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Mathematical Research Letters 5, 541–549 (1998)

A VERSION OF A THEOREM OF DAHLBERG FOR THE
SUBELLIPTIC DIRICHLET PROBLEM

Luca Capogna, Nicola Garofalo, and Duy-Minh Nhieu

1. Introduction

In 1977 B. Dahlberg [7] proved his celebrated theorem stating that for a
bounded Lipschitz domain in R

n harmonic and surface measure are mutually
absolutely continuous and, furthermore, the Radon-Nikodym derivative of har-
monic measure with respect to surface measure satisfies a reverse Hölder inequal-
ity. The aim of this note is to announce a similar theorem for sub-Laplacians
and provide a complete solution for the Dirichlet problem for Lp boundary data
for a large class of domains. Such class, however, does not coincide with that
in Dahlberg’s theorem. This important aspect separates in an essential way
our results from their predecessors for the Laplace equation and is connected
with the existence of characteristic points on the boundary of the domain. This
point will be clarified by the subsequent discussion. Our main results are The-
orems 1.2, 1.4, 1.5 and 1.6. The operators that we consider are sub-Laplacians
L =

∑m
j=1 X∗

j Xj , where X = {X1, ..., Xm} is a system of C∞ vector fields
satisfying the finite rank condition on the Lie algebra

rankLie[X1, ..., Xm](x) = n

at every x ∈ R
n. Denote by d(x, y) the Carnot-Carathéodory distance associated

to X and let Bd(x, r) = {y ∈ R
n | d(x, y) < r}. The fundamental properties

of the metric balls were established by Nagel, Stein and Wainger in [22]. Given
an open set Ω ⊂ R

n, a distributional solution of Lu = 0 in Ω is called L-
harmonic. Hörmander’s hypoellipticity theorem [14] guarantees that every L-
harmonic function is in C∞(Ω), hence it is a classical solution of Lu = 0. When Ω
is also bounded, the Dirichlet problem consists in finding a L-harmonic function
u in Ω which takes some prescribed values φ on ∂Ω. An important consequence
of the pioneering work of Bony [1] is that for every φ ∈ C(∂Ω) there exists a
unique u = HΩ

φ which solves the Dirichlet problem in a generalized sense. This
allows to define the L-harmonic measure dωx as the unique probability measure
on ∂Ω such that

HΩ
φ (x) =

∫
∂Ω

φ(Q)dωx(Q) .(1.1)
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The representation (1.1) continues to hold if φ ∈ L1(∂Ω, dωxo), for some
xo ∈ Ω. If Ω satisfies in addition the analogue of the uniform outer corkscrew
condition introduced in [17], then by the results in [5], [9] the generalized solution
HΩ

φ in (1.1) belongs to a Hölder class Γα
d (Ω), if the boundary datum φ is in

Γα
d (∂Ω) (Γα

d is the Hölder class with respect to d(x, y)). Suppose now that Ω
be smooth and denote by Σ = {x ∈ ∂Ω | Xj(x) ∈ Tx(∂Ω), j = 1, ..., m} the
characteristic set of the system X. The classical results of Kohn and Nirenberg
[19] guarantee that away from Σ the solution to the Dirichlet problem, with φ ∈
C∞(Ω), is smooth up to the boundary. D. Jerison [15] first studied the Dirichlet
problem at characteristic points for the sub-Laplacian in the Heisenberg group
H

n, and for the closely related Baouendi-Grushin operator. The results in [15],
[16] show that regardless of the smoothness of the domain and of the boundary
data one cannot expect in general more than Γα

d regularity in the neighborhood
of a characteristic point. This is a new phenomenon which is reminiscent of
boundary value problems for elliptic operators in non-smooth domains. Since the
smoothness of the ground domain does not suffice to guarantee higher regularity
of the solution up to the boundary, one has to turn the attention to geometric
properties. In this respect a remarkable negative phenomenon is the lack of
Lipschitz domains. A striking example due to D. Jerison shows that such class
is practically empty, so one must abandon the idea of a Lipschitz domain too,
see [4] for a detailed discussion.

We thus come to one of the central question for the results in this note: What
are the domains that in the Dirichlet problem for sub-Laplacians replace the
class of Lipschitz domains? The answer is contained in the following

Definition 1.1. Given a system X = {X1, ..., Xm} we say that a smooth, con-
nected, bounded open set Ω ⊂ R

n is admissible for the Dirichlet problem (ADPX)
for the sub-Laplacian associated to X, if Ω satisfies the uniform outer L-ball con-
dition and is X-NTA.

