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SMOOTHNESS OF LIPSCHITZ MINIMAL INTRINSIC GRAPHS

IN HEISENBERG GROUPS H
n, n > 1

LUCA CAPOGNA, GIOVANNA CITTI, AND MARIA MANFREDINI

Abstract. We prove that Lipschitz intrinsic graphs in the Heisenberg groups
H

n, with n > 1, which are vanishing viscosity solutions of the minimal surface
equation are smooth.

1. Introduction

The Heisenberg group is a Lie group with Lie algebra R
2n+1 endowed with a

stratification V1 ⊕ V2, where V1 has dimension 2n, and V2 = [V1, V1] has dimension
1. Since we are interested in non-characteristic graphs, it is convenient that we use
canonical coordinates of the second kind (the so called polarized coordinates [6])
and denote (s, x) the elements of the group, where x = (x1, ..., x2n). Accordingly
we will choose a basis of the Horizontal tangent space V1 as follows:

Xs = ∂s, Xi = ∂i, for i = 1, ..., n − 1,

Xi = ∂i − xi−n+1∂2n, for i = n, ..., 2n− 1.
(1.1)

This set of vectors can be completed to be a basis of the tangent space by adding
the vector

∂2n ∈ V2.

The notion of intrinsic regular surface has been studied in [22], [13]. Such a
surface is the graph of a function u : R

2n → R, and can be represented as

M = {(s, x) : s = u(x)}.

Note that C1 intrinsic graphs are always non-characteristic1. According to a version
of the implicit function theorem ([22] and [13]), any level surface {f(s, x) = c} ⊂ H

n

of functions f : H
n → R with continuous derivatives along the directions (1.1),

can locally (near non-characteristic points) be expressed as an intrinsic graph of
a function u : Ω → R, Ω ⊂ R

2n. Moreover the C1
H smoothness of f implies that

the function u is regular with respect to the projection on its domain of the vector
fields in (1.1) (see [13] and [1]). Since Xs has null projection of the domain of u,
the regularity of this function will be described in terms of the vector fields:

(1.2) Xi,u = Xi for i ≤ 2n − 2, X2n−1,u = ∂2n−1 + u(x)∂2n,

In particular X2n−1,u is a non linear vector field, since it depends on u. Note that
the vector fields X1,u, ..., X2n−1,u, satisfy Hörmander’s finite rank condition in R

2n.

1991 Mathematics Subject Classification. 35H20, 53A10, 53C17.
Key words and phrases. regularity of solutions of PDE, minimal surfaces, sub-Riemannian

geometry, Heisenberg group
The authors are partially funded by NSF Career grant DMS-0124318 (LC) and by INDAM (GC)
and (MM).

1 i.e. TpM 6= span{Xs, X1, ...,X2n−1}(p), for all p ∈ M

1
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2 LUCA CAPOGNA, GIOVANNA CITTI, AND MARIA MANFREDINI

Consequently they give rise to a control distance du, whose metric balls Bu(x, r)
have volume comparable to rQ, with Q = 2n + 1 the homogenous dimension of the
space (R2n, du).

The notion of mean curvature has been recently introduced as the first variation2

of the area functional. Several first variation formula have been independently
established in receent years, see for instance [18], [7], [8], [4], [32], [33], [27], [28],
[35], [36]. For an introduction to the sub-Riemannian geometry of the Heisenberg
group and a more detailed list of references see [6]. The prescribed mean curvature
equation for intrinsic graphs (over Ω ⊂ R

2n) in the Heisenberg groups of dimension
n > 1 has the following expression

(1.3) Lu =
2n−1∑

i=1

Xi,u

(
Xi,uu√

1 + |∇uu|2

)
= f, for x ∈ Ω ⊂ R

2n.

where
∇u = (X1,u, . . . , X2n−1,u).

If u ∈ C2(Ω) is a solution of (1.3) for f = 0 then its graph is a critical point of the
perimeter and consequently it is called a minimal intrinsic graph.

