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REGULARITY OF NON-CHARACTERISTIC MINIMAL GRAPHS IN THE

HEISENBERG GROUP H
1

LUCA CAPOGNA, GIOVANNA CITTI, AND MARIA MANFREDINI

Abstract. Minimal surfaces in the sub-Riemannian Heisenberg group can be constructed by means of
a Riemannian approximation scheme, as limit of Riemannian minimal surfaces. We study the regularity
of Lipschitz, non-characteristic minimal surfaces which arise as such limits. Our main results are a-priori
estimates on the solutions of the approximating Riemannian PDE and the ensuing C∞ regularity of the
sub-Riemannian minimal surface along its Legendrian foliation.

1. Introduction

The first Heisenberg group H
1 is a Lie group with a 3-dimensional Lie algebra h = V 1 ⊕ V 2 such that

dim(V 1) = 2, dim(V 2) = 1, [V 1, V 1] = V 2 and [h, V 2] = 0. Let S,X ,Y ∈ h be any basis such that
[S,X ] = Y ∈ V 2. By assigning a left-invariant Riemannian metric g0 on the horizontal sub-bundle HH

1

given by the V 1 layer, we obtain a sub-Riemannian space (H1, g0). We choose S,X such that they are
orthonormal with respect to g0. The corresponding control metric d0 (the Carnot-Caratheodory metric [32])
is easily shown to be well defined. We extend g0 to a (left-invariant) Riemannian metric g1 on the full tangent
bundle of h requiring that V 2 and V 1 are orthogonal in this extension. The dilated metrics gε, ε > 0 are
defined so that S,X , εY are orthonormal. We define dε to be the corresponding distance function. We define
polarized coordinates (x1, x2, x3) in H

1 by identifying the triplet with the point exp(x3S) exp(x1X + x2Y).
The Baker-Campbell-Hausdorff formula yields S = ∂3, X = ∂1 + x3∂2 and Y = ∂2.

If M ⊂ H
1 is a C1 surface, then p ∈ M is called characteristic if both S,X are tangent to M at p. An

intrinsic graph (see [24, 25]) is a (non-characteristic) graph of the form

(1.1) M = {x3 = u(x1, x2)| (x1, x2) ∈ Ω ⊂ R
2},

where Ω ⊂ R
2 is an open set. An analogue of the classical implicit function theorem [25, 14, 1] shows that

any surface {f = 0} with Sf,Xf ∈ C(H1) can be represented as an intrisic graph, in a neighborhood of any
of its non-characteristic points.

The flow associated to the line bundle of tangent directions which are also horizontal foliate the com-
plement of the characteristic locus of the surface. This is called Legendrian foliation in the literature.
Note that the horizontal tangent bundle of an intrisic graph (1.1) is spanned by the single vector field
T = XuS + X|u((x1,x2),x1,x2). We note that the projection of this vector field on TΩ yields the vector field
in Ω,

X1,u = ∂1 + u∂2.

Key words and phrases. minimal surfaces, sub-Riemannian geometry, viscosity solutions
The authors are partially funded by NSF Career grant DMS-0124318 (LC) and by INDAM (GC).
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2 LUCA CAPOGNA, GIOVANNA CITTI, AND MARIA MANFREDINI

Minimal surfaces. Several equivalent notions of horizontal mean curvature H0 for a C2 surface M ⊂ H
1

(outside characteristic points) have been given in the literature. To quote a few: H0 can be defined in terms
of the first variation of the area functional [20, 29, 9, 36, 40, 31, 7], as horizontal divergence of the horizontal
unit normal or as limit of the mean curvatures Hε in the Riemannian metrics gε as ε → 0. It is also well
known (see for example [9, 29, 18]) that H0 coincides with the curvature of the projection of the Legendrian
leaves on the Horizontal plane.

A C2 non characteristic surface M ⊂ H
1 is called minimal if it satisfies H0 = 0 identically. In particular

for a C2 intrinsic graph, a direct computation yields that the PDE can be written in terms of the vector
X1,u as follows

(1.2) H0 = X1,u

(
X1,uu√

1 + |X1,uu|2

)
= 0.

A deep result of Ambrosio, Serra-Cassano and Vittone [1] shows that such PDE continues to hold below the
C2 threshold in a suitably weak sense.

Generalized solutions and Riemannian approximants. Because the horizontal mean curvature arises
as first variation of the sub-Riemannian perimeter, minimal surfaces are critical points of the perimeter. As
such these objects can be interpreted in weak sense, far below the threshold of C2 smoothness (see [1], [26],
[33],[34],[9],[11],[35]). As an example, starting from the family of shears x2 − x1x3 + g(x3) (see [34]) one can
obtain the intrinsic graph x3 = u(x1, x2) = x2

x1−sgn (x2)
defined in Ω = {(x1, x2) ∈ R

2 : x1 > 1} which is

minimal in the sense that it is foliated by horizontal lifts of segments, it is locally Lipschitz (with respect to
the Euclidean metric) but clearly not C1 smooth.

In [33] and in [11], the authors prove existence of (respectively W 1,p and Lipschitz) minimal surfaces using
the Riemannian approximation scheme: as ε → 0

(H1, dε) → (H1, d0),

in the Gromov-Hausdorff topology (see [7, Section 2.4] for a detailed description).
The approach to existence of solutions in these papers is based on a-priori estimates for the minimizers

of the approximating Riemannian gε perimeter functionals [33] and on solutions of the ”Riemannian” regu-
larized versions of (1.2) [11]. In adapting the approximation scheme to the intrisic graphs setting we note
that the minimal surface PDE for the metric gε corresponding to intrinsic graphs (1.1)

(1.3) Lεu =
2∑

i=1

Xi,u

(
Xi,uu√

1 + |∇εu|2

)
= 0, in Ω ⊂ R

2

where

X2,u = ε∂2 ∇ε = (X1,u, X2,u),

is a natural elliptic regularization of the PDE (1.2). As such, it is more amenable to establishing a-priori
higher regularity estimates. The difficulty of course resides in obtaining estimates which are uniform in the
parameter ε as ε → 0.

These observations lead us to the definition of the class of minimal surfaces we want to investigate

Definition 1.1. We say that a function u ∈ Lip(Ω) is a vanishing viscosity solution of the equation (1.2)
if there exists a sequence of positive numbers εj with εj → 0 when j → ∞, and a sequence (uj) in C∞(Ω)
such that:

(i)
∑2

i=1 Xi,uj

(
Xi,uj

uj√
1+|∇εj

uj |2

)
= 0. in Ω for all j ∈ N.

(ii) The sequence (uj) is bounded in Lip(Ω) and uniformly convergent on subcompacts of Ω to u.
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Remark 1.2. Existence of vanishing viscosity solutions in the case of t−graphs, i.e. graphs of the form
x2 = g(s, x1), has been proved in [11, Theorem A and Theorem 4.5]. In the same paper the authors establish
that such solutions are perimeter minimizers and address uniqueness. Assuming C1 convergence of the
approximating solutions, outside the characteristic sets the t−graphs solutions in [11], both the approximating
and the limit solutions, can be represented as intrisic graphs and hence yield vanishing viscosity intrinsic
graphs.

Regularity results. Given the examples of non-smooth minimal surfaces mentioned above, the question
arises as which kind of regularity can one expect. This problem has beeen recently addressed in a series of
papers [34], [11], [5], [10] and [3]. Valuable insights into the problem of regularity are also provided in the
works [34], [11], and [35] in the form of examples of non-smooth minimal surfaces. The regularity properties
of the implicit function in the implicit function theorem quoted earlier provides an interesting insight into this
problem and indicates that one should look for regularity only in the direction of the Legendrian foliation.
Indeed we prove

Theorem 1.3 (Regularity). If u is a vanishing viscosity solution of (1.2), then for all α ∈ (0, 1) and
K ⊂⊂ Ω ⊂ R

2,

(1.4) u ∈ C1,α(K)

and for all k ∈ N and p > 1

(1.5) Xk
1,uu ∈ W 1,p

loc (Ω).

Here C1,α(K) and W 1,p
loc (Ω) denote the spaces of functions with Hölder continuous Euclidean gradient and the

classical Sobolev Space. In particular one has Xk
1,uu ∈ Cα

loc(Ω) (the Euclidean Hölder space) for all α ∈ (0, 1)

and hence X2
1,uu = 0, holds pointwise everywhere.

Remark 1.4. To better understand the notion of intrinsic regularity we return to the non-smooth minimal
graph u(x1, x2) = x2

x1−sgn (x2)
described earlier. Although this function is not C1 in the Euclidean sense,

observe that X1u = 0 for every x1, x2 ∈ Ω Hence, this is an example of a minimal surface which is not
smooth but which can be differentiated indefinitely in the direction of the Legendrian foliation.

Remark 1.5. The regularity theory for intrinsic minimal surfaces in H
n with n > 1 is quite different. In

the recent paper [5] we show that any Lipschitz continuous vanishing viscosity minimal intrinsic graph in
H

n, n > 1 (defined through the Riemannian approximation scheme) is smooth. The main reason is that in
higher dimension the horizontal tangent bundle generates as a Lie algebra the full tangent bundle, while this
does not happen in the n = 1 case.

As a consequence of the regularity theorem we can prove that the Sobolev weak derivatives of vanishing
viscosity solutions agree with Lie derivatives along the leaves of the Legendrian foliation. Hence, we obtain
that vanishing viscosity solutions actually satisfy (1.2) everywhere pointwise. This result immediately yields
a rigidity of the Legendrian foliation.

Corollary 1.6 (Lie differentiability and Legendrian foliation). Let x3 = u(x1, x2), (x1, x2) ∈ Ω be a Lipschitz
continuous vanishing viscosity minimal graph. The flow of the vector X1,u yields a foliation of the domain
Ω by polynomial curves γ of degree two. For every fixed x0 ∈ Ω denote by γ the unique leaf passing through
that fixed point. The function u is differentiable at x0 in the Lie sense along γ and the equation (1.2) reduces
to

d2

dt2
(u(γ(t))) = 0.
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Comparison with other regularity results. We describe the relation between our results in Theorem
1.3 and Corollary 1.6 and the regularity results in [10] and in [3]. In [10] Cheng, Hwang and Yang prove
that any C1 weak solution of the prescribed (continuous) horizontal mean curvature PDE, has C2 smooth
Legendrian foliation outside of the characteristic set. In [3], Bigolin and Serra Cassano study the regularity
of minimal intrisic graphs (1.1) where (1.2) is interpreted in a weak sense (i.e. broad∗ solutions defined in
[3, Definition 3.1]) and prove (among other results) that Lipschitz regularity of the intrisic gradient X1,uu
implies the Euclidean Lipschitz regularity of the function u. In the present paper we require only Lipschitz
continuity of u and prove higher order intrinsic differentiability than either [3], and [10]. On the other hand,
we only deal with the case H0 = 0 and with those solutions which are limits of Riemannian minimal graphs.
In this sense our results are more specialized than the ones in the other two papers.
Applications of Theorem 1.3. Invoking the implicit function theorem, we can apply Theorem 1.3 to study
the regularity away from the characteristic locus of the Lipschitz perimeter minimizers found in [11]. Since
the results in that paper apply to t − graph and not intrinsic graphs we need some extra assumptions on
the convergence of the approximating solution to be able to invoke our intrinsic graphs regularity. Here and
in the following ∇E denotes the Euclidean gradient in R

2, and (z1, z2, z3) are the exponential coordinates
exp(z1S + z2X + z3Y) = exp(x3S) exp(x1X + x2Y).

Corollary 1.7. Let O ⊂ R
2 be a strictly convex, smooth open set, φ ∈ C2,α(Ō) and for each (z1, z2) ∈ O

denote by (z1, z2)
∗ = (z2,−z1). Consider the family

{gε(z1, z2)}ε sup
O

|gε| + sup
O

|∇Egε| ≤ C (uniformly in ε),

of smooth solutions of the approximating minimal surface PDE

div

(
∇Egε + (z1, z2)

∗

√
ε2 + |∇Egε + (z1, z2)∗|

)
= 0 in O and gε = φ in ∂O

found in [11, Theorem 4.5]. If for p0 = (p1
0, p

2
0) ∈ O, a > 0 and for every ε > 0 we have |∂z1gε(p0)| > a > 0

(or any other partial derivative is non-vanishing at p0 uniformly in ε) then there is a sequence εk → 0
such that the Lipschitz perimeter minimizer g = limεk→0 gεk

satisfies g ∈ C1,α and is infinitely many times
differentiable in the direction of the Legendrian foliation of z3 = g(z1, z2), in a neighborhood of the point p0.