A bounded open set Ω ⊂ R
n is said to satisfy the uniform outer L-ball condi-

tion if one can find Ro > 0 such that for every Q ∈ ∂Ω and for every 0 < r < Ro

there exists a L-ball B(Qo, r) for which

Q ∈ ∂B(Qo, r), B(Qo, r) ∩ Ω = ∅(1.2)

holds. Here, the sets B(x, r) are the interior of suitably rescaled level sets of
the positive fundamental solution Γ(x, y) of the sub-Laplacian, see [6], [3]. We
note that for groups of Heisenberg type [18] the L-balls coincide with the balls
in the nonisotropic gauge. The class of X-NTA domains is a generalization of
that introduced in [17].

The question of producing examples of ADPX domains has basic relevance,
of course. It turns out that this task requires a very delicate analysis and con-
siderable work. We remark that every C1,1 domain is ADPX with respect to the
system X = { ∂

∂x1
, ..., ∂

∂xn
}, whose Carnot-Carathéodory metric is the standard

Euclidean distance d(x, y) = |x − y|. In this context, another important class
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of examples is provided by convex domains. They clearly satisfy the outer ball
condition with respect to | · | and moreover every convex domain is Lipschitz,
hence NTA according to [17]. It is interesting that the notion of Euclidean con-
vexity (at the level of the Lie algebra) also plays a role in constructing examples
of ADPX domains in the subelliptic setting. For instance we prove that in any
group of Heisenberg type G the gauge balls are ADPX domains (these sets are
convex at the level of the Lie algebra). As a consequence of this result and of
our general Theorems 1.3, 1.4, 1.5 and 1.6 we obtain the following

Theorem 1.2. Let G be a group of Heisenberg type and denote by B the gauge
unit ball centered at the group identity e. Let P (Q) = P (e, Q) be the Poisson
kernel (relative to B and to L) defined in (1.6). For every p > 1 there exist
constants C = C(G, p) > 0, Ro = Ro(G) > 0 such that for every Qo ∈ ∂B and
0 < r < Ro one has

(
1

σ(∆(Qo, r))

∫
∆(Qo,r)

P (Q)pdσ

) 1
p

≤ C
1

σ(∆(Qo, r))

∫
∆(Qo,r)

P (Q)dσ.

(1.3)

As a consequence of (1.3) and (1.9), L-harmonic measure dωe and surface mea-
sure dσ are mutually absolutely continuous. Moreover, Lp(∂Ω, dσ) ⊂ L1(∂Ω,
dωe). Finally, for every φ ∈ Lp(∂Ω, dσ) one has with HΩ

φ as in (1.1)

‖Nα(HΩ
φ )‖Lp(∂Ω,dσ) ≤ C‖φ‖Lp(∂Ω,dσ),

and HΩ
φ (Q) converges nontangentially to φ(Q) for a.e. Q ∈ ∂Ω with respect to

dσ.

Here, Nα(HΩ
φ ) represents the nontangential maximal function of HΩ

φ defined
in (1.14) below. We emphasize that, due to the presence of characteristic points,
surface measure dσ can be quite singular. The fact that we can solve the Dirich-
let problem with respect to dσ represents a sharp aspect. Theorem 1.2 pro-
vides a complete solution to the Dirichlet problem for the gauge balls in groups
of Heisenberg type. Such groups were introduced by Kaplan [18] as a direct
generalization of the Heisenberg group H

n in connection with hypoellipticity
questions. Groups of Heisenberg type are important since they include the
nilpotent component in the Iwasawa decomposition of simple groups of rank
one. Before we continue with the description of the other results, we pause to
return to D. Jerison’s negative example for higher boundary regularity in the
Heisenberg group H

n [15]. The latter is given by a domain whose complement
near the characteristic point e = (0, 0, 0) is the region inside the paraboloid
M = {(x, y, t) ∈ H

n | t = −C(|x|2 + |y|2)}, with C > 0. A simple calculation
shows that such domain fails to fulfill the outer L-ball condition in (1.2). This
should not be surprising since with the glasses of the sub-Riemannian geometry
of H

n a paraboloid looks like a standard Euclidean cone. In fact, one should
think of Jerison’s construction as the analogue for the Heisenberg group of the
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classical counterexamples to the boundary boundedness of the gradient of the
Green function for nonconvex Euclidean cones.

