Estimates
The fluxgate magnetometer sampled all three B field components at rates between 8 and 128 Hz, depending
on the mode of operation. Despinning of B field measurements is performed by the ucla_mag_despin
routine that is included with SDT software, after which we subtract the International Geomagnetic Refer-
ence Field-12 main field model. The quantityΔBEW = e1 ·ΔB gives the (approximately) east-west component
of the B field perturbation vector ΔB, where e1 is an MA130 coordinate system base vector such that ΔBEW
is mapped to 130 km.

Via the multitaper method (Hatch & LaBelle 2018; Slepian, 1978; Thomson, 1982), we estimate the power
spectral density (PSD) of the portion of the time series that meets the MLat, MLT and altitude criteria given
in section 2. We calculate the spectral power in a particular spacecraft frame frequency band by integrating
the PSD estimate over all frequencies within that band. For example, a ∼15-min time series of ΔBEW is
shown in Figure 1f, with the corresponding multitaper PSD estimate shown in Figure 1g. The spacecraft
frame frequency ranges termed “DC” (0–0.125 Hz) and “AC” (0.125–0.5 Hz) by S05 and B11 are respectively
highlighted in blue and orange. Integration of the PSD estimate over DC and AC frequency bands thus
defined yields spectral powers of 2.88 × 105 nT2 and 6.67 × 102 nT2, respectively.

2.3. Comparison With S05 and B11
In summary, the methodology of S05 and B11 is based on manual identification of an ion cutoff energy
for each cusp pass and average Poynting flux calculated from time series of B field and electric field mea-
surements. In contrast, our methodology is based on automated identification of ion outflows for each cusp
pass and a spectral representation of B field measurements. We now compare analysis results using each
methodology to determine whether our methodology, which excludes electric field measurements and uses
frequency-domain (instead of time-domain) calculations of average B field fluctuations, yields correlation
coefficients that are similar to those yielded by the S05 and B11 methodology.
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Figure 2. Scatterplots of average upward ion flux versus ΔBEW spectral power (panels a and c) and Poynting flux
(panels b and d) in DC (0–0.125 Hz; a and b) and AC (0.125–0.5 Hz; bottom row) spacecraft frame frequency bands for
33 NH cusp region passes in September 1998. ΔBEW spectral power in DC and AC frequency bands (left column) are
calculated via the methodology described in section 2.2. Poynting flux in each frequency band (right column) is
calculated via the methodology of Strangeway et al. (2005) (S05). Each panel also shows the best fit line and fit
parameters described in section 2.3. Figure 2b was originally presented by S05 as Figure 5. Figure 2d was originally
presented by Brambles et al. (2011) (B11) as their Figure S1. They are reproduced with permission from John Wiley and
Sons and the American Association for the Advancement of Science, respectively.

Figure 2 presents the scatterplots of average upward ion flux versus ΔBEW spectral power in DC and AC
spacecraft frame frequency bands (respectively, Figures 2a and 2c) in the left-hand column from the same 33
orbits presented by S05 and B11, and the scatterplots of average upward ion flux versus Poynting flux in DC
and AC frequency bands (respectively Figures 2b and 2d) presented by S05 and B11. Each panel also shows
the best fit line and fit parameters that result from performing a least squares linear fit to the logarithm of
the quantities shown on the x and 𝑦 axes.

In the two panels showing “DC” field fluctuations (top row in Figure 2), the correlation coefficients are very
similar (r = 0.725 and r = 0.721) while the slopes differ (𝛾 = 0.85 and 𝛾 = 1.265 in Figures 2a and 2b,
respectively). In the two panels showing “AC” field fluctuations (bottom row in Figure 2), the correlation
coefficients are different (r = 0.917 and r = 0.795) while the slopes are almost identical (𝛾 = 1.20 and
𝛾 = 1.206 in Figures 2c and 2d, respectively).

From the comparison of methodologies shown in Figure 2, we conclude that our methodology yields cor-
relation values that are comparable to or higher than those resulting from the S05 and B11 methodologies.
While our methodology provides no information about which processes or possibly wave modes may be
operating in association with the observed outflows, it nevertheless makes apparent that electric field mea-
surements are not necessary for determination of an empirical relationship between field perturbations and
energetic ion outflow.

HATCH ET AL. 6 of 18
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Figure 3. Ion and ΔBEW statistics from 33 NH cusp region passes during 23–26 September 1998. (a) Contributing
portions of orbits, where thick lines indicate identified ion outflow. (b) Individual power spectral density (PSD)
estimates of ΔBEW time series (black transparent lines) and median PSD (orange line). (c) Correlation coefficient r of
least squares linear fit to the logarithm of average upward ion flux and logarithm of spectral power as a function of PSD
start integration frequency (𝑦 axis) and stop integration frequency (x axis). (d) Least squares linear fit for spacecraft
frame frequency band 0.2–0.34 Hz, which yields the highest least squares correlation coefficient r in panel c. In panel c
the S05 DC and AC frequency bands as well as highest-correlation frequency band are respectively indicated by blue,
orange, and transparent black stars.