Proof. The implicit function theorem implies that the level set of

z3 − gε(z1, z2)

can be written as smooth intrinsic graphs x3 = uε(x1, x2) in a neighborhood Ω of (p1
0, p

2
0, g(p0)). The Lipschitz

bounds on gε (proved in [11, Propositions 4.2-4]) yield uniform Lipschitz bounds on uε, thus allowing to
apply Theorem 1.3 and conclude the proof. �

From this result one may conclude immediately the following

Corollary 1.8. Let z3 = g(z1, z2), (z1, z2) ∈ Ω ⊂ R
2 be a C1 minimal graph which is the C1 limit of

Riemannian minimal graphs as in [11, Theorem 4.5]. In the neighborhood of any non-characteristic point
g ∈ C1,α and is infinitely many times differentiable along the Legendrian foliation.

Theorem 1.3 can be also used to rule out minimal intrinsic graphs which do not arise as limits of Rie-
mannian minimal graphs. For instance, the example exhibited above x3 = u(x1, x2) = x2

x1−sgn (x2)
defined in

Ω = {(x1, x2) ∈ R
2 : x1 > 1} cannot be a vanishing viscosity minimal graph as it lacks the C1,α regularity

from Theorem 1.3.
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Sketch of the proof and final remarks. We now turn to a description of the techniques used in the
proof of Theorem 1.3. Since u is a vanishing viscosity solution, this theorem is proved by means of a priori
estimates (uniform in the parameter ε as it decreases to zero) for each element of the approximating sequence
uj of solutions of (1.3).

The PDE (1.2), has a structure similar to the Levi equation in R
3. In fact, the Levi equation can be

represented as Riemannian approximation of a sum of squares of vector fields

Z2
u + Wuu2 + ε2∂2

2u = 0,

for suitable non linear vector fields Zu, Wu depending on the solution u. Regularity results for Lipschitz
continuous viscosity solutions were established in [13] and [16]. The techniques used in these papers are
based on a modification of the Moser iteration, along with representation formula and uniform estimates
on the fundamental solution. In [16], [19] the authors address properties of the analogue of the Legendrian
foliation for a Levi flat graph.

The cited work on the Levi equations provides a coarse outline and a strategy for the proof of Theorem
1.3. However, the equation (1.2) presents additional difficulties (lack of a background sub-Laplacian, worse
nonlinearity) with respect to the Levi equation, and the adaptation of the known techniques is very non
trivial and requires new ideas.

The first step in the proof involves the study of a linearization (of sorts) of (1.3) (for simplicity we will
refer to the approximating functions uj simply as u)

(1.6) Mε,uz =
2∑

i=1

Xi,u

(
Xi,uz√

1 + |∇εu|2

)
= 0, in Ω ⊂ R

2.

There are two main difficulties in establishing a-priori estimates, uniform in ε, for this PDE:

• The first problem is due to the fact that the coefficients of the equation involve the function u which
although smooth satisfies a-priori bounds which are uniform in ε only for the Lipschitz norm. To
deal with this obstacle we operate a freezing argument, substituting the function u with an analogue
of its first order Taylor polynomial, and then carefully study the remainder terms. The regularity
of rough coefficients degenerate elliptic PDE has been studied by many authors, see for instance the
monograph [39] for a survey of the literature and new, ground-breaking techniques.

• The second difficulty stems from the fact that, although (1.6) is elliptic, its coerciveness degenerates
as ε → 0. Now, the approximation of degenerate elliptic operators with elliptic regularization
is a well known and widely used trick. For instance in [30], the sub-Laplacian Lu =

∑m
i=1 X2

i u
associated to a system of Hörmander vector fields is approximated by Lεu = Lu + ε∆u. While it
is true that the ellipticity of Lε degenerates as ε → 0, and hence the constants involved in elliptic
estimates degenerate as well, the operator Lε satisfies sub-elliptic estimates, which are uniform in ε.
In our case however, the left-hand side of equation (1.6) approximates not a sub-Laplacian but the

operator X1,u(X1,uz/
√

1 + (X1,uu)2) which is not sub-elliptic. To solve this problem, and obtain
the regularity in Lp of the derivatives of z, we introduce a completely new ad-hoc lifting process,
inspired in part by Rothschild and Stein’s techniques in [38]. The vector fields X1,u, X2,u are lifted
to a three-dimensional space Ω × (−1, 1) by adding a new variable s and horizontal vector field ∂s.

The lifted vectors are X̃1 = ∂x1 + (u(x) + s2)∂x2 , X̃2 = ε∂x2 , and X̃3 = ∂s and the set {X̃1, X̃3}
form a step-three bracket generating system whose commutators yield the direction of degeneracy
∂x2 of (1.3). At this point we operate a freezing argument and approximate the operator Mε,u with
higher dimensional Hörmander type sub-Laplacians (namely (3.16) and (3.17), built from the frozen,
lifted vector fields. In this way we extablish a priori W 2,p estimates uniform in ε (Theorem 3.1),
which will be the starting point of the regularity proof.
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In the proof of Theorem 1.3 we will switch back and forth from representations of (1.3) (and its differ-
entiated versions) in divergence and in non-divergence form. The former works best to deal with higher
regularity, via Caccioppoli estimates. The second is tailor-made for the freezing technique and the W 2,p

estimates.
An important ingredient in the proof is the recent result in [15], establishing uniform estimates on the

fundamental solutions of Riemannian regularizations of sub-Laplacians (see the statement in Theorem 3.3).

For other aspects of minimal surfaces in the Heisenberg group, including classification and Bernstein-type
results, see [8, 27, 2, 22, 21, 37, 36, 35]. These works also contain more comprehensive lists of references.

Acknowledgements. The authors would like to thank Manuel Ritoré, Francesco Serra Cassano and Paul Yang
for sharing with them their preprints [35], [10] and [3].

2. Preliminaries

In this section we will always assume that u and f are fixed smooth functions defined on an open set Ω
of R

2,and that u is a solution of the PDE Lεu = f in Ω. In particular we remark that

(2.1) ||u||L∞(Ω) + ||∇εu||L∞(Ω) + ||∂2u||L∞(Ω) < ∞,

and we set

(2.2) M = ||u||L∞(Ω) + ||∇εu||L∞(Ω) + ||∂2u||L∞(Ω)

where for any function φ defined on Ω we have let ∇εφ = (X1,uφ, X2,uφ).
We will use the notation W 1,p

ε (Ω), p > 1 to denote the Sobolev space corresponding to the norm
||φ||W 1,p

ε (Ω) = ||φ||Lp(Ω) + ||∇εφ||Lp(Ω). For simplicity, unless we want to stress the dependence on u, we

will simply write X1, X2 instead of X1,u, X2,u. We will denote by W k,p
0 (Ω) the space of Lp(Ω) functions φ

such that X l
1φ ∈ Lp(Ω) for all 1 ≤ l ≤ k.

We recall that, under assumption (2.1), the following result holds, (see [5])

Proposition 2.1. Let u be a solution of equation (1.3) satisfying (2.1). For every compact set K ⊂⊂ Ω
then there exist a real number α and a constant C, only dependent on the bounds on the constant M in (2.2)
and on the choice of the compact set K such that

||u||W 2,2
ε (K) + ||∂2u||W 1,2

ε (K) + ||u||C1,α
u (K) ≤ C.

2.1. An interpolation inequality.

Proposition 2.2. For every p ≥ 3, there exists a constant C, dependent on p, and the constant M in (2.2)
such that for every function z ∈ C∞(Ω) and for every φ ∈ C∞

0 (Ω), and every δ > 0
∫

|Xiz|p+1/2φ2p ≤ C

δ

∫ (
|z|4p+2φ2p + |z|(2p+1)/2|Xiφ|(2p+1)/2 + |z|(2p+1)/2φ2p

)

+δ

∫
|∇ε(|Xiz|(p−1)/2)|2φ2p,

where i can be either 1 or 2.
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Proof. This is a slight variant of [13, Prop. 4.2]. We have
∫

|Xiz|p+1/2φ2p =

∫
Xiz|Xiz|p−1/2sign(Xiz)φ2p =

(integrating by parts and using the fact that X∗
1 = −X1 − ∂2u and X∗

2 = −X2)

= −
∫

δi1∂2u z|Xiz|p−1/2sign(Xiz)φ2p − (p − 1/2)

∫
zX2

i z|Xiz|p−3/2φ2p

(2.3) − 2p

∫
z|Xiz|p−1/2sign(Xiz)φ2p−1Xiφ ≤

(where δij denotes the Kroeneker’s delta, by Hölder inequality)

≤ C

δ

∫
z(2p+1)/2(φ2p + |Xiφ|(2p+1)/2) +

C

δ

∫
z4p+2φ2p+

+δ

∫
|Xiz|p+1/2φ2p + δ

∫
|∇ε(|Xiz|(p−1)/2)|2φ2p,

choosing δ > 0 sufficiently small we conclude the proof. �

A slight modification of the previous proposition, is the following:

Proposition 2.3. For every p ≥ 3, for every function z ∈ C∞(Ω) there exists a constant C, dependent on
p, the constant M in (2.2) such that and for every φ ∈ C∞

0 (Ω), and every δ > 0
∫

|Xiz|p+1φ2p ≤

≤ C

(∫ (
zp+1φ2p + z2|Xiz|p−1φ2p−2|Xiφ|2

)
+

∫
|X2

i z|2|Xiz|p−3|z|2φ2p

)
,

where i can be either 1 or 2.

Proof. We have ∫
|Xiz|p+1φ2p =

∫
Xiz|Xiz|psign(Xiz)φ2p =

(integrating by parts and using the fact that X∗
1 = −X1 − ∂2u and X∗

2 = −X2)

= −
∫

δi1∂2u z |Xiz|psign(Xiz)φ2p − p

∫
zX2

i z|Xiz|p−1φ2p

(2.4) − 2p

∫
z|Xiz|psign(Xiz)φ2p−1Xiφ ≤

(by Hölder inequality)

≤ C

δ

∫ (
zp+1φ2p + z2|Xz|p−1φ2p−2|Xiφ|2

)
+ δ

∫
|Xiz|p+1φ2p +

C

δ

∫
|z|2|X2

i z|2|Xiz|p−3φ2p,

choosing δ sufficiently small we obtain the desired inequality. �



8 LUCA CAPOGNA, GIOVANNA CITTI, AND MARIA MANFREDINI

2.2. The horizontal mean curvature as a divergence form operator. We now prove that if u is a
smooth solution of equation (1.3) then its derivatives ∂2u and Xku are solution of a similar mean curvature
equation with different right hand side (see also [5, Lemma 3.1]). Differentiating the equation Lεu = 0 with
respect to Xk one obtains

Lemma 2.4. If u is a smooth solution of Lεu = 0 then z = Xku with k ≤ 2 is a solution of the equation

(2.5) Xi

(
aij(∇εu)√
1 + |∇εu|2

Xjz

)

= −[Xk, Xi]

(
Xiu√

1 + |∇εu|2

)

− Xi

(
aij(∇εu)√
1 + |∇εu|2

[Xk, Xj ]u

)
,

where aij are defined as

(2.6) aij : R2 → R aij(p) = δij −
pipj

1 + |p|2 .

Lemma 2.5. If u is a smooth solution of Lεu = 0 then v = ∂2u is a solution of the equation

(2.7) Xi

( aij(∇εu)√
1 + |∇εu|2

Xjv
)

= − a11(∇εu)√
1 + |∇εu|2

v3 − a1j(∇εu)√
1 + |∇εu|2

vXjv

− Xi

( ai1(∇εu)√
1 + |∇εu|2

v2
)

where aij are defined in (2.6).

Proof. Differentiating the PDE we obtain

Xi

( aij(∇εu)√
1 + |∇εu|2

Xjv
)

= −[∂2, Xi]
( Xiu√

1 + |∇εu|2
)
− Xi

( aij(∇εu)√
1 + |∇εu|2

[∂2, Xj]u
)

= −[∂2, X1]
( X1u√

1 + |∇εu|2
)
− Xi

( ai1(∇εu)√
1 + |∇εu|2

[∂2, X1]u
)

= −v∂2

( X1u√
1 + |∇εu|2

)
− Xi

( ai1(∇εu)√
1 + |∇εu|2

v2
)
.

�

Let us consider the linear equation satisfied by the components of the gradient of u:

Mεz = Xi

( aij(∇εu)√
1 + |∇εu|2

Xjz
)
.