Properties of regular minimal surfaces have been investigated in [24], [31], [8],
[7], [23], [19], [2] and [29].

Since minimal surfaces arise as critical points of the perimenter functional, the
variational formulation naturally provides several notions of non regular solutions
(see for instance [24], [31] and [7]). Indeed existence of BV minimizers of the perime-
ter is proved in [24], [31] using direct methods of the calculus of variations, More
recently, existence of Lipschitz continuous vanishing viscosity solutions has been
studied in [7]. Such solutions arise as the sub-Riemannian mean curvature equa-
tion is approximated by Riemannian problems which express the mean curvature
in an approximating Riemannian metrics (see [31] and [7] for the relation between
Riemannian and sub-Riemannian curvature). The Riemannian approximation of
(1.3) is

(1.4) Lεu =

2n∑

i=1

Xε
i,u

(
Xε

i,uu
√

1 + |∇ε
uu|2

)
= f, for x ∈ Ω ⊂ R

2n.

where

(1.5) Xε
i,u = Xi,u for i ≤ 2n− 1, Xε

2n,u = ε∂2n and ∇ε
u = (Xε

1,u, . . . , Xε
2n,u).

Definition 1.1. Letting C1
E denote the standard Euclidean C1 norm, we will say

that an Euclidean Lipschitz continuous function u is a vanishing viscosity solution
of (1.3) in an open set Ω, if there exists a sequence uε of smooth solutions of (1.4)
in Ω such that for every compact set K ⊂ Ω

• ||uε||C1
E

(K) ≤ C for every ε;
• uε → u as ε → 0 pointwise a.e. in Ω.

As mentioned above, existence of this type of viscosity solutions in the case
of t−graphs, i.e. graphs of the form x2n = g(s, x1, ..., x2n−1), has been proved
in [7, Theorem A and Theorem 4.5]. For such graph the corresponding PDE is
more degenerate than (1.4) as characteristic points are allowed (indeed, much of

2For variations which do not move the characteristic set
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the analysis in [7] and [8] is focused on the study of solutions near such points).
In the same paper the authors prove that such solutions are minimizers of the
perimeter and address questions of uniqueness and comparison theorems as well.
The problem of regularity of minimal surfaces is still largely open. In this paper
we address the issue of regularity away from characteristic points. Our goal is to
prove the following

Theorem 1.2. The Lipschitz continuous vanishing viscosity solutions of (1.3) with
zero right-hand-side f = 0 are smooth functions.

Invoking the implicit function theorem, we want to apply Theorem 1.2 to the
study of the regularity away from the characteristic locus of the Lipschitz perimeter
minimizers found in [7] for the case H

n, n > 1. Here and in the following ∇E

denotes the Euclidean gradient in R
2n. We also denote by (y1, ..., y2n+1) exponential

coordinates of the first kind3, defined by exp(y1Xs +
∑2n−1

i=1 yi+1Xi + y2n+1∂2n) =

exp(sXs)[Π
2n−1
i=1 exp(xiXi)] exp(x2n∂2n).

Corollary 1.3. Let O ⊂ R
2n be a strictly convex, smooth open set, ϕ ∈ C2,α(Ō)

and for each (y1, ..., y2n) ∈ O denote by (y1, ..., y2n)∗ = (y2,−y1, y4,−x3, ...). Con-
sider the family

{gε(y1, ..., y2n)}ε sup
O

|gε| + sup
O

|∇Egε| ≤ C (uniformly in ε),

of smooth solutions of the approximating minimal surface PDE

div

(
∇Egε + (y1, ..., y2n)∗√

ε2 + |∇Egε + (y1, ..., y2n)∗|

)
= 0 in O and gε = ϕ in ∂O

found in [7, Theorem 4.5]. If for p0 = (ps
0, p

1
0, ..., p

2n−1
0 ) ∈ O, a > 0 and for every

ε > 0 we have |∂y1gε(p0)| > a > 0 (or any other partial derivative is non-vanishing
at p0 uniformly in ε) then there is a sequence εk → 0 such that the Lipschitz
perimeter minimizer g = limεk→0 gεk

is smooth in a neighborhood of the point p0.