We now apply our methodology to four groups of orbits to investigate the relationship between J||,up and
ΔBEW as a function of season, hemisphere, and frequency band.

3. Statistical Relationships Between Ion Outflow and 𝚫BEW

The AC and DC frequency bands defined by S05 arose in connection with the interpolation and the series
of decimations and smoothings that they applied to the time series of field measurements (Appendix A in
S05). In contrast the spectral method we use allows for analysis of an arbitrary frequency band, up to the
frequency resolution of each PSD (typically less than 0.01 Hz).

In this section we perform the same type of correlation and fitting shown in Figure 2 for the 19,900 possible
frequency bands between 0 and 4 Hz with spectral resolution 0.02 Hz, for the four groups of orbits indicated
in Table 1. We hypothesize that the inferred relationship between average ion outflow and B field fluctua-
tions varies as a function of season and hemisphere. To test this hypothesis we analyze each group of orbits
separately.

3.1. Northern Hemisphere, September 1998 (Local Fall)
Figure 3 shows the results of analysis of 19,900 frequency bands between 0 and 4 Hz for the 33 NH cusp
region passes considered by S05 and B11. Figure 3a shows the portion of each pass that meets the three
criteria in section 2 (60–87◦ MLat, 6–18 MLT, and at or above 3,800-km altitude), with thick lines indicating

HATCH ET AL. 7 of 18
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Figure 4. Ion and ΔBEW statistics from 38 NH cusp region passes between 30 December 1996 and 7 January 1997. The
format of all panels is identical to corresponding panels in Figure 3. (a) Portions of orbits between 60◦ and 87◦ MLat,
6–18 MLT, and at or above 3,800-km altitude. Thick lines indicate identified ion outflow. In panel (d) the spacecraft
frame frequency band that yields the highest correlation coefficient is 0.62–0.8 Hz.

observations of ion outflow. Except during storms, the geomagnetic cusp is typically observed at 70◦ < MLat
< 80◦ (Zhang et al., 2013; Zhou et al., 2000). The observation of ion outflows at MLat < 70◦ during several
passes is therefore indicative of the geomagnetic storm that occurred during 24–25 September 1998.

Figure 3b shows the PSD estimate for each ΔBEW time series as well as the median PSD (orange line). The
median PSD ranges over nearly seven orders of magnitud, and decreases by roughly 4 orders of magnitude
between 0 and ∼0.2 Hz. (The two spikes that reach ∼101.5 nT2/Hz at ∼3.7 and 3.9 Hz are artifacts related to
the ucla_mag_despin routine, whereas the troughs at ∼1.1, 2.35, and 3.45 Hz are related to the recursive
filter of the fluxgate magnetometer (Elphic et al., 2001). Similar artifacts are visible in the PSDs shown in
Figures 4b, 5b, and 6b.)

Figure 3c displays the correlation coefficient r resulting from a least squares linear fit to the logarithm of
the average mapped upward ion flux and the logarithm of ΔBEW spectral power within the frequency bands
given by the x and 𝑦 axes. The x axis gives the upper bound (“stop frequency”) of the frequency band 𝑓top,
and the 𝑦 axis gives the lower bound (“start frequency”) of the frequency band 𝑓bot. Each linear fit is of the
form

log10J||,i = J0,i + 𝛾log10PEW, (1)

where J||,i is the predicted upward ion flux after mapping to 130-km altitude, 𝛾 is the power law index
(Figure 3d), PEW is the spectral power within the selected frequency band, and J0,i is the mapped upward
ion flux (in cm−2 s−1) for nominal spectral power PEW = 1 nT2.

As an aid in the interpretation of Figure 3c, we indicate with a blue star the DC frequency band 0–0.125
Hz defined by S05, corresponding to Figures 2a and 2b. (See also the DC frequency band shaded blue
in Figure 1g.) We indicate with an orange star the AC frequency band 0.125–0.5 Hz defined by S05,
corresponding to Figures 2c and 2d. (See also the AC frequency band shaded orange in Figure 1g.)

HATCH ET AL. 8 of 18
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Figure 5. Ion and ΔBEW statistics from 32 SH cusp region passes during 8–15 January 1999. The format of all panels is
identical to corresponding panels in Figure 3. (a) Portions of orbits between −87◦ and −60◦ MLat, 6–18 MLT, and at or
above 3,800-km altitude. Thick lines indicate identified ion outflow. In panel (d) the spacecraft frame frequency band
that yields the highest correlation coefficient is 1.6–1.74 Hz.