If z is a smooth solution of equation

(2.8) Mεz = f,

then its intrinsic derivatives Xiz are still solutions of the the same equation with a different right-hand side.
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Lemma 2.6. If z is a smooth solution of (2.8) then s1 = X1z is a solution of the equation

(2.9) Mεs1 = X1f + Xi

(
ai2(∇εu)√
1 + |∇εu|2

∂2uX2z

)
−

−Xi

(
X1

( aij(∇εu)√
1 + |∇εu|2

)
Xjz

)
+ ∂2uX2

(
a2j(∇εu)√
1 + |∇εu|2

Xjz

)
.

An analogous computation ensures that

Lemma 2.7. If z is a solution of (2.8) then s2 = X2z is a solution of the equation

(2.10) Mεs2 = X2f − Xi

(
ai1(∇εu)√
1 + |∇εu|2

∂2uX2z

)
−

−Xi

(
X2

( aij(∇εu)√
1 + |∇εu|2

)
Xjz

)
− ∂2uX2

(
a1j(∇εu)√
1 + |∇εu|2

Xjz

)
.

3. The horizontal mean curvature as a non-divergence form operator: W 2,p
loc a priori

estimates.

The operator Lε defined in (1.3) can be represented in non-divergence form

(3.1) Nεu =

2∑

i,j=1

aij(∇εu)XiXju,

where aij are defined in (2.6).
Following the approach in the papers [13, 16] we linearize the operator Nε in the following way: While

the coefficients of the vector fields Xi depend on a fixed function u, they will be applied to an arbitrary
function z, sufficiently regular. The associated linear non divergence form operator is

(3.2) Nε,uz =

2∑

i,j=1

aij(∇εu)Xi,uXj,uz,

where the coefficients aij are defined in (2.6).
The main result of this section is the following

Theorem 3.1. Let us assume that z is a classical solution of Nε,uz = 0.

(i) Let us assume that α ∈]0, 1[, p > 10/3 and for every K ⊂⊂ Ω there exists a constant C such that

||u||C1,α(K) + ||∂2z||Lp(K) + ||∂2Xuz||L2(K) + ||∇2
εz||L2(K) ≤ C.

Then for any compact set K1 ⊂⊂ K, there exists a constant C1 only dependent on K, C, and on the constant
in 2.2 such that

||z||
W

2,10/3
ε (K1)

≤ C1.

(ii) If, in addition to the previous conditions, there exists a constant C̃ such that

||∂2Xuz||L4(K) ≤ C̃,

with α ≥ 1/4, then for every p > 1 there exists a constant C1 only dependent on C and C̃ and p such that

||z||W 2,p
ε (K1)

≤ C1.
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3.1. Lifting and freezing. The operator Nε is an elliptic (Riemannian) approximation of the sub-Riemannian
mean curvature operator in the right-hand side of (1.2). Its linearization Nε,u can be interpreted an uniformly
elliptic operator, with least eigenvalue depending on ε. It is well known that this approximating operator
has a fundamental solution, but its estimates strongly depend on ε. In order to obtain estimates uniform in
ε we further approximate it with an Hörmander type operator, a sum of squares of vector fields, which has a
similar behavior in the direction X1, but for which the direction ∂2 is the direction of one of the commutators
( a step-three commutator!). The idea is to use a new version of the famous Rothschild and Stein lifting
theorem, only partially inspired to the procedure in [38]. In order to deal with the non-smoothness of u, we
will also operate a freezing: roughly speaking we approximate the coefficients of the vector field X1 with
their first order Taylor polynomials.

Lifting. The first step is to lift the vector fields to a higher dimensional space through the introduction
of a new variable s. The points of the extension space will be denoted (x, s) ∈ Ω × (−1, 1) ⊂ R3, with
x = (x1, x2). The lifted vector fields are defined as follows

(3.3) X̃1 = ∂x1 + (u(x) + s2)∂x2 , X̃2 = ε∂x2 , and X̃3 = ∂s.

The C1,α distribution {X̃1, X̃3} is a step 3, bracket generating distribution since

(3.4) [X̃1, X̃3] = −2s∂x2 and [X̃3, [X̃1, X̃3]] = −2∂x2.

The associated homogeneous dimension is Q = 5. If x0 = ((x0)1, (x0)2) ∈ Ω is a fixed point, then for all
x ∈ Ω, s ∈ R one can define exponential coordinates (ẽ1(x, s), ẽ2(x, s), ẽ3(x, s)), based at (x0, 0), via the
formula

(3.5) (x, s) = exp(x0,0)(ẽ1(x, s)X̃1 + ẽ2(x, s)X̃2 + ẽ3(x, s)X̃3).

Here for any Lipschitz vector field Z in R
3 we denote by exp(x0,0)(Z) the point γ(1) where γ is a curve such

that γ(0) = (x0, 0) and γ′(s) = Z(γ(s)). The exponential coordinates can be explicitly computed yielding

ẽ1(x, s) = (x − x0)1, εẽ2(x, s) = (x − x0)2 − (x − x0)1
( ∫ 1

0

u(γ(τ))dτ − s2

3

)
, and ẽ3(x, s) = s.

Note that if dE(x, x0) =
√

(x − x0)21 + (x − x0)22 is the Euclidean distance in Ω then for x sufficiently close
to x0 and for a certain constant C > 0 (both depending on the C1,α norm of u) one has that

C−1dE(x, x0) ≤
√

ẽ1(x, 0)2 + ε2ẽ2(x, 0)2 ≤ CdE(x, x0).

Next, we define an analogue of the first order Taylor polynomial of u as

(3.6) P 1
x0

u (x) = u(x0) + e1(x)X̃1u(x0, 0) + e2(x)X̃2u(x0, 0),

where e1(x) = ẽ1(x, 0) and

(3.7) εe2(x) = (x − x0)2 − (x − x0)1u(x0).

We remark explicitly that

(3.8)
∣∣ε(ẽ2(x, 0) − e2(x))X̃2u(x0, 0)

∣∣ =
∣∣((x − x0)1

( ∫ 1

0

[u(γ(τ)) − u(x0)] dτ
)
∂2u(x0)

∣∣
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Freezing. At this point we introduce an appropriate freezing of the vector fields by defining

(3.9) X1,x0 = ∂x1 + (P 1
x0

u(x) + s2)∂x2 , X2,x0 = ε∂x2 and X3,x0 = ∂s.

Observe that {X1,x0, X3,x0} is a distribution of smooth vector fields satisfying Hörmander’s finite rank
hypothesis with step three. We denote by dx0(·, ·) the corresponding Carnot-Caratheodory distance and
remark that the homogeneous dimension of the space is 5. We also need the Riemannian distance function
dx0,ε(·, ·) defined as the control distance associated to {X1,x0, X2,x0 , X3,x0}. Define exponential coordinates
(ē1, ē2, ē3) in a neighborhood of x0 through the formula

(x, s) = exp(x0,0)(ē1(x, s)X1,x0 + ē2(x, s)X2,x0 + ē3(x, s)X3,x0).

Note that

ē1(x, 0) = (x − x0)1, ē2(x, s) =
1

ε

(
(x − x0)2 − (x − x0)1

( ∫ 1

0

P 1
x0

u(γ(τ))dτ − s2

3

))
and ē3(x, 0) = 0.

It is well known (see for instance the discussion in [7, Section 2.4] that (R3, dx0,ε) converges in the Gromov-
Hausdorff sense to (R3, dx0). In particular one has that for each fixed x and s, then dx0,ε((x, s), (x0, 0)) →
dx0((x, s), (x0, 0)) as ε → 0. Moreover the volume of the balls Bε((x0, 0), R) in the dx0,ε metric converges
to the volume of the limit Carnot-Caratheodory balls, i.e. |Bε((x0, 0), R)| → |B0((x0, 0), R)| as ε → 0. In
particular, for ε0 > ε > 0 sufficiently small there exists a constant C > 0 depending only on ε0 such that

(3.10) |Bε((x0, 0), R)| ≥ CR5.

All this can also be seen explicitly in our special setting by observing that there exists a constant C > 0
such that for x near x0, one has (see [32])

C−1dx0,ε((x, s), (x0, 0)) ≤
√

ē2
1(x, s) + min(ē2

2(x, s), (εē2(x, s))2/3 ) + ē2
3(x, s) ≤ Cdx0,ε((x, s), (x0, 0)).

C−1dx0((x, s), (x0, 0)) ≤
(

ē6
1(x, s) + (εē2)

2(x, s) + ē6
3(x, s)

)1/6

≤ Cdx0((x, s), (x0, 0)).

Recall also that for x and x0 sufficiently close, ε0 > ε > 0 sufficiently small there exist positive constants
C1, C2 depending only on ε0 and on the C1,α norm of u such that

(3.11) dE((x, s), (x0, 0)) ≤ C1dx0,ε((x, s), (x0, 0)) ≤ C2dx0((x, s), (x0, 0)).

Since |ē2(x, s)| → ∞ as ε → 0 one has that for a fixed (x, s) then limε→0 dx0,ε((x, s), (x0, 0)) ≈ dx0((x, s), (x0, 0)).
In the following we will denote by dx0,ε(x, x0) the quantity dx0,ε((x, 0), (x0, 0)).

Lemma 3.2. If u ∈ C1,α
E (Ω) there exists constant ε0, C > 0 and a neighborhood U of x0 depending only on

the C1,α
E norm of u such that for all x in a sufficiently small neighborhood of x0, and for all ε0 > ε > 0,

(3.12) |u(x) − P 1
x0

u(x)| ≤ Cd1+α
x0,ε(x, x0).

Proof. Fix the points x and x0 and define the C1,1 planar curve

γ(t) = expx0

(
t
(
ē1(x, 0)X1,x0 + ē2(x, 0)X2,x0

))
,

so that γ(1) = x and γ(0) = x0. From the mean-value theorem, for all t ∈ (0, 1) we can find t̃ ∈ (0, t) such
that

u(γ(t)) − u(x0) = ē1(x, 0)X1,x0(γ(t̃)) + ē2(x, 0)X2,x0(γ(t̃)).
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Hence for all t ∈ (0, 1) one has

u(γ(t)) − P 1
x0

u(γ(t)) = u(γ(t)) − u(x0) = e1(γ(t))X̃1u(x0, 0) − e2(γ(t))X̃2u(x0, 0)

=

2∑

i=1

(
ēi(x, 0)Xi,x0u(γ(t̃)) − ei(γ(t))X̃iu(x0, 0)

)

= (x − x0)1(u(x) − P 1
x0

u(x))∂x2u(x) + ē2(x, 0)
(
X2,x0u(γ(t̃)) − X2,x0u(x0, 0)

)

+ē2(x, 0)
(
X2,x0u(x0, 0) − X̃2,x0u(x0, 0)

)
+
(
ē2(x, 0) − e2(γ(t))

)
X̃2u(x0, 0).(3.13)

Next, note that

|ē2(x, 0) − e2(γ(t))| =
1

ε

∣∣∣∣− (x − x0)1

∫ 1

0

P 1
x0

u(γ(τ))dτ − s2

3
+ (γ(t) − x0)1u(x0)

∣∣∣∣

≤ 1

ε

∣∣∣∣(x − x0)1

∫ 1

0

(P 1
x0

u(γ(τ)) − u(γ(τ))dτ +
s2

3

∣∣∣∣

+
1

ε

∣∣∣∣
∫ 1

0

(
(γ(t) − x0)1u(x0) − (x − x0)1u(γ(τ))

)
dτ

∣∣∣∣

≤ C

ε
d1+α

E (x, x0) +
1

ε

∣∣∣∣(x − x0)1

∫ 1

0

(P 1
x0

u(γ(τ)) − u(γ(τ)) )dτ

∣∣∣∣.(3.14)

From the latter, from (3.13) and from observing that X2,x0 = X̃2,x0, and

|ē2(x, 0)
(
X2,x0u(γ(t̃)) − X2,x0u(x0, 0)

)
| ≤ Cdα

E(x, x0)|εē2(x, 0)|
we obtain

(3.15) |u(γ(t)) − P 1
x0

u(γ(t))|

≤ C(d1+α
E (x, x0) + |εē2(x, 0)|dα

E(x, x0) + |(x − x0)1|
∫ 1

0

|P 1
x0

u(γ(τ)) − u(γ(τ))|dτ.

For x sufficiently close to x0 we have

|εē(x, 0)| ≤ Cdx0,ε(x, x0) and |(x − x0)|1 ≤ 1

2
.

Integrating (3.15) in the t variable from 0 to 1 and using the latter we obtain
∫ 1

0

|P 1
x0

u(γ(τ)) − u(γ(τ))|dτ ≤ Cd1+α
x0,ε(x, x0).