Proof. The implicit function theorem and a change of coordinates imply that the
level set of

y2n+1 − gε(y1, ..., y2n)

can be written as smooth intrinsic graphs s = uε(x) in a neighborhood of p0, with
uε defined in an open set Ω ⊂ R

2n. The Lipschitz bounds on gε (proved in [7,
Propositions 4.2-4]) yield uniform Lipschitz bounds on uε, thus allowing to apply
Theorem 1.2 and conclude the proof. �

We remark that in the case n = 1 of the first Heisenberg group the regularity of
vanishing viscosity minimal intrinsic graphs is quite different. In the forthcoming
paper [5] we study this problem and prove a form of intrinsic regularity, with
differentiability along the Legendrian foliation of the minimal graph.

Equation (1.3) is an uniformly elliptic approximation of a subelliptic equations.
The defining vector fields have Lipschitz coefficients and satisfy a weak Hörmander
condition, since together with their first order vector fields they span the space at
every point. The main difficulty of the proof is to handle the vector field

X2n−1,u = ∂2n−1 + u(x)∂2n

3these are the coordinates used in [7].
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and the dependence on ε. A similar difficulty arises in problems of mathematical
finance. For example in [16], [17], it was proved that the viscosity solutions of the
following equation are C∞

X2
1u + X2u = 0

where X1 = ∂xx,X2 = ∂yu + u∂zu, satisfy a weak Hörmander condition analogue
to the one in the present paper. The techniques in [16], [17], provide the main
inspiration for the proof of Theorem 1.2.

The regularity of solutions will be measured in terms of the natural norm of the
intrinsic Hölder class C1,α

u , i.e. functions f such that ∇ε
uf is Hölder continuous,

with respect to the control distance du. The proof will be accomplished in two
steps:

STEP 1 First prove that the Lipschitz continuous solutions are of class C1,α
u .

Since the operator Lε in (1.4) is represented in divergence form, then by differen-
tiating the PDE and combining several horizontal and “vertical” energy estimates,
it is possible to prove a Euclidean Cacciopoli-type inequality for the intrinsic gra-
dient ∇ε

uu of the solution. The Moser iteration technique will then lead to Hölder
continuous estimates uniform in ε for the gradient. This step holds also for n = 1.

STEP 2 We prove the smoothness of the solution. In order to do so we first
note that the operator Lε can also be represented in a divergence form:

(1.6) Lεu =

2n∑

i,j=1

aε
i,j(∇

ε
uu)Xε

i,uXε
j,uu,

where

aε
ij : R2n → R aε

ij(p) = δij −
pipj

1 + |p|2
.

For every fixed point x0 we will approximate the assigned operator with a linear,
uniformly subelliptic operator in divergence form Lε,x0 , with C∞ coefficients. The
approximation is carried out through a ad-hoc freezing technique, where the func-
tion u in the coefficients of the vector field is substituted with polynomials, in a
technique reminiscent of the work of Rothschild and Stein [34]. The novel difficulty
arises from the non-smoothness of u, and has to be dealt with through a delicate
bootstrap argument. The existence of a fundamental solution Γε

x0
for such operator

as well as its estimates, uniform in ε, have previously been proved in the papers [3]
and [12]. Eventually Γε

x0
will be used to define a parametrix for the fundamental

solution of Lε and to obtain estimates independent of ε, of the derivatives of any
order of the solution.

2. Notations and known results

2.1. Hölder classes. In the sequel we will always keep fixed a function ū ∈ C∞ =
C∞(Ω), with Ω ⊂ R

2n and consider the vector fields Xε
i,ū in (1.5), with coefficients

depending on the fixed function ū. Let us define a new vector field

Xε
2n+1,ū = ∂2n = [Xε

1,ū, Xε
n,ū],

which act as a second order derivative, and call degree of σi the natural number
deg(σi) = 1 for σi ≤ 2n, deg(2n + 1) = 2. Correspondingly the degree of any
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multi-index σ = (σ1, . . . , σm), σr ∈ {1, . . . , 2n + 1}, 1 ≤ r ≤ m ∈ N, will be:

deg(σ) =

m∑

i=1

deg(σi).