The highest correlation coefficients (r ≥ 0.9) correspond to frequency bands such that 0.08 Hz ≲ 𝑓bot ≲ 0.3
Hz and 𝑓bot < 𝑓top ≲ 4 Hz. In particular the frequency band 0.2–0.34 Hz (indicated by the transparent
black star in Figure 3c) yields the highest correlation coefficient r = 0.932, with a best fit relationship J||,i =
2.28 × 107P1.20

EW .

3.2. Northern Hemisphere, December 1996 (Local Winter)
Figure 4 shows the results of analysis of 19,900 frequency bands between 0 and 4 Hz for 38 NH cusp region
passes occurring between 30 December 1996 and 7 January 1997, corresponding to local winter. The layout
identical to that of Figure 3. Figure 4a shows that observed ion outflows are confined to MLat ≳ 70◦ during
these passes, with the majority observed at MLat ≳ 75◦. Outflows at these latitudes are indicative of the
geomagnetic quiescence that prevails throughout the 9-day period.

Figure 4b shows that the individual PSD estimates (transparent black lines) and median PSD (orange line)
vary less overall than the PSD estimates shown in Figure 3b. The median PSD ranges over fewer than 6
orders of magnitude, decreasing by roughly 2 orders of magnitude over 0–0.2 Hz.

In Figure 4c, the highest correlation coefficients (r ≥ 0.75) correspond to spacecraft frame frequency bands
such that 0.25 Hz≤ 𝑓bot ≤0.7 Hz and 0.6 Hz≤ 𝑓top ≤1.5 Hz. In particular the frequency band 0.62–0.8 Hz
yields the highest correlation coefficient r = 0.792, with a best-fit relationship J||,i = 4.47 × 108P0.83

EW .
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Figure 6. Ion and ΔBEW statistics from 29 SH cusp region passes between 24 May and 5 June in 1998. The format of all
panels is identical to corresponding panels in Figure 3. (a) Portions of orbits between −87◦ and −60◦ MLat, 6–18 MLT,
and at or above 3,800-km altitude. Thick lines indicate identified ion outflow. In panel (d) the spacecraft frame
frequency band that yields the highest correlation coefficient is 0.26–0.36 Hz.

3.3. Southern Hemisphere, January 1999 (Local Summer)
Figure 5 shows the results of analysis of 19,900 frequency bands between 0 and 4 Hz for 32 SH cusp region
passes occurring between 8 and 15 January 1999, corresponding to local summer. The layout is identical to
that of Figure 3. Figure 5a shows that ion outflows are mostly observed at MLat ≳ 70◦ during these passes.
The relatively small number of outflow observations made below these magnetic latitudes correspond to
the portion of the 8-day observational period that coincides with a geomagnetic storm (Dstmin = −110 nT)
during 13–17 January.

Figure 5b shows that the individual PSD estimates (transparent black lines) and median PSD (orange line)
are comparable to the PSD estimates and median PSD shown in Figure 3b. The median PSD ranges over
∼7 orders of magnitude and decreases by more than 3 orders of magnitude between 0 and ∼0.2 Hz. Similar
to the artifacts visible in Figure 3b, the spiked spectral features at ≳3.5 Hz are also artifacts related to the
ucla_mag_despin routine. The troughs at ∼1.25, 2.35, and 3.45 Hz are related to the recursive filter of
the fluxgate magnetometer.

In Figure 5c, the correlation coefficient r ≥ 0.9 for nearly 50% of all spacecraft frame frequency bands
considered. Correlation coefficients r ≥ 0.90 correspond to frequency bands given by either 1 Hz ≤ 𝑓bot ≤

1.6 Hz and 𝑓bot ≤ 𝑓top ≤ 2.6 Hz, or 0.1 Hz ≤ 𝑓bot ≤ 0.6 Hz and 0.2 Hz ≤ 𝑓top ≤ 4 Hz. In particular the
spacecraft frame frequency band 1.6–1.74 Hz yields the highest correlation coefficient r = 0.927, with a best
fit relationship J||,i = 2.05 × 109P0.99

EW .

3.4. Southern Hemisphere, May 1998 (Late Local Fall)
Figure 6 shows the results of analysis of 19,900 frequency bands between 0 and 4 Hz for 29 SH cusp region
passes occurring between 24 May and 5 June 1999, corresponding to late fall. The layout is identical to that

HATCH ET AL. 10 of 18

 21699402, 2020, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2019JA

027454, W
iley O

nline L
ibrary on [01/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Space Physics 10.1029/2019JA027454

of Figure 3. Figure 6a shows that ion outflows are mostly observed at MLat ≳ 70◦ during these passes. The
two regions of outflow over 14–15.5 MLT and near or below 70◦ MLat were observed during periods of weak
geomagnetic activity (Dstmin = −34 nT) that occurred intermittently during the 13-day observational period.