Substituting this estimate back in (3.15) we conclude the proof. �

The frozen operators. The freezing process described earlier allows to introduce ’frozen’ sub-Laplacians
operators Nε,x0 formally defined as Nε, but in terms of the smooth vector fields Xε

i,x0
instead of the original

non-smooth vector fields Xi. Consider the operators

(3.16) Nε,x0z =

3∑

i,j=1

aij(∇εu(x0))Xi,x0Xj,x0z,

where aij are defined in (2.6), and
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(3.17) Nx0z =

3∑

i,j=1
i6=2,j 6=2

aij(∇εu(x0))Xi,x0Xj,x0z,

Nx0 is an uniformly subelliptic operator with C∞ coefficients, and Nε,x0 can be considered as its elliptic
regularization, with coefficients dependent on ε. The linear theory yields that both Nx0 and Nε,x0 have
fundamental solutions Γx0 and Γε,x0 respectively (see [28], [32] and [4]). Since both Γx0 and Γε,x0(ζ, ξ)
depend on many variables, the notation

Xi,x0(ζ1)Γε,x0( · , ξ)

shall denote the Xi,x0-derivative of Γε,x0(ζ, ξ) with respect to the variable ζ, evaluated at the point ζ1.
Precise estimates for the fundamental solution Γx0 have been established in [32] and [4], while in [15] it

is proved that the fundamental solution Γε,x0 of Nε,x0 locally satisfies the same estimates as the limit kernel
Γx0 , with choice of constants independent of ε. These results can be summarized as follows;

Theorem 3.3. ([15]) Let z0 ∈ Ω. For every compact set K ⊂ Ω × (−1, 1), for every k ∈ N and for every
multi-index I = (i1, ..., ik) with ij ∈ {1, 2, 3}, there exist two positive constants C, Cp independent of ε, such
that

(3.18) |∇I
ε,x0

(ξ)Γε,x0(·, ζ)| ≤ Ck

d2−k
x0,ε(ξ, ζ)

|Bε(ξ, dx0,ε(ξ, ζ))| ,

for every ξ, ζ ∈ K with ξ 6= ζ, where Bε(ξ, r) denotes the ball with center ξ and radius r in the distance
dx0,ε, and ∇I

ε,x0
= Xi1,x0 ...Xin,x0 denotes derivatives of order |I| = k along the frozen vector fields Xi,x0 . If

k = 0 one intends that no derivative are applied on Γε,x0 .

Remark 3.4. Let u be as in Lemma 3.2. Notice that if we set

R = X1,u − X1,x0 = (u(x) − P 1
x0

u(x) − s2)∂x2 ,

then since ∂x2 has order three, and in view of Lemma 3.2, the operator R has order 2 − α at the point x0

(in the sense of [23]). Consequently, the estimates in (3.18) do not continue to hold if the derivatives along
the frozen vector fields ∇I

εx0
, |I| = 2, are substituted by derivatives along Xε

i,u evaluated at the point ξ = x0.

Since the measure of the Ball is doubling, with doubling constant independent of ε, then the space
(Ω×(−1, 1), dx0,ε, dx) is a space of homogenous type and the the following version of the fractional integration
theorem holds, (see for instance [6])

Proposition 3.5. If K is a fixed compact set K ⊂⊂ Ω × (−1, 1), if f ∈ Lq(Ω × (−1, 1)) supported in K,
and for each (x, s) ∈ Ω × (−1, 1) we set

(3.19) Ip(f)(x, s) =

∫
dp

x0,ε((x, s), (ζ, σ))

|Bε((x, s), dx0,ε((x, s), (ζ, σ))|f(ζ, σ)dζdσ

then there exists a constant C, depending on K, r, q but independent of ε such that,

||Ip(f)||Lr(Ω×(−1,1)) ≤ C||f ||Lq(Ω×(−1,1)),

and where 5 − pq > 0 and r = 5q
5−pq .

Corollary 3.6. Let f ∈ C∞
0 (Ω) and extend it to a function on Ω × (−1, 1) by setting f(x, s) := f(x). Let

K : (Ω × (−1, 1))2 → R be a kernel satisfying

|K((x, s), (ζ, σ))| ≤ C
dp

x0,ε((x, s), (ζ, σ))

|Bε((x, s), dx0,ε((x, s), (ζ, σ))| .
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Set u(x, s) to be defined as

u(x, s) =

∫
K((x, s), (ζ, σ))f(ξ)dζdσ.

If u(x, s) = u(x) for all values of s then

||u||Lr(Ω) ≤ C||f ||Lq(Ω),

with r and q as in the previous proposition.

As a consequence of the definition of fundamental solution one has the following representation formula:

Proposition 3.7. Let u be a fixed smooth function defined in Ω, let Nε,u be as in (3.2), and let z be a
classical solution of Nε,uz = g ∈ C∞(Ω). Extend both u and z to be functions defined on Ω × (−1, 1) by
letting them be constant along the s variable. For any φ ∈ C∞

0 (Ω × (−1, 1)), ξ ∈ Ω and s ∈ (−1, 1), the
product z(ξ)φ(ξ, s) can be represented as

z(ξ)φ(ξ, s) =

∫

Ω×(−1,1)

Γ((ξ, s), (ζ, σ))


z Nεx0φ +

2∑

ij=1

āij(x0)
(
Xi,z0zXj,z0φ + Xj,z0zXi,z0φ

)

 dζ

+

∫

Ω×(−1,1)

Γε,x0((ξ, s), (ζ, σ)) g(ζ)φ(ζ, σ)dζdσ+

+
2∑

ij=1

∫

Ω×(−1,1)

Γε,x0((ξ, s), (ζ, σ))
(
āij(x0) − āij(ζ)

)
Xi,uXj,uz(ζ)φ(ζ)dζdσ

−
2∑

j=1

ā1j(x0)

∫

Ω×(−1,1)

Γε,x0((ξ, s), (ζ, σ))
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
∂2Xj,uz(ζ)φ(ζ, σ)dζdσ

+
2∑

i=1

āi1(x0)

∫

Ω×(−1,1)

Xi,x0(ξ, s)Γε,x0(·, (ζ, σ))
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
∂2z(ζ)φ(ζ, σ)dζdσ

+

2∑

i=1

āi1(x0)

∫

Ω×(−1,1)

Γε,x0((ξ, s), (ζ, σ))
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
∂2z(ζ)Xi,x0φ(ζ, σ)dζdσ.

(3.20)

In order to simplify notations we have set

āij(ζ) = aij(∇εu(ζ)).
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Proof. In view of the definition of fundamental solution, we have

z(ξ)φ(ξ, s) =

∫

Ω×(−1,1)

Γε,x0((ξ, s), (ζ, σ))Nεx0 (zφ)(ζ, σ)dζdσ

=

∫

Ω×(−1,1)

Γε,x0((ξ, s), (ζ, σ))


z Nεx0φ +

2∑

ij=1

āij(x0)
(
Xi,x0uXj,x0φ + Xj,x0zXi,x0φ

)

 dζdσ

+

∫

Ω×(−1,1)

Γε,x0((ξ, s), (ζ, σ))Nεuz(ζ)φ(ζ, σ)dζdσ

+

∫

Ω×(−1,1)

Γε,x0((ξ, s), (ζ, σ))(Nεx0 − Nεu)z(ζ, σ)φ(ζ, σ)dζdσ.

(3.21)

Let us now compute the difference between the operator Nεu and its frozen counterpart. We will emphasize
the presence of the variable σ in those terms where the coefficients of the vector fields involve that variable.

(
(Nεx0−Nεu)z

)
(ζ, σ) =

2∑

ij=1

(
āij(x0) − āij(ζ)

)
Xi,uXj,uz(ζ)−

−
2∑

ij=1

āij(z0)
(
Xi,uXj,u − Xi,x0Xj,x0

)
z(ζ, σ) =

=

2∑

ij=1

(
āij(x0) − āij(ζ)

)
Xi,uXj,uz(ζ)−

−
2∑

ij=1

āij(x0)
(
(Xi,u − Xi,x0)Xj,u + Xi,x0(Xj,u − Xj,x0)

)
z(ζ, σ)

=
2∑

ij=1

(
āij(x0) − āij(ζ)

)
Xi,uXj,uz(ζ)−

−
2∑

ij=1

āij(x0)
(
δi1(u(ζ) − P 1

z0
u(ζ) − σ2)∂2Xj,u + Xi,x0(δj,1(u(ζ) − P 1

x0
u(ζ) − σ2)∂2)

)
z(ζ)

=

2∑

ij=1

(
āij(x0) − āij(ζ)

)
Xi,uXj,uz(ζ)

−
2∑

i=1

āi1(x0)(u(ζ) − P 1
x0

u(ζ) − σ2)∂2Xi,uz(ζ)

−
2∑

i=1

āε
i1(x0)Xi,x0

(
(u(ζ) − P 1

x0
u(ζ) − σ2)∂2

)
z(ζ).

(3.22)

The integral of the last term in (3.22) becomes

2∑

i=1

āi1(x0)

∫

Ω×(−1,1)

Γε,x0((ξ, s), (ζ, σ))Xi,x0

(
(u(ζ) − P 1

x0
u(ζ) − σ2)∂2

)
z(ζ)φ(ζ, σ)dζdσ(3.23)
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(integrating by part)

= −
2∑

i=1

āi1(x0)

∫

Ω×(−1,1)

Xi,x0(ξ, s)Γε,x0(·, (ζ, σ)) (u(ζ) − P 1
x0

u(ζ) − σ2)∂2z(ζ)φ(ζ, σ)dζdσ

−
2∑

i=1

āi1(x0)

∫

Ω×(−1,1)

Γε,x0((ξ, s), (ζ, σ)) (u(ζ) − P 1
x0

u(ζ) − σ2)∂2z(ζ)Xi,x0φ(ζ, σ)dζdσ

(3.24)

Inserting all terms in the preceeding formula we conclude the proof. �

Lemma 3.8. Let u and x0 ∈ Ω be as above. There exists a neighborhood U of (x0, 0), possibly depending on
ε, such that for all (ξ, s) ∈ U one has

(3.25)

∣∣∣∣
(

Xk,x0Xl,x0(ξ, s) − Xk,x0Xl,x0(x0, 0)

)
∇x0,εΓε,x0(·, (ζ, σ))

∣∣∣∣

≤ dx0((ξ, s), (x0, 0))

(
∣∣∇I

x0,εΓε,x0((ξ, s), (ζ, σ))
∣∣ +
∣∣∇I

x0,εΓε,x0((x0, 0), (ζ, σ))
∣∣
)

, with |I| = 4.

Proof. The proof follows from the mean value principle: Set L = dx0((ξ, s), (x0, 0)). For every δ > 0 consider
a horizontal curve γ : [0, L + δ] → Ω × (−1, 1), parametrized by arc-length and joining (ξ, s) to (x0, 0). For
every f ∈ C1 one has

|f(ξ, s) − f(x0, 0)| ≤
∫ L

0

| d

dt
f(γ(t))|dt =

∫ L

0

|〈∇f(γ(t)), γ′(t)〉|dt ≤ (L + δ) sup
γ

|∇x0,εf |.

There exists neighborhood (x0, 0) ∈ U depending on the C1 norm of f for which we have |∇x0,εf(ζ, σ)| ≤
2(|∇x0,εf(x0, 0)| + |∇x0,εf(ξ, s)|) for all (ζ, σ) ∈ U . The lemma now follows from choosing

f = Xk,x0Xl,x0Xi,x0Γε,x0(·, (ζ, σ))

and observing that the smoothness of Γε,x0 depends on ε > 0. �
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Lemma 3.9. Let z be a smooth solution of Nε,uz = 0. For any s ∈ (−1, 1) and x0 ∈ Ω, one can represent
the ’frozen’ second order horizontal derivatives of z at x0 as

Xk,x0Xl,x0(z(x0)φ(x0, s)) =

=

∫

Ω×(−1,1)

Xk,x0Xl,x0(x0, s)Γε,x0(·, (ζ, σ))



z Nεx0φ +
2∑

ij=1

āij(x0)
(
Xi,z0zXj,z0φ + Xj,z0zXi,z0φ

)


 dζ

+

2∑

ij=1

∫

Ω×(−1,1)

Xk,x0Xl,x0(x0, s)Γε,x0(·, (ζ, σ))
(
āij(x0) − āij(ζ)

)
Xi,uXj,uz(ζ)φ(ζ, σ)dζdσ

−
2∑

j=1

ā1j(x0)

∫

Ω×(−1,1)

Xk,x0Xl,x0(x0, s)Γε,x0(·, (ζ, σ))
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
∂2Xj,uz(ζ)φ(ζ, σ)dζdσ

+

2∑

i=1

āi1(x0)

∫

Ω×(−1,1)

Xk,x0Xl,x0Xi,x0(x0, s)Γεx0(·, (ζ, σ))
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
∂2z(ζ)φ(ζ, σ)dζdσ

+
2∑

i=1

āi1(x0)

∫

Ω×(−1,1)

Xk,x0Xl,x0(x0, s)Γε,x0(·, (ζ, σ))
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
∂2z(ζ)Xi,x0φ(ζ, s)dζdσ.