Concerning the uniform outer L-ball condition in Definition 1.1 we mention
that it is inspired to a beautiful idea in a classical paper of Poincaré [23]. In 1991
one of us, N. G., conjectured that such condition should imply higher regularity
of the solution at characteristic points. We prove that this conjecture is true:
Let Ω ⊂ R

n be a C∞ connected open set satisfying the uniform outer L−ball
condition. There exists a constant C = C(X, Ω) > 0 such that for each x, y ∈ Ω
with x �= y one has

(i) G(x, y) ≤ C d(y, ∂Ω)
d(x, y)

|Bd(x, d(x, y))| ;

(ii) |XG(x, y)| ≤ C
d(x, y)

|Bd(x, d(x, y))| .
(1.4)

We remark explicitly that (ii) implies in particular that if for a fixed xo ∈ Ω
we let g(y) = G(xo, y), then the horizontal gradient Xg = (X1g, ..., Xmg) is in
L∞ in a sufficiently small neighborhood of ∂Ω. Since we are interested in local
questions we can without loss of generality suppose that Ω = {x ∈ R

n | ρ(x) < 0}
for some ρ ∈ C∞(Rn) satisfying |Dρ(x)| ≥ α−1

Ω > 0, for every x ∈ K, for some
relatively compact neighborhood K of ∂Ω. The outward pointing unit normal
to ∂Ω is η = Dρ

|Dρ| . We let w(x) = |Xρ(x)|, and notice that w(x) = 0 for every
x ∈ Σ, whereas w(x) > 0 for x ∈ ∂Ω\Σ. Surface measure on ∂Ω will be indicated
by σ = Hn−1�∂Ω (here, Hn−1 denotes the usual (n − 1)-dimensional Hausdorff
measure). We define a new measure on ∂Ω by letting

dµ = wdσ.(1.5)

By [19] one has for the Green function G(x, y) for L and Ω: For every fixed
x ∈ Ω and Qo ∈ ∂Ω \ Σ, there exists a sufficiently small neighborhood V of Qo,
such that y → G(x, y) is C∞ in V ∩Ω. This being said, we define two functions
P and K on Ω × (∂Ω \ Σ)

(1.6) P (x, Q) =


− m∑

j=1

XjG(x, ·) < Xj , η >


 (Q),

K(x, Q) = w(Q)−1P (x, Q).

For every x ∈ Ω we extend with zero the definition of P (x, ·) and K(x, ·) to
all of ∂Ω. Thanks to a result of Franchi and Wheeden [13] one has σ(Σ) = 0, so
that the extended functions coincide σ-a.e. with the original ones. The estimates
lead to the following basic representation formula: Let Ω be a C∞ connected,
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open set possessing the uniform outer L-ball condition. For every φ ∈ C(∂Ω)
one has

(1.7) HΩ
φ (x) =

∫
∂Ω

φ(Q) K(x, Q) dµ =
∫

∂Ω

φ(Q) P (x, Q) dσ, x ∈ Ω.

In particular, the L-harmonic measure dωx is absolutely continuous with re-
spect to dµ and with respect to dσ. Moreover

dωx

dµ
(Q) = K(x, Q),

dωx

dσ
(Q) = P (x, Q).(1.8)

We mention that a similar representation formula has been recently indepen-
dently obtained in an interesting paper by Lanconelli and Uguzzoni [20], but
only for the special setting of the Heisenberg group. An immediate consequence
of (1.4), (1.7) is the following a priori estimates in Lp in the Dirichlet problem
when the boundary datum is a continuous function. Let φ ∈ C(∂Ω), and denote
by HΩ

φ the Perron-Wiener-Brelot solution to the Dirichlet problem in (1.1): For
each 1 ≤ p < ∞ there exists C = C(p, X, Ω) such that

||HΩ
φ ||Lp(Ω) ≤ C||φ||Lp(∂Ω).

Solvability with data in Lebesgue classes on the boundary of Ω requires, how-
ever, a much deeper analysis. The first observation is that the outer L-ball
condition alone does not guarantee the development of a rich potential theory.
For instance, it may not be possible to find good nontangential regions of ap-
proach to the boundary from within the domain. This is the point at which
the notion of nontangentially accessible (NTA) domain comes into play. Being
purely metrical it is better suited, than that of a Lipschitz (or smooth) domain,
to the study of boundary value problems for sub-Laplacians. The drawback is
that most of the central results in the theory become much harder to prove in
this setting, since the geometry is considerably more complicated than the Eu-
clidean one, or else they are plainly false. Furthermore, the important task of
constructing examples offers serious difficulties due to the presence of charac-
teristic points on the boundary of the domain. These obstacles were overcome
in [4], where two of us studied the boundary behavior of L-harmonic functions
in X-NTA domains, i.e., domains which are NTA with respect to the Carnot-
Carathéodory metric associated to a system X. Two central results from [4]
which play a fundamental role in the proof of Theorems 1.2, 1.4 and 1.5 are the
doubling condition for L-harmonic measure and the comparison theorem. The
former states that, given a X-NTA domain Ω, there exist C > 0, Ro > 0 and
a > 1 such that for any Q ∈ ∂Ω and 0 < r < Ro one has