Figure 6b shows that the individual PSD estimates (transparent black lines) and median PSD (orange line)
vary less overall than the PSD estimates shown in Figure 3b. The median PSD ranges over more than 6 orders
of magnitude overall and decreases by more than 3 orders of magnitude over 0–0.2 Hz. The two spikes that
reach ∼10 nT2/Hz at ∼3.7 and 3.85 Hz are artifacts related to the ucla_mag_despin routine, whereas the
deep troughs at ∼1.2, 2.35, and 3.45 Hz are related to the recursive filter of the fluxgate magnetometer.

Figure 6c shows that the highest correlation coefficients (r ≥ 0.85) correspond to spacecraft frame frequency
bands such that 0.2 Hz ≤ 𝑓bot ≤ 0.4 Hz, 0.25 Hz ≤ 𝑓top ≤ 4 Hz. The frequency band 0.26–0.36 Hz yields the
highest correlation coefficient r = 0.909, with a best fit relationship J||,i = 1.26 × 108P0.68

EW .

4. Discussion and Summary
Two primary goals of this study are validation of the spectral method for studying the relationship between
field fluctuations and upward ion fluxes, and expansion of the original data set considered by S05 and B11
to the Southern Hemisphere and other seasons. Results in Figures 2–6 demonstrate that empirical relation-
ships very similar to those reported by S05 and B11 arise without inclusion of electric field measurements,
and without recourse to visual determination of the cutoff energy (see sections 2.1 and 2.3). While we believe
these aspects are significant, our methodology and data sets are nevertheless subject to their own limitations.

First, the algorithm for automated identification of ion outflows presented in section 2.1 is well suited to cusp
region energetic ion outflows, but likely misses other forms of energetic ion up/outflows that are more typi-
cal at other local times, such as nightside ion beams (Kondo et al., 1990). We have elsewhere developed and
employed an algorithm for automated identification of ion beams (Hatch, Chaston et al. 2018), which could
be employed in possible future work dealing with the relationship between ion beams and field fluctuations.

Second, throughout this study we have relied on the assumption of S05 and B11 that the relationship between
upward ion flux and field fluctuations is of the form of a power law. The scatter plots shown in the b panels
of Figures 2–6 provide clear evidence that such a relationship could be derived from first principles for the
presented ranges of spectral powers and outflow fluxes, but leave as an open question whether a power law
relationship is valid for fluxes and spectral powers outside the observed ranges. Existing attempts in the
literature (Horwitz & Zeng, 2009; Moore & Khazanov, 2010; Varney et al., 2016) to theoretically reproduce
the observations presented by S05 and B11 represent important steps toward a full theoretical description,
but each study points to a need for more observational data.

Third, regarding field measurements, we have not used FAST electric field measurements to estimate the
field-aligned Poynting flux, as did S05 and B11. Two disadvantages of this approach, noted in section 2.3, are
that it does not provide information about input electromagnetic energy, nor does it allow for inference of
the relevant processes on the basis of techniques involving analysis of the perturbation electric and magnetic
field ratio or plasma density perturbations (e.g., Wahlund et al., 1998; Figure A1 in S05). On the other hand
this approach opens the exploitation of magnetic field measurements as a possibly powerful alternative to
Poynting flux measurements in studies of energetic ion outflows, and could yield a significant contribution
to filling the knowledge gaps mentioned in section 1. This approach is the planned subject of future work.

Fourth, we have exclusively considered the east-west component of the measured magnetic field. This com-
ponent yields overall higher correlation coefficients than those yielded when we instead use the north-south
component of the measured magnetic field, though in many cases the differences are slight. Our choice is
also motivated by the preferential east-west orientation of Alfvénic magnetic field perturbations, as already
discussed in section 1.

Fifth, the dayside cusp region is the site of small-scale, relatively large amplitude field-aligned currents
(Kervalishvili & Lühr, 2013; Neubert & Christiansen, 2003; Rother et al., 2007; Watermann et al., 2009). As
an alternative to calculating the correlation coefficient between ⟨J||,up⟩ and ΔBEW spectral power PEW, as
we have done here, we could have correlated ⟨J||,up⟩ with estimates of field-aligned current amplitude. This
latter type of correlation study between field-aligned current amplitude and various ionospheric and ther-
mospheric parameters has in fact been carried out elsewhere (Kervalishvili & Lühr, 2013; Shen et al., 2016).
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Table 2
Statistics of r Correlation coefficient in panel c of Figures 3–6

rspread

Group Section Time period Hemisphere rmedian rmean r0.75 − r0.25
a

1 3.1 September 1998 Northern 0.722 0.732 0.173
2 3.2 December 1996 Northern 0.536 0.491 0.416
3 3.3 January 1999 Southern 0.899 0.871 0.049
4 3.4 May 1998 Southern 0.569 0.601 0.239
aThe r0.25 and r0.75 are respectively the first and third quartiles of the distribution of r values.