(3.26)

Proof. Since the proof is similar to that of [17, Proposition 3.9], we only sketch the argument for the most
singular term in the representation formula, i.e.
(3.27)

I((ξ, s), (x0, 0)) =

2∑

i=1

āi1(x0)

∫

Ω×(−1,1)

Xi,x0(ξ, s)Γεx0(·, (ζ, σ))
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
∂2z(ζ)φ(ζ, s)dζdσ.

We want to show that

(3.28) Xk,x0Xl,x0(x0, 0)I(·, (x0, 0)) = I(2),

where
(3.29)

I(2)(x0) =

2∑

i=1

āi1(x0)

∫

Ω×(−1,1)

Xk,x0Xl,x0(x0, s)Xi,x0Γεx0(·, (ζ, σ))
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
∂2z(ζ)φ(ζ, s)dζdσ

Note that the latter is well defined in view of the estimates (3.12) and (3.18). To show (3.28) we con-
sider a family of smooth test functions χx0,ε((ξ, s), (ζ, σ)), satisfying for some choice of C > 0 and for
small ε > 0, (i) 0 ≤ χx0,ε((ξ, s), (ζ, σ)) ≤ 1, (ii) χx0,ε(((ξ, s), (ζ, σ)) = 0 if dx0,ε((ξ, s), (ζ, σ)) ≤ 2Cε, (iii)

χx0,ε((ξ, s), (ζ, σ)) = 1 if dx0,ε((ξ, s), (ζ, σ)) ≥ 4Cε, (iv) |∇I
ε,x0

χx0,ε(((ξ, s), (ζ, σ))| ≤ Cε−|I| for all multi-
indeces I, for some choice of C > 0 and for small ε > 0. For the existence of such function see [12] and note
that the construction argument in that paper uses only the estimates on the fundamental solution. Define
the smooth approximation

(3.30) Iε((ξ, s), (x0, 0)) =

2∑

i=1

āi1(x0)

∫

Ω×(−1,1)

Xi,x0(ξ, s)Γεx0(·, (ζ, σ))

·
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
χx0,ε((ξ, s), (ζ, σ)) ∂2z(ζ)φ(ζ, s)dζdσ.
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Once we establish the bounds
∣∣∣∣Iε((ξ, s), (x0, 0)) − I((ξ, s), (x0, 0))

∣∣∣∣ ≤ Cε2+α

∣∣∣∣Xk,x0Xl,x0(ξ, s)Iε(·, (x0, 0)) − I(2)(x0)

∣∣∣∣ ≤ Cεα,(3.31)

for1 dx0,ε((ξ, s), (x0, 0) ≤ ε, then invoking [17, Proposition 3.2] we immediately conclude (3.28). To prove
the first estimate in (3.31) we first observe that for ε > 0 sufficiently small

(3.32)

∣∣∣∣Iε((ξ, s), (x0, 0)) − I((ξ, s), (x0, 0))

∣∣∣∣

≤ C

∫

dx0,ε((ζ,σ),(ξ,s)≤4Cε

(
1 − χx0,ε((ξ, s), (ζ, σ))

)
dx0,ε((ξ, s), (ζ, σ))

|Bε(ξ, dx0,ε((ξ, s), (ζ, σ))| ·

· dx0,ε((ζ, σ), (x0, 0))1+α|∂2z(ζ)φ(ζ, s)|dζdσ.

Since

dx0,ε((ζ, σ), (x0, 0)) ≤ C(dx0,ε((ζ, σ), (ξ, s)) + dx0,ε((x0, 0), (ξ, s)) ≤ C(dx0,ε((ζ, σ), (ξ, s)) + ε),

then we conclude
∣∣∣∣Iε((ξ, s), (x0, 0)) − I((ξ, s), (x0, 0))

∣∣∣∣ ≤ C

∫

dx0,ε((ζ,σ),(ξ,s)≤4Cε

dx0,ε((ξ, s), (ζ, σ))2+α

|Bε(ξ, dx0,ε((ξ, s), (ζ, σ))| ≤ Cε2+α.

Next we turn to the second estimate in (3.31). Observe that

∣∣∣∣Xk,x0Xl,x0(ξ)Iε((ξ, s), (x0, 0)) − I(2)(x0)

∣∣∣∣ ≤ |A1| + |A2| + |A3|,

where

(3.33) A1 =

∫

Ω×(−1,1)

∣∣∣∣∣

(
Xk,x0Xl,x0(ξ, s) − Xk,x0Xl,x0(x0, s)

)
∇x0,εΓ(·, (ζ, σ))·

·
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
χx0,ε((ξ, s), (ζ, σ)) ∂2z(ζ)φ(ζ, σ)

∣∣∣∣∣dζdσ,

(3.34) A2 =

∫

Ω×(−1,1)

∣∣∣∣∣Xk,x0Xl,x0(x0, s)∇x0,εΓ(·, (ζ, σ))·

·
(
u(ζ) − P 1

x0
u(ζ) − σ2

) (
1 − χx0,ε((ξ, s), (ζ, σ))

)
∂2z(ζ)φ(ζ, σ)

∣∣∣∣∣dζdσ,

1In view of the dependence of the neighborhood U from ε in Lemma 3.8, possibly one needs to work with a smaller scale
dx0,ε((ξ, s), (x0, 0) ≤ o(ε) depending on the C3 norm of Γε,x0
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and

(3.35) A3 =

∫

Ω×(−1,1)

∣∣∣∣∣Xl,x0∇x0,ε(ξ, s)Γ(·, (ζ, σ))·

·
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
Xk,x0(ξ)χx0,ε((ξ, s), (ζ, σ)) ∂2z(ζ)φ(ζ, σ)

∣∣∣∣∣dζdσ

+

∫

Ω×(−1,1)

∣∣∣∣∣∇x0,ε(ξ, s)Γ(·, (ζ, σ))·

·
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
Xl,x0Xk,x0(ξ, s)χx0,ε(·, (ζ, σ)) ∂2z(ζ)φ(ζ, σ)

∣∣∣∣∣dζdσ

Invoking Lemma 3.8 one can complete the proof arguing as in [17, page 734]. As usual, we examine in detail
only the integral A1 which contains the most singular integrand. Note that if ζ ∈suppχx0,ε((ξ, s), ·) then
dx0,ε((ξ, s), (ζ, σ)) ≥ 2Cε, consequently

dx0((x0, 0), (ζ, σ)) ≥ 1

C
dx0,ε((ξ, s), (ζ, σ)) − dx0,ε((ξ, s), (x0, 0)) ≥ ε.

In view of Lemma 3.8, (3.3) and Lemma 3.2 we have

(3.36) |A1| ≤ C

∫

dx0((x0,0),(ζ,σ))≥ε

dx0((ξ, s), (x0, 0))d1+α
x0

((x0, 0), (ζ, σ))φ(ζ)
dx0((x0, 0), (ζ, σ))−2

|B((x0, 0), dx0((x0, 0), (ζ, σ)))|dζdσ

+ C

∫

dx0((ξ,s),(ζ,σ))≥ε

dx0((ξ, s), (x0, 0))d1+α
x0

((x0, 0), (ζ, σ))φ(ζ)
dx0((ξ, s), (ζ, σ))−2

|B((ξ, s), dx0((ξ, s), (ζ, σ)))|dζdσ ≤ Cεα.

�

Using the representation formula above, the fractional integration result in Proposition 3.5 and Corollary
3.6 we finally can proceed to the proof of the main result of the section:

Proof of Theorem 3.1. We will prove (i) only. The proof of (ii) follows along a similar argument. Using the
representation formula (3.26) one can represent the second horizontal derivatives Xk,x0Xl,x0(z(x0)φ(x0, s) of
z at any point (x0, s) ∈ Ω × (−1, 1) through integral operator with kernels of the form

Xk,x0Xl,x0Xi,x0(x0, s)Γεx0(·, (ζ, σ))
(
u(ζ) − P 1

x0
u(ζ) − σ2

)

Xk,x0Xl,x0(x0, s)Γε,x0(·, (ζ, σ))
(
āij(x0) − āij(ζ)

)

and

Xk,x0Xl,x0(x0, s)Γε,x0(·, (ζ, σ))
(
u(ζ) − P 1

x0
u(ζ) − σ2

)

To establish the non-singular character of such kernels one needs to invoke the estimates on the derivatives
of the fundamental solution of the frozen operator Γεx0 in Theorem 3.3. To estimate the L10/3 norm of each
term in the right-hand side of (3.26) one uses the fractional integral estimates in Corollary 3.6. The ’worst’
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possible term is the one corresponding to three derivatives on Γ, i.e.

(3.37)

2∑

i=1

āi1(x0)

∫

Ω×(−1,1)

Xk,x0Xl,x0Xi,x0(x0, s)Γεx0(·, (ζ, σ))
(
u(ζ) − P 1

x0
u(ζ) − σ2

)
∂2z(ζ)φ(ζ)dζdσ

=

∫
K((x0, s), (ζ, σ))∂2z(ζ)φ(ζ)dζdσ,

with (in view of Remark 3.4)

|K((x0, s), (ζ, σ))| ≤ C
dα

x0,ε((x0, s), (ζ, σ))

|Bε((x, s), dx0,ε((x0, s), (ζ, σ))| .

Note that the expression in (3.37) does not depend on s. Moreover since from the assumptions one has
p > 10/3 >, and hence p > 50/(15 + 10α) then Corollary 3.6 yields immediately that the integral in (3.37)
is in Lr with

r =
5p

5 − pα
>

10

3
.

The rest of the terms in the right-hand side of (3.26) are estimated similarly.

At this point we have proved that the function x0 → Xk,x0Xl,x0z(x0) is in L
10
3 (K). Next we observe that

Xk,uXl,u(x0)z − Xk,x0Xl,x0(x0, 0)z =





0 if l = 2 and k = 1, 2

u(x0)∂x2u(x0)∂x2z(x0) if l = 1 and k = 1

0 if l = 1 and k = 2

.

In view of the hypothesis ∂x2z ∈ Lp(K) then one finally concludes

Xk,uXl,uz − Xk,x0Xl,x0(·, 0)z ∈ Lp(K)

with p > 10/3. �

4. Cacciopoli type inequalities: Wm,p
ε,loc a priori estimates.

In this section we prove a a priori estimate, in the Sobolev spaces Wm,p
ε,loc(Ω) for solutions z of equation

(2.8), under the assumption that u is smooth and satisfies (2.2).
The starting point is a Caccioppoli type inequality for derivatives of solution of (2.8) in the directions Xi.

By Lemmas 2.6 and 2.7 these derivatives solve the same equation (2.8), with a different second member,
hence we will focus on this PDE.

Lemma 4.1. Assume that f0 ∈ L1
loc(Ω), and that z ∈ W 2,2

ε,loc(Ω) ∩ W 1,3
1,loc(Ω) is a solution of equation (2.8)

For every p ≥ 3 there exist constants C1 = C1(p, M) with the constant M as in (2.2) and independent of ε
and z such that for every non-negative φ ∈ C∞

0 (Ω), we have
∫

|∇ε(|z|(p−1)/2)|2φ2 ≤ C1

(∫
|z|p−1

(
φ2 + |∇εφ|2

)
−
∫

f |z|p−3zφ2

)
.

Proof. Let us multiply both members of equation (2.8) by |z|p−3zφ2, and integrate. We obtain

(4.1)

∫
f |z|p−3zφ2 =

∫
Xi

( aij(∇εu)√
1 + |∇εu|2

Xjz
)
|z|p−3zφ2 =

(since X∗
1 = −X1 − ∂2u, X∗

2 = −X2)

= −
∫

∂2uδi1
aij(∇εu)√
1 + |∇εu|2

Xjz|z|p−3zφ2−
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−(p − 2)

∫
aij(∇εu)√
1 + |∇εu|2

XjzXiz|z|p−3φ2 − 2

∫
aij(∇εu)√
1 + |∇εu|2

Xjz|z|p−3zφXiφ.