We will also denote the cardinality of σ = (σ1, . . . , σm) the number of its elements:

#(σ) = m.

We define the intrinsic derivative

(2.1) ∇ε
σ,ū = Xε

σ1,ū · · ·Xε
σm,ū,

and ∇εk
ū the vector field with components (∇ε

σū)deg(σ)=k.

Since the vector fields Xε
1,ū, ..., Xε

2n,ū, are the Riemannian completion of an
Hörmander type set of vectors, they give rise to a control distance dε,ū. The corre-
sponding metric balls are denoted Bε,ū(x, r). As ε → 0 the metric space (Ω, dε,ū)
converge in the Gromov-Hausdorff sense to (Ω, dū) (see [6]).

We next define the spaces of Hölder continuous functions related to the fixed
function ū.

Definition 2.1. Let x0 ∈ Ω, 0 < α < 1, assume that ū is a fixed Lipschitz
continuous function, and that u is defined on Ω. We say that u ∈ Cα

ū (Ω) if for every
compact set K there exists a positive constant M such that for every x, x0 ∈ K and
ε > 0

(2.2) |u(x) − u(x0)| ≤ Mdε,ū(x, x0).

Iterating this definition, if k ≥ 1, we say that u ∈ C
k,α
ū (Ω), if ∇ε

ūu ∈ C
k−1,α
ū (Ω).

2.2. Taylor approximation. The following result is well know for vector fields
with C∞ coefficients (see [30]) also holds for vector field is of the form ∂1 + ū∂2n,
with ū Lipschitz continuous with respect to the Euclidean distance. Let us first
denote by e1, . . . , e2n the canonical coordinates of a point x around x0,

x = exp(

2n−1∑

i=1

eiX
ε
i,ū + e2nXε

2n+1,ū)(x0)

and, for a multi-index σ = (σ1, . . . , σ2n) we will denote eσ = (eσ1 , . . . , eσ2n
).

We explicitly note that, since Xε
2n,u and Xε

2n+1,u are parallel, only one of them
can appear in the definition of canonical coordinates, otherwise the values of ei

would not be uniquely determined. Due to this fact, for every multi-index σ =
(σ1, · · ·σm), with components in {1, · · · 2n} we will denote I(σ) = (̺1, · · · ̺m), where
̺i = σi if σi 6= 2n, and ̺i = 2n + 1 if σi = 2n.

Theorem 2.2. Let x0 ∈ Ω, 0 < α < 1, k ∈ N ∪ {0} and assume that u ∈ C
k,α
ū (Ω).

Then we can define Taylor polynomial of order k the function

P k
x0

u(x) =

k∑

h=1

∑

deg(σ)=h,

σi 6=2n+1

1

#(σ)!
eσ∇

ε
I(σ),ūu(x0)

and we have

(2.3) u(x) = P k
x0

u(x) + O
(
dε,ū(x0, x)k+α

)
as x → x0.

We will also set P k
x0

u = 0 for any negative integer k.
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Note that

P 1
x0

u(x) =
2n−1∑

i=1

ei(x)Xε
i,ūu(x0) + e2n(x)Xε

2n+1,ūu(x0).

From the explicit expression of the Taylor polynomials of order less than 4 it is
possible to directly deduce the following result.

Remark 2.3. If u ∈ C
k,α
ū (Ω), 0 ≤ k ≤ 4, K is a compact subset of Ω and σ is a

multi-index, then there exists C > 0 such that

(2.4)
∣∣P k

x0
u(ξ) − P k

x u(ξ)
∣∣ ≤ Cdα

ε,ū(x0, x)dk
ε,ū(x0, ξ),

for every x, x0, ξ ∈ K, see [11, Lemma 3.6] and [16, Remarks 2.24 and 2.25].