We have opted not to perform this type of analysis, primarily because our study takes the work of S05 and
B11 as starting points of reference. Neither of these studies dealt with field-aligned current estimates. Per-
forming a correlation study with the data sets we have presented that is based on field-aligned currents could
yield additional physical insight, but we deem such work outside the scope of the present study.

We believe that a critical aspect of this study is the stringent criteria on spacecraft MLT, Mlat, altitude, and
direction of approach to the cusp region. We have discussed in section 2 that the purpose of these criteria
is to reduce potential Doppler shifting of field measurements and to exclude ram ions as much as possible.
With these criteria there emerges from the analysis of each group of orbits some common characteristics
of the relationship between ion outflows and east-west magnetic field fluctuations, which we now discuss.
(Text S1 and Figures S1–S4 in the supporting information provides versions of the analysis in Figures 3–6
with the restriction to altitudes of 3,800 km or greater relaxed).

The most salient feature in panel c for each of Figures 3–6 in section 3 is that the correlation between ion
outflows and east-west magnetic field fluctuations ΔBEW is high for spacecraft frame frequencies 𝑓sc ≲ 0.7
Hz in every case. Only orbits in Group 2 (section 3.2) involve pole-to-equator traversals of the cusp region,
and as we discuss below in connection with Table 4, Doppler shifting of Group 2 spacecraft frame frequency
bands is one possible explanation for the different frequency characteristics of Group 2 orbits relative to the
three groups of orbits, for which FAST approaches the cusp region from the equator. For Groups 1 and 4
orbits the upper limit of frequencies corresponding to high correlations is even narrower, 𝑓sc ≲ 0.4 Hz.

On the other hand, the frequency characteristic of Group 3 orbits in Figure 5c are distinct from the frequency
characteristics of the other three groups: the overall distribution of r values for Group 3 orbits is overall
significantly shifted to higher r values, and is spread over an overall smaller range. Table 2 summarizes the
properties of the distribution of r values for each of the four groups of orbits. From Table 2 it is evident that
both the median and mean r values for Group 3 orbits are much higher than the median and mean r values
for any of the other three groups of orbits. In other words, for Group 3 orbits the correlation coefficient
between ⟨J||,up⟩ and PEW is high almost regardless of frequency band.

Regardless of the direction of approach or the distribution of r values, panel c for each of Figures 3–6 shows
that the correlation coefficient r varies primarily with the lower bound 𝑓bot (𝑦 axis) of a given frequency
band, while the dependence on the upper bound 𝑓top (x axis) is relatively much weaker. The dominating
role of 𝑓bot in the variation of the correlation coefficient arises due to the general shape of the PSD estimates
corresponding to each orbit (transparent black lines in panel b for each of Figures 3–6). Each PSD estimate
exhibits a logarithmic, and approximately monotonic, decrease with increasing frequency up to 𝑓sc ∼ 1 Hz.
Thus, the spectral power PEW obtained from integration of any frequency band with a lower bound 𝑓bot ≤ 1
Hz is primarily determined by 𝑓bot and largely invariant with respect to the upper bound 𝑓top.

To make the results shown in Figures 3–6 easily implementable for modelers, Table 3 provides best fit rela-
tionships of the form J||,i = J0,iP

𝛾

EW between upward ion flux mapped to 130-km altitude J||,i, spectral power
PEW, and power law index 𝛾 ≃ 0.7–1.2 for the spacecraft frame frequency band 0.18–1.46 Hz. We have cho-
sen this frequency band because it yields the “maximum average correlation coefficient” r̄max obtained as
follows.

Let ri(𝑓bot, 𝑓top) be the correlation coefficient for the ith orbit group, where i ∈ (0, 1, 2, 3) indicates one of the
four groups of orbits in Tables 1 and 3, and (𝑓bot, 𝑓top) denotes any of the 19,900 frequency bands represented
by the x and 𝑦 axes of panel c in Figures 3–6. Then the “maximum average correlation coefficient” r̄max =
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Table 3
Best Fit Relationships for the Frequency Band 0.18–1.46 Hz

J||,i = J0,iP
𝛾

EW ⟨F10.7⟩27
a

Group Section Time period Hemisphere (J0,i, 𝛾)b r 10−22J/m2

1 3.1 September 1998 Northern
(
107.001, 1.168

)
0.924 144–146

2 3.2 December 1996 Northern
(
107.730, 0.708

)
0.745 75–76

3 3.3 January 1999 Southern
(
107.412, 0.981

)
0.919 137–143

4 3.4 May 1998 Southern
(
107.598, 0.784

)
0.882 105–111

aJ0,i is the mapped upward ion flux (in cm−2 s−1) for nominal spectral power PEW = 1 nT2. PEW is the integral
of the ΔBEW PSD (in nT2/Hz) over 0.18–1.46 Hz. bThe angle brackets ⟨⟩27 denote a backward-looking average
over a 27-day window.

max(rA)= max( 1
4

∑
iri(𝑓bot, 𝑓top)) = 0.868 is obtained for the frequency band (𝑓bot = 0.18 Hz, 𝑓top =1.46 Hz).