This obviously implies that there exists a constant C > 0 such that

(4.2)
4(p − 2)

(p − 1)2

∫
|∇ε(|z|(p−1)/2)|2φ2 ≤ C

∫
|z|p−1(|∇εφ|2 + φ2) −

∫
f |z|p−3zφ2,

concluding the proof. �

Lemma 4.2. Let p ≥ 3 be fixed and u be a function satisfying the bound (2.1). Let f ∈ C∞(Ω), and let z be

a smooth solution of equation (2.8). There exist two constants C and C̃ which depend on p and the constant
M in (2.2) but are independent of ε and z such for every φ ∈ C∞

0 (Ω), φ > 0,

(4.3)

∫
|∇ε(|∇εz|(p−1)/2)|2φ2p ≤ C

∫ (
|∇εφ|2 + φ2

)p
+

+

∫
|∇εz|p+1/2φ2p +

∫
|X2(∂2u)|pφ2p +

∫
|f |(2p+1)/7φ2p +

∫
|f |(2p+1)/5(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5+

+

∫
|∇2

εu||∇εz|p−1φ2p +

∫
|∇2

εu|2|∇εz|p−1φ2p +

∫
|∇2

εu||∇εz|p−1φ2p−1|∇εφ|.

Proof. Since z is a solution of equation (2.8) then by Lemma 2.6 s1 = X1z satisfies equation

Mεs1 = X1(f) + Xi

(
ai2(∇εu)√
1 + |∇εu|2

∂2uX2z

)
−

−Xi

(
X1

( aij(∇εu)√
1 + |∇εu|2

)
Xjz

)
+ ∂2uX2

(
a2j(∇εu)√
1 + |∇εu|2

Xjz

)

Using Lemma 4.1 we deduce

(4.4)

∫
|∇ε(|s1|(p−1)/2)|2φ2p ≤ C1

∫
|s1|p−1

(
|∇εφ|2 + φ2

)
φ2p−2−

−
∫

|s1|p−3s1Xi

(
ai2(∇εu)√
1 + |∇εu|2

∂2uX2z

)
φ2p+

+

∫
|s1|p−3s1Xi

(
X1

( aij(∇εu)√
1 + |∇εu|2

)
Xjz

)
φ2p

−
∫

|s1|p−3s1∂2uX2

(
a2j(∇εu)√
1 + |∇εu|2

Xjz

)
φ2p −

∫
|s1|p−3s1X1fφ2p =

(integrating by part all terms in the right hand side)

= C1

∫
|s1|p−1

(
|∇εφ|2 + φ2

)
φ2p−2 +

∫
|s1|p−3s1

a12(∇εu)√
1 + |∇εu|2

(∂2u)2X2zφ2p+

+(p − 2)

∫
|s1|p−3Xis1

ai2(∇εu)√
1 + |∇εu|2

∂2uX2zφ2p+

+2p

∫
|s1|p−3s1

ai2(∇εu)√
1 + |∇εu|2

∂2uX2zφ2p−1Xiφ+
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−
∫

|s1|p−3s1∂2uX1

( a1j(∇εu)√
1 + |∇εu|2

)
Xjzφ2p

−(p − 2)

∫
|s1|p−3Xis1X1

( aij(∇εu)√
1 + |∇εu|2

)
Xjzφ2p

−2p

∫
|s1|p−3s1X1

( aij(∇εu)√
1 + |∇εu|2

)
Xjzφ2p−1Xiφ

+(p − 2)

∫
|s1|p−3X2s1∂2u

a2j(∇εu)√
1 + |∇εu|2

Xjzφ2p+

+

∫
|s1|p−3s1X2∂2u

a2j(∇εu)√
1 + |∇εu|2

Xjzφ2p+

+2p

∫
|s1|p−3s1∂2u

a2j(∇εu)√
1 + |∇εu|2

Xjzφ2p−1X2φ+

+

∫
|s1|p−3s1∂2ufφ2p + 2p

∫
|s1|p−3s1fX1φφ2p−1

+(p − 2)

∫
|s1|p−3X1s1sign(s1)fφ2p ≤

≤ C1

∫
|s1|p−1

(
|∇εφ|2 + φ2

)
φ2p−2 +

C

δ

∫
|X2z|p−1φ2p + δ

∫
|∇εs1|2|s1|p−3φ2p+

+

∫
|∇2

εu||∇εz|p−1φ2p +
C

δ

∫
|∇2

εu|2|∇εz|p−1φ2p +

∫
|∇2

εu||∇εz|p−1φ2p−1|∇εφ|+

+C

∫
|X2(∂2u)|pφ2p +

∫
|∇εz|pφ2p +

C

δ

∫
|s1|p+1/2φ2p+

+
C

δ

∫
|f |(2p+1)/7φ2p +

∫
|f |(2p+1)/5(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5 ≤

≤ C1

∫ (
|∇εφ|2 + φ2

)p
+

C

δ

∫
|∇εz|pφ2p +

C

δ

∫
|s1|p+1/2φ2p+

+

∫
|X2(∂2u)|pφ2p + δ

∫
|s1|p−3|∇εs1|2φ2p+

+

∫
|∇2

εu||∇εz|p−1φ2p +
C

δ

∫
|∇2

εu|2|∇εz|p−1φ2p +

∫
|∇2

εu||∇εz|p−1φ2p−1|∇εφ|+

+
C

δ

∫
|f |(2p+1)/7φ2p +

∫
|f |(2p+1)/5(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5

It follows that

(4.5)

∫
|∇ε(|s1|(p−1)/2)|2φ2p ≤ C

(∫ (
|∇εφ|2 + φ2

)p
+

+

∫
|∇εz|p+1/2φ2p +

∫
|X2(∂2u)|pφ2p +

∫
|f |(2p+1)/7φ2p +

∫
|f |(2p+1)/5(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5

+

∫
|∇2

εu||∇εz|p−1φ2p +

∫
|∇2

εu|2|∇εz|p−1φ2p +

∫
|∇2

εu||∇εz|p−1φ2p−1|∇εφ|
)
.

An analogous estimate holds for s2 = X2z, i.e.

(4.6)

∫
|∇ε(|s2|(p−1)/2)|2φ2p ≤ C

(∫ (
|∇εφ|2 + φ2

)p
+
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+

∫
|∇εz|p+1/2φ2p +

∫
|X2(∂2u)|pφ2p +

∫
|f |(2p+1)/7φ2p +

∫
|f |(2p+1)/5(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5

+

∫
|∇2

εu||∇εz|p−1φ2p +

∫
|∇2

εu|2|∇εz|p−1φ2p +

∫
|∇2

εu||∇εz|p−1φ2p−1|∇εφ|
)
.

The conclusion follows immediately.
�

Theorem 4.3. Let p ≥ 3 be fixed and u be a function satisfying the bound (2.1). Let f ∈ C∞(Ω), and let z
be a smooth solution of equation (2.8). There exists a constant C, which depends on p and the constant M
in (2.2) but is independent of ε and z such that for every φ ∈ C∞

0 (Ω), φ > 0,

∫
|∇εz|p+1/2φ2p +

∫
|∇ε

(
|∇εz|(p−1)/2

)
|2φ2p ≤

≤ C
( ∫

|z|4p+2φ2p +

∫ (
φ2 + |∇εφ|2

)p
+

∫
|∇ε(∂2u)|pφ2p+

+

∫ (
|f |(2p+1)/7φ2p + |f |(2p+1)/5(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5

)
+

∫
|∇2

εu|2pφ2p
)
.

Proof. By Proposition 2.2, and Lemma 4.2 calling s1 = X1z we have
∫

|s1|p+1/2φ2p ≤ C

δ

∫ (
|z|4p+2φ2p + |z|(2p+1)/2φ2p + |z|(2p+1)/2|∇eφ|(2p+1)/2

)
+

+

∫ (
|∇εφ|2 + φ2

)p
+

+δ

∫
(|∇εz|p+1/2 + |X2(∂2u)|p)φ2p +

∫
(|∇2

εu|2p + |∇2
εu|p)φ2p+

+C

∫ (
|f |(2p+1)/7φ2p + |f |(2p+1)/5(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5

)
.

To estimate s2 = X2z we argue in the same way and obtain
∫

|s2|p+1/2φ2p ≤ C

δ

∫ (
|z|4p+2φ2p + |z|(2p+1)/2φ2p + |z|(2p+1)/2|∇eφ|(2p+1)/2

)
+

+

∫ (
|∇εφ|2 + φ2

)p
+

+δ

∫
(|∇εz|p+1/2 + |X2(∂2u)|p)φ2p +

∫
(|∇2

εu|2p + |∇2
εu|p)φ2p+

+C

∫ (
|f |(2p+1)/7φ2p + |f |(2p+1)/5(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5

)
.

Hence, if δ is sufficiently small
∫ (

|s1|p+1/2 + |s2|p+1/2
)
φ2p ≤ C

δ

∫ (
|z|4p+2φ2p + |z|(2p+1)/2φ2p + |z|(2p+1)/2|∇εφ|(2p+1)/2

)
+

+

∫ (
|∇εφ|2 + φ2

)p
+

∫
|∇e(∂2u)|pφ2p +

∫
(|∇2

εu|2p + |∇2
εu|p)φ2p+

+C

∫ (
|f |(2p+1)/7φ2p + |f |(2p+1)/5(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5

)
.

The conclusion follows from the latter, (4.5) and (4.6) and the Hölder inequality
∫

|∇εu|pφ2p ≤
∫

|∇εu|2pφ2p +

∫
φ2p.

�
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Next we iterate once the previous result

Theorem 4.4. Let p ≥ 3 be fixed and u be a function satisfying the bound (2.1). Consider a function
f ∈ C∞(Ω), and z a smooth solution of equation (2.8). Let Ω1, Ω2 so that Ω1 ⊂⊂ Ω2 ⊂⊂ Ω. There exists a
constant C, which depends on p, on Ωi, and on the constant M in (2.2), but is independent of ε or z such
that

||z||p+1/2

W
2,p+1/2
ε (Ω1)

+
∑

|I|=2

|||∇I
εz|(p−1)/2||2

W 1,2
ε (Ω1)

≤

≤ C
(
||f ||(2p+1)/5

W
1,(2p+1)/5
ε (Ω2)

+ ||v||4p+2

W 1,4p+2
ε (Ω2)

+

+||u||4p+2

W 2,4p+2
ε (Ω2)

+ ||u||2p/3

W
3,2p/3
ε (Ω2)

+ ||z||4p+2

W 1,4p+2
ε (Ω2)

+ ||z||2p/3

W
2,2p/3
ε (Ω2)

+ 1
)
.

Here I is a multi-index and ∇I
εz denotes derivatives of order |I| along Xi,u, i = 1, 2.

Proof. If z is a solution of (2.8) then, by Lemma 2.7 the function s2 = X2z is a solution of the equation:

Mεs2 = f̃0

where

f̃0 = X2f − Xi

(
ai1(∇εu)√
1 + |∇εu|2

∂2uX2z

)
−

−Xi

(
X2

( aij(∇εu)√
1 + |∇εu|2

)
Xjz

)
− ∂2uX2

(
a1j(∇εu)√
1 + |∇εu|2

Xjz

)
.

Let us choose Ω3 such that Ω1 ⊂⊂ Ω3 ⊂⊂ Ω2. By Theorem 4.3 there exists a constant C independent of ε
such that

(4.7) ||s2||p+1/2

W
1,p+1/2
ε (Ω3)

+ || |∇εs2|(p−1)/2||2
W 1,2

ε (Ω3)
≤

≤ C
(
||f̃0||(2p+1)/5

L(2p+1)/5(Ω2)
+ ||v||p

W 1,p
ε (Ω2)

+ ||u||2p

W 2,2p
ε (Ω2)

+ ||s2||4p+2
L4p+2(Ω2) + 1

)
.

We note that for three fixed functions f, g, h,

||fgh||(2p+1)/5

L(2p+1)/5(Ω2)
≤

≤ ||f ||2p/3

L2p/3(Ω2)
+ ||g||4p(2p+1)/4p−3

L4p(2p+1)/4p−3(Ω2)
+ ||h||4p(2p+1)/4p−3

L4p(2p+1)/4p−3(Ω2)
≤

≤ ||f ||2p/3

L2p/3(Ω2)
+ ||g||4p+2

L4p+2(Ω2) + ||h||4p+2
L4p+2(Ω2) + C.