ωx(∆(Q, 2r)) ≤ C ωx(∆(Q, r))(1.9)

for any x ∈ Ω\Bd(Q, ar). Here, we have let ∆(Q, r) = Bd(Q, r)∩∂Ω. The second
result from [4] that we need is a comparison theorem which roughly speaking
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states that if two nonnegative L-harmonic functions vanish continuously on a
surface ball ∆(Q, r) of a given X-NTA domain, they do so at an equivalent rate.

We now return to the measure dµ defined in (1.4). A key fact (established
in [10]) is that dµ is equivalent to the notion of relative X-perimeter introduced
in [2]. This fact essentially says that in a Carnot group with homogeneous
dimension Q (see [12]), the measure dµ is like the restriction to ∂Ω of the (Q −
1)-dimensional Hausdorff measure constructed with the Carnot-Carathéodory
distance. Thereby, dµ should behave much better than dσ. This observation is
justified by the following theorem which plays an important role in our results.

Theorem 1.3. Let G be a Carnot group of arbitrary step with homogeneous
dimension Q , and consider a smooth domain Ω = {p ∈ G | ρ(p) < 0}, where
ρ ∈ C∞(G) is a defining function for Ω. There exist C, Ro > 0 depending on G
and Ω such that for every Qo ∈ ∂Ω and 0 < r ≤ Ro one has

(i)

(
sup

Q∈∆(Qo,r)

|Xρ|(Q)

)
σ(∆(Qo, r)) ≤ CrQ−1.

(ii) µ(∆(Qo, r)) ≤ CrQ−1 .

In the statement of Theorem 1.3 we have, with abuse of notation, continued
to denote by dσ the composition of surface measure on the Lie algebra of G
with the exponential map based at Qo. Although we cannot go into a detailed
discussion of (i) and (ii), it should be clear that (ii) expresses the “good scaling
properties” of dµ. On the other hand, (i) says that at the characteristic points
dσ can be quite singular. Theorem 1.3 extends a result that in the special case of
the Heisenberg group H

n was established by C. Romero [24], and subsequently
and independently by M. Mekias [21], in their respective Ph. D. Dissertations.

We are now ready to state our main results.

Theorem 1.4. Let Ω ⊂ R
n be a ADPX domain. Suppose that there exist

M, Ro > 0 such that for every Q ∈ ∂Ω and 0 < r < Ro

µ(∆(Q, r)) ≤ M
|Bd(Q, r)|

r
.(1.10)

For every p > 1 and any fixed xo ∈ Ω one can find positive constants C, R1,
depending on p, M, Ro, xo, and on the ADPX parameters, such that for Qo ∈ ∂Ω
and 0 < r < R1 one has

(1.11)

(
1

µ(∆(Qo, r))

∫
∆(Qo,r)

K(xo, Q)pdµ

) 1
p

≤ C
1

µ(∆(Qo, r))

∫
∆(Qo,r)

K(xo, Q)dµ.

As a consequence of (1.8), (1.10) and (1.11) we infer that dµ is also doubling.
Furthermore, the measures dωx and dµ are mutually absolutely continuous.
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If instead of considering the measure dµ we work with surface measure dσ,
then by imposing a stronger restriction on the nature of characteristic points we
can prove a reverse Hölder inequality for the Poisson kernel P (x, Q) defined in
(1.6).

Theorem 1.5. Let Ω ⊂ R
n be a ADPX domain. Suppose there exist M, Ro > 0

such that for every Qo ∈ ∂Ω and 0 < r < Ro(
max

Q∈∆(Qo,r)
w(Q)

)
σ(∆(Qo, r)) ≤ M

|B(Qo, r)|
r

.(1.12)

We fix xo ∈ Ω. For every p > 1 there exist positive constants C, R1, depending
on p, M, Ro, xo, and on the ADPX parameters, such that for every Qo ∈ ∂Ω and
0 < r < R1 one has

(1.13)

(
1

σ(∆(Qo, r))

∫
∆(Qo,r)

P (xo, Q)pdσ

) 1
p

≤ C
1

σ(∆(Qo, r))

∫
∆(Qo,r)

P (xo, Q)dσ.