This frequency band also yields the maximum if we instead calculate the maximum via the geometric mean
or the harmonic mean.

Figure 7a shows, for all 132 orbits used in this study, individually observed ion outflow fluxes (mapped to
130-km altitude) as a function of season. Groups 1 and 3 upward ion fluxes (red plus and blue x symbols),
which respectively occurred near fall equinox and summer solstice, are overall greater than Groups 2 and
4 upward ion fluxes (purple circle and orange triangle symbols), which both occurred near winter solstice.
This observation leads us to consider the dependence of upward ion fluxes on season.

Two causes of long-term variation in the properties of outflowing ions are season and solar cycle. On point
of season, Yau et al. (1985) found that the occurrence of O+ upflows over altitudes of 8,000 to 23,000 km is
favored by summer solstice, while they found no significant variation of the occurrence of H+ with season.
On point of solar cycle, Yau et al. (1988) found that the outflowing O+/H+ ratio increases by an order of
magnitude from solar minimum to solar maximum.

Group 1 orbits (23–26 September 1998) occurred near fall equinox during which 27-day-averaged F10.7
indices ⟨F10.7⟩27 = 144–146, the highest F10.7 range for all four orbit groups (rightmost column in
Table 3; F10.7 values were obtained from https://omniweb.gsfc.nasa.gov/form/dx1.html). Group 2 orbits
(30 December 1996 to 7 January 1997) occurred near local winter, during which ⟨F10.7⟩27 = 75–76 (i.e., near
solar minimum), the lowest range of ⟨F10.7⟩27 values for all four orbit groups. Based on the higher range of

Figure 7. (a) Scatterplots of observed upward ion fluxes for each of the four groups of orbits analyzed in section 3 and
indicated in Tables 1–4, as a function of season. (b) O+/H+ density ratios derived from TEAMS mass spectrometer
measurements for 114 of the 132 orbits shown in panel a (see text). In both panels a solid-line box plot is shown for
each orbit group to indicate the median as well as upper and lower quartiles Q3 and Q1. The top and bottom lines for
each box plot respectively indicate the values Q3 + 1.5IQR and Q1 − 1.5IQR, with IQR ≡ Q3 − Q1. A dashed-line
boxplot provides the same statistics for geomagnetically quiet periods (Kp ≤ 2.5).
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⟨F10.7⟩27 values observed during Group 1 orbits, we expect that Group 1 outflows are relatively much richer
in O+ than Group 2 outflows.

Group 3 orbits (8–15 January 1999) occurred near summer solstice with ⟨F10.7⟩27 = 137–143, only slightly
lower than the Orbit Group 1 ⟨F10.7⟩27 range. Group 4 orbits (24 May to 5 June 1998) occurred near winter
solstice with ⟨F10.7⟩27 = 105–111, intermediate to the ⟨F10.7⟩27 ranges for the other three orbit groups.

Based on these differences in season and solar cycle for the four groups of orbits, we expect that Groups 1 and
3 outflows are richest in O+, with Group 4 outflows somewhat poorer and Group 2 outflows poorest in O+.
To directly demonstrate the existence of these differences, Figure 7b shows the O+/H+ density ratio derived
from analysis of ion composition measurements made by the Time-of-Flight Energy, Angle, Mass Spectro-
graph (TEAMS) instrument (Klumpar et al., 2001) aboard FAST. As with upward ion fluxes in panel a, each
data point represents an individual O+/H+ density ratio estimate for TEAMS observations made during 114
of the 132 orbits shown in Figure 7a. (TEAMS measurements were unavailable for the other 18 passes.) The
density moment is calculated for each species distribution function measured by TEAMS by integrating over
all angles, and from 4 eV up to the IESA energy cutoff Etop given by the outflow identification algorithm
in section 2.1. (For example, Etop is indicated by the pink line in Figure 1d.) Each TEAMS measurement is
required to meet the same criteria from section 2 that we have applied to FAST IESA and magnetometer
data, and we include only those TEAMS measurements that correspond to time periods when ion outflow
is positively identified in IESA measurements.

As mentioned in section 3, moderate to high levels of geomagnetic activity were also observed during Groups
1, 3, and 4 orbits. To exclude the effects of geomagnetic activity, the boxplots composed of dashed lines in
Figures 7a and 7b indicate outflow and O+/H+ statistics for Kp ≤ 2.5. (Kp values were obtained from the
publicly available OMNI database at https://omniweb.gsfc.nasa.gov/form/dx1.html.)

Both sets of boxplots in Figure 7b indicate that the upflows observed near or during summer solstice are
relatively much richer in O+ than those during winter, as expected. On the other hand, comparison of
the dashed-line boxplots reveals that the overall distributions of “geomagnetic quiescence” outflow fluxes
are mostly similar and apparently somewhat independent of season. This fact highlights that geomagnetic
activity and seasonal effects may be conflated in the analysis presented in Figures 3–6.