If follows that
||f̃0||(2p+1)/5

L(2p+1)/5(Ω2)
≤

≤ ||f ||(2p+1)/5

W 1,(2p+1)/5(Ω2)
+ ||∇2

εuv∇εz||(2p+1)/5

L(2p+1)/5(Ω2)
+ ||∇εv∇εz||(2p+1)/5

L(2p+1)/5(Ω2)
+

+||(∇2
εu)2∇εz||(2p+1)/5

L(2p+1)/5(Ω2)
+ ||(1 + ∇2

εu)v∇2
εz||

(2p+1)/5

L(2p+1)/5(Ω2)
+

+||∇3
εu∇εz||(2p+1)/5

L(2p+1)/5(Ω2)
+ ||∇2

εu∇2
εz||

(2p+1)/5

L(2p+1)/5(Ω2)
≤

≤ C
(
||f ||(2p+1)/5

W
1,(2p+1)/5
ε (Ω2)

+ ||v||4p+2

W 1,4p+2
ε (Ω2)

+

+||u||4p+2

W 2,4p+2
ε (Ω2)

+ ||u||2p/3

W
3,2p/3
ε (Ω2)

+ ||z||4p+2

W 1,4p+2
ε (Ω2)

+ ||z||2p/3

W
2,2p/3
ε (Ω2)

+ 1
)
.

Arguing in the same way with the function s1 = X1z we conclude the proof. �

Iterations of Theorem 4.3 yield the following
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Theorem 4.5. Let p ≥ 3, m ≥ 1 be a fixed positive integer and u be a function satisfying the bound (2.1).
Assume that f ∈ C∞(Ω), and let z be a smooth solution of equation (2.8) in Ω. If Ω1 ⊂⊂ Ω2 ⊂⊂ Ω then
there exists a constant C which depends on p, Ωi and on M in (2.2), but is independent of ε or z such that
the solution satisfies the following estimate

||z||p+1/2

W
m+1,p+1/2
ε (Ω1)

+
∑

|I|=m+1

|||∇I
εz|(p−1)/2||2

W 1,2
ε (Ω1)

≤

≤ C
(
||f ||(2p+1)/5

W
m,(2p+1)/5
ε (Ω2)

+ ||v||4p+2

W m,4p+2
ε (Ω2)

+

+||u||4p+2

W m+1,4p+2
ε (Ω2)

+ ||u||2p/3

W
m+2,2p/3
ε (Ω2)

+ ||z||4p+2

W m,4p+2
ε (Ω2)

+ ||z||2p/3

W
m+1,2p/3
ε (Ω2)

+ 1
)
.

5. A priori estimates for the non-linear approximating PDE

We now return to the equation Lεu = 0. Let u be a smooth solution satisfying (2.1). In view of Proposition
2.1 and Theorem 3.1 (i) we have the following statement: for every open set Ω1 ⊂⊂ Ω there exists a positive
constant constant C which depends on Ω1 and on M in (2.2), but is independent of ε such that

(5.1) ||u||
W

2,10/3
ε (Ω1)

+ ||∂2u||W 1,2
ε (Ω1) + ||u||C1,α

E (Ω1)
≤ C.

Our first step is the higher integrability of the Hessian of u. The proof rests on the estimates obtainted
from the freezing technique in Theorem 3.1 and from a new Euclidean2 Cacciopoli inequality (5.8).

Lemma 5.1. Let u be a smooth solution of
Lεu = 0,

in Ω ⊂ R
2 satifying (2.1) and denote v = ∂2u. For every open set Ω1 ⊂⊂ Ω, for every p ≥ 1 there exists a

positive constant C which depends on Ω1, p, and on M in (2.2), but is independent of ε such that

||u||p
W 2,p

ε (Ω1)
+ ||∇εv||4L4(Ω1) ≤ C.

Proof. In view of Lemma 2.5 the function v = ∂2u satisfies the equation:

Xi

( aij(∇εu)√
1 + |∇εu|2

Xjv
)

= f,

with

f = − a11(∇εu)√
1 + |∇εu|2

v3 − 3
a1j(∇εu)√
1 + |∇εu|2

vXjv − Xi

( ai1(∇εu)√
1 + |∇εu|2

)
v2

Hence, applying Lemma 4.2 one has

(5.2)

∫
|∇ε(|∇εv|(p−1)/2)|2φ2p ≤ C

(∫ (
|∇εφ|2 + φ2

)p
+

+

∫
(|∇εv|p+1/2)φ2p +

∫
|X2(∂2u)|pφ2p +

∫
|f |(2p+1)/7φ2p+

+

∫
|f |(2p+1)/5(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5+

+

∫
|∇2

εu||∇εv|p−1φ2p +

∫
|∇2

εu|2|∇εv|p−1φ2p +

∫
|∇2

εu||∇εv|p−1φ2p−1|∇εφ|
)
.

There exist positive constants C1 = C1(|∇εφ|, φ, M) and C2 = C2(M) such that for p = 3 we obtain

2rather than subelliptic
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(5.3)

∫
|∇2

εv|2φ6 ≤ C1 + C2

(∫
|∇εv|3+1/2φ6 +

∫
(1 + |∇εv| + |∇2

εu|)7/5φ23/5(|∇εφ| + φ)7/5+

+

∫
|∇2

εu||∇εv|2φ6 +

∫
|∇2

εu|2|∇εv|2φ6 +

∫
|∇2

εu||∇εv|2φ5|∇εφ|
)
.

It follows that

(5.4)

∫
|∇2

εv|2φ6 ≤ C2

δ

∫
|∇2

εu|4φ6 + δ

∫
|∇εv|4φ6 +

C1

δ
.

Analogously, if we set z = X1u, or z = X2u, using Lemma 2.4 and arguing as above we have

(5.5)

∫
|∇2

εz|2φ6 ≤ C2

δ

∫
|∇2

εu|4φ6 +
C1

δ
+ C2

∫
|∇εv|3φ6

Using Lemma 2.3, (5.4) and (5.1), we obtain immediately
∫

|∇εv|4φ6 ≤ C1 + C2

∫
|∇2

εv|2φ6 ≤ C1 +
C2

δ

∫
|∇2

εu|4φ6 + δ

∫
|∇εv|4φ6

Hence

(5.6)

∫
|∇εv|4φ6 ≤ C1 + C2

∫
|∇2

εu|4φ6

Consequently, from the latter and (5.5) we deduce that

(5.7)

∫
|∇2

εz|4φ6 ≤ C1 + C2

∫
|∇2

εu|4φ6

Next, from the intrinsic Cacciopoli inequalities (5.6) and (5.7) we deduce an Euclidean Cacciopoli inequal-
ity: Note that

|∇EX1z| ≤ |X2
1z| + C2|∂2X1z| ≤ |X2

1z| + C2|v∂2z| + C2|X1∂2z| ≤
(since ∂2z = ∂2X1u = v2 + X1v)

|∇2
εz|+ C2|∇2

εv| + C2|∇εv| + C2.

From the latter and (5.6) and (5.7) we infer

(5.8)

∫
|∇E∇εz|2φ6 ≤ C2

(∫
|∇2

εv|2φ6 +

∫
|∇2

εz|2φ6 + 1
)
≤ C2

∫
|∇εz|4φ6 + C1

Now we can apply the standard Euclidean Sobolev inequality in R
2 and obtain

( ∫
(|∇εz|φ3)6

)1/3

≤ C2

∫
|∇E(∇εzφ3)|2 ≤ C2

∫
|∇εz|4φ6 + C1 ≤

(using Hölder inequality )

≤ C2

( ∫
(|∇εz|φ3)6

)1/3( ∫

supp(φ)

|∇εz|3
)2/3

+ C1.

By (5.1) and the fact that |∇εz| ≤ |∇2
εu|, we already know that |∇εz| ∈ L3

loc. In fact
(∫

supp(φ)

|∇εz|3
)2/3

≤
(∫

supp(φ)

|∇εz|10/3
)3/5

|supp(φ)|1/15.

Recall that C2 doen not depend on |∇εφ|. If we choose the support of φ sufficiently small, we can assume
that the integral

∫
supp(φ) |∇εz|3 is arbitrarily small. It follows that

( ∫
(|∇εz|φ3)6

)1/3

≤ C1
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and consequently, by (5.6) ∫
|∇εv|4φ6 ≤ C1

But this implies that |∇E(∇εu)| ≤ |∇2
εu| + |∇εv| + v2 ∈ L4

loc. This implies, buy the standard Euclidean
Sobolev Morrey inequality in R

2 that

∇εu ∈ C
1/2
E .

By Theorem 3.1 (ii) it then follows that for every r > 1 there exists a constant C > 0 independent of ε
such that

||∇2
εu||W 2,r ≤ C1.

�

In order to boostrap regularity we apply Theorem 4.5 to the non linear equation Lεu = 0, and obtain
immediately the following:

Lemma 5.2. Let u be a smooth solution of Lεu = 0, satisfying (2.1). Set z = Xiu, i = 1, 2 v = ∂2u. For
every open set Ω1 ⊂⊂ Ω2 ⊂⊂ Ω, for every p ≥ 3, and every integer m ≥ 2 there exist a constant C which
depend on p, m Ωi and on M in (2.2), but is independent of ε such that the following estimates hold

(5.9) ||z||p+1/2

W
m,p+1/2
ε (Ω1)

+ ||v||p+1/2

W
m,p+1/2
ε (Ω1)

≤

≤ C
(
||v||4p+2

W m−1,4p+2
ε (Ω2)

+ ||z||4p+2

W m−1,4p+2
ε (Ω2)

+ ||v||2p/3

W
m,2p/3
ε (Ω2)

+ ||z||2p/3

W
m,2p/3
ε (Ω2)

+ 1
)
.

(5.10) ||z||2
W m+1,2

ε (Ω1)
+ ||v||2

W m+1,2
ε (Ω1)

≤

≤ C
(
||v||14

W m−1,14
ε (Ω2)

+ ||z||14
W m−1,14

ε (Ω2)
+ ||v||2

W m,2
ε (Ω2)

+ ||z||2
W m,2

ε (Ω2)
+ 1
)
.

Proof. In view of Lemma 2.5 the function v solves an equation of the form

Mεv = fv,

with

(5.11) fv = − a11(∇εu)√
1 + |∇εu|2

v3 − 3
a1j(∇εu)√
1 + |∇εu|2

vXjv − Xi

( ai1(∇εu)√
1 + |∇εu|2

)
v2.

Analogously, the function z = Xiu solves the equation

Mεz = fz,

of the form with

(5.12) fz = −[Xk, Xi]
( Xiu√

1 + |∇εu|2
)
− Xi

( aij(∇εu)√
1 + |∇εu|2

[Xk, Xj ]u
)
.

Hence

(5.13) |fv| + |fz| ≤ C(1 + |∇εv| + ∇εz|),
for some constant C depending only on M in (2.2).

Applying Theorem 4.5 to z and to v, yields:

||z||p+1/2

W
m,p+1/2
ε (Ω1)

+ ||v||p+1/2

W
m,p+1/2
ε (Ω1)

+
∑

|I|=m

|||∇I
εz|(p−1)/2||2

W 1,2
ε (Ω1)

+
∑

|I|=m

|||∇I
εv|(p−1)/2||2

W 1,2
ε (Ω1)

≤

≤ C
(
||fz||(2p+1)/5

W
m−1,(2p+1)/5
ε (Ω2)

+ ||fv||(2p+1)/5

W
m−1,(2p+1)/5
ε (Ω2)

+
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+||v||4p+2

W m−1,4p+2
ε (Ω2)

+ ||u||4p+2

W m,4p+2
ε (Ω2)

+ ||u||2p/3

W
m+1,2p/3
ε (Ω2)

+

+||z||4p+2

W m−1,4p+2
ε (Ω2)

+ ||z||2p/3

W
m,2p/3
ε (Ω2)

+ ||v||4p+2

W m−1,4p+2
ε (Ω2)

+ ||v||2p/3

W
m,2p/3
ε (Ω2)

+ 1
)
≤

(substituting (5.13) in the latter)

≤ C
(
||∇εz||(2p+1)/5

W
m−1,(2p+1)/5
ε (Ω2)

+ ||∇εv||(2p+1)/5

W
m−1,(2p+1)/5
ε (Ω2)

+

+||z||4p+2

W m−1,4p+2
ε (Ω2)

+ ||z||2p/3

W
m,2p/3
ε (Ω2)

+ ||v||4p+2

W m−1,4p+2
ε (Ω2)

+ ||v||2p/3

W
m,2p/3
ε (Ω2)

+ 1
)
≤

(using Hölder inequality)

≤ C
(
||z||4p+2

W m−1,4p+2
ε (Ω2)

+ ||z||2p/3

W
m,2p/3
ε (Ω2)

+ ||v||4p+2

W m−1,4p+2
ε (Ω2)

+ ||v||2p/3

W
m,2p/3
ε (Ω2)

+ 1
)
.