Moreover, thanks to (1.8), (1.12) and (1.13), the measure dσ is doubling, and
dωx, dµ and dσ are mutually absolutely continuous.

Theorems 1.4 and 1.5 allow to solve the Dirichlet problem for boundary data
in Lp. This consequence is not straightforward, however, but as in the classical
case rests on the development of a Fatou theory. This was done in [4] and the
results that we describe below rely in an essential way on a combination of the
Fatou theory and of Theorems 1.4, 1.5. We need to introduce a definition. For
any Q ∈ ∂Ω and α > 0 a nontangential region at Q is given by

Γα(Q) = {x ∈ Ω | d(x, Q) ≤ (1 + α)d(x, ∂Ω)}.
Given a function u ∈ C(Ω), the α-nontangential maximal function of u at Q

is defined by

Nα(u)(Q) = sup
x∈Γα(Q)

|u(x)|.(1.14)

Under the assumptions of Theorems 1.4, 1.5 one obtains the important con-
clusion that the spaces Lp(∂Ω, dµ), Lp(∂Ω, dσ) are continuously embedded in
L1(∂Ω, dωxo), xo ∈ Ω. Therefore, if φ is in either of these spaces we can write HΩ

φ

as in (1.1). From the results in [4] we know that HΩ
φ converges non-tangentially

to φ for a.e. point Q ∈ ∂Ω with respect to dωxo . Combining these facts with
Theorems 1.4, 1.5, we obtain the solvability of the Dirichlet problem for ADPX

domains when the boundary datum is in Lp of the boundary, for 1 < p < ∞,
with respect to the measures dµ or dσ respectively.

Theorem 1.6. Let Ω ⊂ R
n be a ADPX domain.
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(i) Suppose that dµ satisfy (1.10). For every p > 1 there exists a constant
C > 0 depending on p and on Ω such that if φ ∈ Lp(∂Ω, dµ), then

‖Nα(HΩ
φ )‖Lp(∂Ω,dµ) ≤ C‖φ‖Lp(∂Ω,dµ).

Furthermore, HΩ
φ (Q) converges nontangentially to φ(Q) for a.e. Q ∈ ∂Ω

with respect to dµ.
(ii) Assume that dσ satisfy (1.12). For every p > 1 one can find a C > 0

depending on p and on Ω for which one has for φ ∈ Lp(∂Ω, dσ)

‖Nα(HΩ
φ )‖Lp(∂Ω,dσ) ≤ C‖φ‖Lp(∂Ω,dσ).

Moreover, HΩ
φ (Q) converges nontangentially to φ(Q) for a.e. Q ∈ ∂Ω

with respect to dσ.

Theorems 1.4 and 1.5 constitute the analogue in the subelliptic Dirichlet
problem of Dahlberg’s theorem cited in the opening. In the classical setting
the solvability of the Dirichlet problem in the range 1 < p < ∞ was obtained by
Dahlberg [8] for C1 domains using his results in [7], and also independently by
Fabes, Jodeit and Rivière [11] by the method of layer potentials. As witnessed
by Theorem 1.3 the hypothesis (1.10), (1.12) are natural requirements. They
are fulfilled by any smooth domain in every Carnot group.

Acknowledgements

We thank David Jerison for stimulating conversations through the years. We
also thank Qing Han and Mei-Chi Shaw for pointing to our attention the rele-
vance of Euclidean convexity in the subelliptic Dirichlet problem.

References
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Ital. B (7) 2 (1988), 667–681.

6. G. Citti, N. Garofalo, and E. Lanconelli, Harnack’s inequality for sum of squares of vector
fields plus a potential, Amer. J. Math. 115 (1993), 699–734.

7. B. E. J. Dahlberg, Estimates of harmonic measure, Arch. Rat. Mech. An. 65 (1977),
272–288.

8. , On the Poisson integral for Lipschitz and C1-domains, Studia Math. 66 (1979),
13–24.

9. D. Danielli, Regularity at the boundary for solutions of nonlinear subelliptic equations,
Indiana J. Math. 44 (1995), 269–286.



SUBELLIPTIC DIRICHLET PROBLEM 549

10. D. Danielli, N. Garofalo, and D. M. Nhieu, Trace inequalities for Carnot-Carathéodory
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