Removing outflowing ion fluxes observed during Kp > 2.5 unfortunately removes more than 50% of all
observations in Groups 1 and 3 orbits. We therefore have insufficient statistics to perform a separate analysis
based only on observations during geomagnetic quiescence, and in this study we are not able to untangle
the effects geomagnetic activity and seasonal variations.

TEAMS measurements are currently undergoing additional calibration and dead-time correction by a study
coauthor (E. J. Lund). At present these measurements likely underestimate the actual densities of each
species and are not suitable for the correlation analysis that we have performed in section 3. But the overall
trends and order-of-magnitude differences are sufficient to underscore that the composition of ionospheric
outflow likely play a role in seasonal variations of the relationship between ionospheric outflow and mag-
netic field perturbations that we have demonstrated. Thus Figure 7 demonstrates that ion composition
should not be neglected in any comprehensive model of wave-driven energetic ion outflows. Although
outside the scope of this study, we reserve extended treatment of ion composition as a possible focus of
future work.

On the question of Doppler shifting raised in section 2 and at the beginning of this section, other studies
based on FAST and Freja observations (Chaston et al., 2006; Stasiewicz et al., 2000) have explicitly demon-
strated that low-frequency waves with short perpendicular wavelengths (of order ∼0.01–10 km) on the
dayside are observed by these satellites as broadband waves in the spacecraft frame of reference via Doppler
shift.

While we emphasize that our approach does not allow us to determine the properties of the field perturba-
tions we have analyzed in this study, we show here that the two following assumptions

1. magnetic field perturbations observed by FAST over 0–4 Hz in the spacecraft frame of reference are either
spatial structures or wave structures with frequencies near zero (i.e., 𝜔(k) ≃ 0);

2. the variation of magnetic field perturbations is primarily perpendicular to the background magnetic field
(i.e., k⟂ ≫ k||);
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Table 4
Estimated Transverse Spatial Scales L⟂ Corresponding to Ion Outflowa

𝑓bot rangec |vF,⟂ − V | L⟂
d

Group Section Time period Hemisphere r90%
b (Hz) (km/s) (km)

1 3.1 September 1998 Northern 0.91 0.04–0.26 4.5 17–110
2 3.2 December 1996 Northern 0.74 0.15–0.64 6.5 10–42
3 3.3 January 1999 Southern 0.91 0.13–0.28 4.5 16–35
4 3.4 May 1998 Southern 0.83 0.09–0.34 4.5 13–49
aVia equation 3, which assumes observed B field perturbations have an intrinsic frequency near zero. bFor each orbit
group, the lower bound of the highest 10% of all calculated r values. cApproximate range of “start frequencies” 𝑓bot for
which correlation coefficient r ≥ r90%. dPerpendicular scale size near FAST apogee at ∼4,100-km altitude.

appear consistent with the results shown in panel c of Figures 3–6.

With these assumptions the observed spacecraft frame frequencies arise via Doppler shifting according to

𝜔sc(k) = 2𝜋𝑓sc(k) = |k ·
(
vF − V

) | ≈ |k⟂
(

vF,⟂ − V
) |, (2)

where vF,⟂ is the perpendicular speed of FAST and V is the poleward plasma convection speed. Thus, the
spacecraft frame frequency 𝑓sc corresponds to a perpendicular spatial scale

L⟂ =
|vF,⟂ − V |

𝑓sc
. (3)

Typical convection speeds in the dayside cusp region at ionospheric altitudes (i.e., hundreds of kilometers)
range from hundreds of m∕s up to 2–3 km∕s during active conditions (Moen et al., 1996; Skjæveland et al.,
2011, 2014), and typical speeds of FAST perpendicular to the background magnetic field near apogee are
|vF,⟂| =5.2–5.6 km∕s.

We assume V =1 km∕s and vF,⟂ = ±5.5 km∕s, where the positive sign corresponds to poleward orbits (i.e.,
Groups 1, 3, and 4) and the negative sign corresponds to equatorward orbits (i.e., Group 2). We then apply
equation 3 to the range of “start frequencies” 𝑓bot, indicated on the 𝑦 axis of panel c for Figures 3–6, for
which r ≥ r90%. (The subscript “0.9” denotes the 0.9 quantile of all calculated r values for a particular orbit
group. For example, 10% of all r values in Figure 3c are 0.91 or greater; thus r90% = 0.91 in Table 4.)