We have proved (5.9) and substituting p = 3 yields (5.10)
�

The main result of this section is the following a priory regularity estimates for solutions of the approxi-
mating non linear equation:

Theorem 5.3. Let u be a smooth solution of

Lεu = 0,

in Ω ⊂ R
2, satisfying (2.1). For every open set Ω1 ⊂⊂ Ω, for every p ≥ 3, and every integer m ≥ 2 there

exist a constant C which depends on p, m Ω1 and on M in (2.2), but is independent of ε such that the
following estimates holds

(5.14) ||u||W m,p
ε (Ω1) + ||∂2u||W m,p

ε (Ω1) ≤ C.

Proof. The proof follows from the estimate

(5.15) ||X1u||W m−1,p
ε (Ω1) + ||∂2u||W m−1,p

ε (Ω1) + ||X1u||W m,2
ε (Ω1) + ||∂2u||W m,2

ε (Ω1) ≤ C,

which we prove by induction.

First step: m = 2
By Lemma 5.1 we already know that there exists a constant such that for every p

(5.16) ||u||p
W 2,p

ε (Ω1)
≤ C1.

We need to show that v ∈ W 1,p
εloc for every p, and that X1u, v ∈ W 2,2

εloc.
Note that we can not yet invoke Lemma 5.2, since it only apply to higher order derivatives.
Recall that v is a solution of Mεv = fv, where fv is defined in (5.11) By Theorem 4.3 there exist a constant

C such that

∫
|∇εv|p+1/2φ2p +

∫
|∇ε

(
|∇εv|(p−1)/2

)
|2φ2p ≤

≤ C
(∫

|v|4p+2φ2p +

∫ (
φ2 + |∇εφ|2

)p
+

∫
|∇ε(∂2u)|pφ2p+

+

∫ (
|fv|(2p+1)/7φ2p + |fv|(2p+1)/5(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5

)
+

∫
|∇2

εu|2pφ2p
)
≤

(using (5.13), (5.1) and (5.16) )

≤ C
(
1 +

∫
|∇εv|(2p+1)/5(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5 +

∫
|∇ε(∂2u)|pφ2p

)
≤



REGULARITY OF NON-CHARACTERISTIC MINIMAL GRAPHS IN H
1 29

≤ C
(
1 +

∫
|∇εv|p(|∇εφ| + φ)(2p+1)/5φ(8p−1)/5

)
.

From Lemma 5.1 the right hand side is bounded for p = 4. An obvious boostrap argument yields ∇εv ∈ Lp
loc

for every p. Moreover, choosing p = 3, we also infer

∇2
εv ∈ L2

loc.

To conclude the first iteration step we observe that the function z = X1u solves Mεz = fz, where fz is
defined in (5.12). Theorem 4.3 and estimate (5.13) yield that there exists a constant C such that

∫
|∇εz|p+1/2φ2p +

∫
|∇ε

(
|∇εz|(p−1)/2

)
|2φ2p ≤ C.

Choosing p = 3 we obtain X1u ∈ W 2,2
εloc

Main iteration step: m > 2
Assume (5.15) holds for for a fixed value of m.
Let Ω2 be as in Lemma 5.2. In view of that result we infer

(5.17) ||z||p+1/2

W
m,p+1/2
ε (Ω1)

+ ||v||p+1/2

W
m,p+1/2
ε (Ω1)

≤

≤ C
(
||v||4p+2

W m−1,4p+2
ε (Ω2)

+ ||z||4p+2

W m−1,4p+2
ε (Ω2)

+ ||v||2p/3

W
m,2p/3
ε (Ω2)

+ ||z||2p/3

W
m,2p/3
ε (Ω2)

+ 1
)
≤

by induction assumption

≤ C
(
||v||2p/3

W
m,2p/3
ε (Ω2)

+ ||z||2p/3

W
m,2p/3
ε (Ω2)

+ 1
)
.

The same boostrap argument used above implies v, z ∈ Wm,p
εloc for every p.

Invoking (5.10)

(5.18) ||z||2
W m+1,2

ε (Ω1)
+ ||v||2

W m+1,2
ε (Ω1)

≤

≤ C
(
||v||14

W m−1,14
ε (Ω2)

+ ||z||14
W m−1,14

ε (Ω2)
+ ||v||2

W m,2
ε (Ω2)

+ ||z||2
W m,2

ε (Ω2)
+ 1
)
≤ C,

concluding the proof. �

6. Estimates for the viscosity solution

In this section we turn our attention to the proof of regularity for vanishing viscosity solutions u of

equation (1.2). The regularity is expressed in terms of the intrinsic Sobolev spaces W k,p
0 (Ω) and rests on the

a priori estimates proved in the previous section in the limit ε → 0.
Let u be a vanishing viscosity solution, and (uj) denote its approximating sequence, as defined in Definition

1.1. For each εj and function uj we set X1,j = ∂1 + uj∂x2 , X2,j = εj∂x2 the corresponding vector fields, and
let ∇εj and W k,p

εj
(Ω) denote the natural gradient and Sobolev spaces. We also let u , X1 = ∂1 + u∂2, and

∇0 = (X1, 0) denote the coefficients and vector fields associated to the limit equation and the limit solution

u, while W k,p
0 (Ω) will be the associated Sobolev space. Note that ∇E and W k,p

E (Ω) are the usual gradient
and Sobolev space.

Theorem 6.1. Let u ∈ Lip(Ω) be a vanishing viscosity solution of (1.2), and set vj = ∂2uj. For every ball
B(R) ⊂⊂ Ω and p > 1 there exists a constant C > 0 such that

(6.1) ||∇εj uj ||W 1,p
E (B(R)) + ||vj ||L∞(B(R)) + ||vj ||W 1,2

εj
(B(R)) ≤ C

and

(6.2) X1,juj → Xu, X2,juj → 0



30 LUCA CAPOGNA, GIOVANNA CITTI, AND MARIA MANFREDINI

as j → +∞ weakly in W 1,2
E,loc(Ω). Moreover equation (1.2) can be represented as

X2u = 0

and is satisfied weakly in the Sobolev sense, and hence, pointwise a.e. in Ω, i.e.
∫

Ω

XuX∗φ = 0 for all φ ∈ C∞
0 (Ω).

Proof. The uniform bound on ||vj ||L∞(B(R)) follows from the definition of vanishing viscosity solution. The
bound on ||vj ||W 1,2

εj
(B(R)) is a consequence of (5.14). To prove the remaining estimate observe that for any

function w: ∂2X1,jw = X1,j∂2w + ∂2uj∂2w. Substituting w = uj and in view of (5.14) we see that there
exists positive constants C1, C2 depending only on the uniform bound on ||vj ||L∞(B(R)) such that for any
p ≥ 1,

(6.3) ||∂1∇εj uj||Lp(B(R) + ||∂2∇εj uj||Lp(B(R)

≤ ||X1,j∇εj uj||Lp(B(R) + ||(1 + |uj |)∂2∇εj uj||Lp(B(R)

≤ ||uj||W 2,p
ε (B(R)) + C1||vj ||W 1,p

ε (B(R)) + C2 ≤ C,

for a new constant C > 0 independent of j. The weak regularity of u and the weak Sobolev convergence
follow in a standard fashion.

Next we address the PDE: Since for every j the approximating solution uj is of class C∞ then we can use
the non divergence form of the equation

2∑

h,k=1

ahk(∇juj)Xh,jXk,juj = 0.

Here

ah,k(∇juj) → ah,k(∇0u) = δh1δk1 in Lp,

while

(6.4) X1,juj → Xu, X2,juj → 0

as j → +∞ weakly in W 1,2
loc (Ω). Hence letting j go to ∞ in the non divergence form equation we conclude

X2u = 0

in the Sobolev sense. �

An analogous result holds for higher order derivatives:

Proposition 6.2. For every k ∈ N for every p > 1 and for every multiindex I of length k, the sequence
(∇I

εj
uj) is bounded in W 1,p

E,loc(Ω). Moreover

Xk
1,juj → Xku, and Xk

2,juj → 0

weakly in W 1,p
E (Ω) as j → ∞. We will express this convergence in the notation

∇I
εj

uj → DI
0u as j → +∞, weakly in W 1,p

E (Ω).
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Proof. Arguing as in the previous result and using (5.14), and (6.1) we deduce that for every ball B(R) ⊂⊂ Ω

there exist C1, C2, C̃ independent of j, such that

||∂2D
I
εj

uj||Lp(B(R)) ≤ C1

∑

|J|≤|I|

||DJ
εj

vj ||Lp(B(R)) + C2 ≤ C̃,

||∂xDI
εj

uj ||Lp(B(R)) ≤ ||X1,jD
I
εj

uj||Lp(B(R)) + ||uj∂2D
I
εj

uj||Lp(B(R)) ≤ C̃,

so that (∇I
εj

uj) is bounded in W 1,p
E,loc(Ω) for every p > 1, and every multi-index I. Let us prove that the

weak limit is DI
0u. If |I| = 1 the assertion is true by (6.2). If I is a multi-index such that |I| = k, we can

assume by simplicity that I = (1, I ′), where |I ′| = k − 1. We can also assume by inductive hypothesis that

∂2uj → ∂2u as j → ∞ weakly in Lp(Ω)

uj → u as j → ∞ in Lp
loc(Ω)

∇I′

εj
uj → DI′

0 u as j → ∞ in Lp
loc(Ω).

Then integrating by parts

lim
j→∞

∫
∇I

εj
ujφ = − lim

j→∞

∫
∇I′

εj
ujXjφ −

∫
∂2uj∇I′

εj
ujφ =

= −
∫

DI′

0 uXφ−
∫

∂2uDI′

0 uφ,

and this ensures the weak convergence of (DI
εj

uj) to DI
0u. �

Remark 6.3. In view of the Ascoli-Arzelá theorem and the Morrey-Sobolev embedding one has convergence
Xk

1,juj → Xku in the Cα norm on compact subsets of Ω for all α ∈ (0, 1).

We can now prove the main regularity properties of the limit function u:

Proposition 6.4. For every k, and for every p > 1 the function z = Xku belongs to W 1,p
E,loc(Ω) and it is an

a.e. solution of

(6.5) X2z = 0 in Ω.

In particular

(6.6) Xku ∈ Cα
loc(Ω)

for every 0 < α < 1.

Proof. Since u is a vanishing viscosity solution of X2u = 0 in Ω, then Proposition 6.2 implies X2u ∈
W 1,p

E,loc(Ω) for all p ≥ 1. As X2u = 0 a.e. in Ω, then a simple iteration shows that all the derivatives

X2Xku vanish a.e. in Ω. The Hölder regularity (6.6) follows from the classical Morrey-Sobolev embedding
theorem. �

We can now give a new pointwise definition of derivative in the direction of vector fields X1 and X2.

Definition 6.5. Let X be a Lipschitz vector field on Ω and let ξ0 ∈ Ω and γ be a solution to problem
γ′ = X(γ), γ(0) = ξ0.

We say that a function f ∈ Cα
loc(Ω), with α ∈]0, 1[, has Lie-derivative in the direction of the vector field

X in ξ0 if there exists
d

dh
(f ◦ γ)|h=0,

and we will denote its value by Xf(ξ0).
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If the weak derivative of a function f is sufficiently regular, then the two notions of derivatives coincide.
For the proof of the following result see [13, Remark 5.6].

Proposition 6.6. If f ∈ Cα
loc(Ω) for some α ∈]0, 1[ and its weak derivatives Xf ∈ Cα

loc(Ω), ∂2f ∈ Lp
loc(Ω)

with p > 1/α, then for all ξ ∈ Ω the Lie-derivatives Xf(ξ) exist and coincide with the weak ones.

We are now ready to prove the result concerning the foliation
Proof of Corollary 1.6 The equation γ′ = X(γ) has an unique solution, of the form

γ(x) = (x, y(x)),

where y′(x) = u(x, y(x)). In view of the regularity of u and of the previous proposition then y′′(x) =
Xu(x, y(x)), and y′′′(x) = X2u(x, y(x)) = 0. This shows that γ is a polynomial of order 2 and concludes the
proof. �
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[37] Ritoré, M., and Rosales, C. Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group

H
n. J. Geom. Anal. 16, 4 (2006), 703–720.

[38] Rothschild, L. P., and Stein, E. M. Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 3-4 (1976),
247–320.
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