The rightmost column of Table 4 shows the resulting range of perpendicular spatial scales near FAST apogee
for each group of orbits. If the above-stated assumptions are valid, east-west field perturbations with perpen-
dicular spatial scales of order tens of kilometers are associated with ion outflow. Indeed, it has been shown
(e.g., Stasiewicz et al., 2000 and section 2.2 as well as Figure 3 of Chaston et al., 2007) that much of the tem-
poral variation observed in the FAST and Freja spacecraft frame of references at these altitudes is due to
Doppler shifting of dispersive Alfvén wave structures.

As a consistency check, applying equation (2) to the range of scale sizes L⟂ = 10–42 km corresponding to
Group 2 in Table 4 shows that if FAST had been moving poleward instead of equatorward in the presence
of plasma convecting poleward at 1 km/s, these scale sizes would have been observed over the spacecraft
frequency range 𝑓bot = 0.11–0.44 Hz. Though not proof, range is more consistent with the 𝑓bot ranges for
Groups 1, 3, and 4 in Table 4, and suggests that the above assumptions are at least plausible.

These perpendicular scales are in between large scales (of order hundreds or thousands of kilometers, cor-
responding to quasi-static field-aligned currents and the electrojets) and kinetic scales (of order 1 m to a few
km, corresponding to local ion gyroradii and the electron inertial length) within and in the vicinity of the
dayside cusp. Thus, instead of corresponding to direct driving of energetic ion outflow, these scales may be
related to a number of processes that are associated with ion outflow.

Both simulations (Chaston et al., 2004; Génot et al., 2004; Rankin et al., 2005) and satellite observations
(Chaston et al., 2006) have shown that the interaction of shear Alfvén waves with a preexisting ionospheric
density irregularity produces field-aligned broadband electron precipitation, transverse ion acceleration,
ion heating, and plasma depletion (Chaston et al., 2006, Figure 6). This interaction also leads to phase
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mixing and the production of field fluctuations over perpendicular scales ranging from the scale size
of the density irregularity down to and below the electron inertial length, typically of order km in the
magnetosphere-ionosphere transition region.

As observed by Lotko and Zhang (2018), evidence that these perpendicular spatial scales are associated with
Alfvén waves has been reported by Ishii et al. (1992). Using DE-2 measurements at 300-km altitude they
showed that field perturbations over DE-2 spacecraft frame frequencies of ≳0.25 Hz were more consistent
with an Alfvénic rather than a quasi-static interpretation; treating this frequency range as resulting from
Doppler-shifted structures, they reported perpendicular spatial scales of ≲30 km at 300-km altitude (≲60
km near FAST apogee).

As an additional plausibility check, we have determined from the Hatch et al. (2017) inertial Alfvén wave
database that inertial Alfvén waves are observed during 83% (109 out of 132 total) of the cusp region passes.
This percentage is presented only for the purpose of indicating that Alfvén waves are in fact often present
during observed upflows, with a median of 26 Alfvénic current filaments identified per orbit for all 132 orbits.

Here we have favored interpretation of observed dayside field perturbations at FAST altitudes as
Doppler-shifted Alfvénic structures. We should emphasize that this interpretation, while plausible, is not
the only possibility. At mHz- to Hz-range frequencies, there exist alternative interpretations based on
ion-cyclotron waves, ion-acoustic waves, and field gradients or energy density inhomogeneities (André et
al., 1990, 1998; Bouhram et al., 2002; Chernyshov et al., 2017; Chugunin et al., 2018; Kintner et al., 2000;
Seyler & Wahlund, 1996; Wahlund et al., 1998). Our methodology does not allow for positive identification
or exclusion of any of these alternative processes.

In conclusion, in this study we have validated and applied a new methodology for examining the relationship
between ion outflows and field fluctuations in the dayside cusp region in both hemispheres and as a function
of season. We have presented an algorithm that achieves automated identification of ionospheric-origin
ion outflows, and a spectral method for analysis of the relationship between these outflows and east-west
magnetic field perturbations over nearly arbitrary frequency bands. Using four groups of orbits, two from
each hemisphere, we have found that field perturbations over spacecraft frame frequencies of less than 0.7
Hz show the highest correlation with cusp region ion outflows. Best fit relationships between these field
perturbations and ion outflows yield power law indices between 0.7 and 1.2, where the lowest power law
values are associated with winter/late fall and the highest values associated with fall equinox/summer.

Previous studies indicate that magnetic field perturbations over these frequency ranges are associated with
a variety of wave modes. We have not attempted to positively determine or exclude which wave modes are in
operation during the reported observations, although we have outlined the plausibility of an interpretation
based on Alfvén waves. Regardless of wave mode we have shown that if the observed perturbations are
related to purely Doppler-shifted structures, they correspond to perpendicular scale sizes of several to tens
of kilometers.

We have also demonstrated that ion composition likely plays a significant role in the relationship between
ionospheric-origin energetic outflows and field fluctuations. This study underscores the need for much
larger ion outflow data sets made up of observations for which the effects of ram ions and Doppler shifting
due to spacecraft motion are consistently accounted for or otherwise mitigated.
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