2.3. Derivatives and Frozen derivatives. We will introduce here first order
operators with polynomial coefficients which locally approximate the vector fields
Xε

i,ū. These new vector fields are defined in terms of the Taylor development of the
coefficients of Xε

i,ū. Precisely, for any fixed point x0 we will call operator frozen at
the point x0

Xε
i,x0

= Xε
i,ū if i 6= 2n − 1, Xε

2n−1,x0
= ∂2n−1 + P 1

x0
ū(x)∂2n

and for every multi-index σ,

∇ε
σ,x0

= Xε
σ1,x0

· · ·Xε
σm,x0

,

and ∇εk
x0

will be the vector field with components (∇ε
σ,x0

)deg(σ)=k.

These frozen derivatives have been defined as approximation of the intrinsic
derivatives, depending on ū. In order to clarify this point, we recall the following
definition, given in [21] and [30]. If α ∈ R and f(x, x0) = O(dα

ε,ū(x, x0)) as x → x0,

we will say that the differential operator f(x, x0)∇
ε
σ,x0

has degree deg(σ) − α. We
have

Xε
i,ū = Xε

i,x0
if i 6= 2n − 1

Xε
i,ū = Xε

i,x0
+ (ū − P 1

x0
ū(x))∂2n if i = 2n − 1

Hence, if ū is of class C
1,α
ū , then (ū−P 1

x0
ū(x))∂2n is a differential operator of degree

1−α, while Xε
i,ū and Xε

i,x0
have degree 1. This means that the intrinsic derivative

is expressed as the frozen derivative, plus a lower order term.

More generally the following approximation result holds:

Lemma 2.4. If ū ∈ C
k−1,α
ū (Ω), and σ is a multi-index such that deg(σ) ≤ k, then

for every function ϕ ∈ C∞
0 (Ω) the derivative ∇ε

σ,ūϕ can be represented as

∇ε
σ,ūϕ =∇ε

σ,x0
ϕ+

∑

deg(ρ)−h≤deg(σ)

(ū − P 1
x0

ū)h
∑

deg(µ1)+···+deg(µk)≤k−1

deg(µk)≥0

Cρ,µi,σ,h

∏

1≤deg(µi)

∇ε
µ,ū(ū − P 1

x0
ū)∇ε

ρ,x0
ϕ,

(2.5)

where Cρ,µ,σ,h are suitable constants. In particular the operator ∇ε
σ,ūϕ(x) can be

identified as a differential operator of degree deg(σ) and represented in terms of
frozen derivatives.
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Proof. Since the function ϕ is of class C∞
0 (Ω), its Lie derivatives can be simply

computed as directional derivatives. By definition

(2.6) Xε
i,ūϕ = Xε

i,x0
ϕ + δi,2n−1(ū − P 1

x0
ū) ∂2nϕ.

Hence the assertion is true if deg(σ) = 1. If the assertion is true for any σ such

that deg(σ) = k, then we consider a multiindex σ such that deg(σ) = k +1. In this
case

σ = (σ1, σ̄),

where {
deg(σ̄) = k if σ1 6= 2n + 1

deg(σ̄) = k − 1 if k ≥ 3 and σ1 = 2n + 1

We have
∇ε

σ,ūϕ(x) = Xε
σ1,ū∇

ε
σ̄,ūϕ(x) =

by inductive assumption

= Xε
σ1,ū

(
∇ε

σ̄,x0
ϕ
)
+

∑

deg(ρ)−h≤deg(σ̄)

Xε
σ1,ū

(
(ū−P 1

x0
ū)h

∑

deg(µ1)+···deg(µk)≤k−1

deg(µk)≥0

Cρ,µi,σ̄,h

∏

1≤deg(µi)

∇ε
µ,ū(ū−P 1

x0
ū)∇ε

ρ,x0
ϕ
)
,

(also using (2.6))

= Xε
σ1,x0

∇ε
σ̄,x0

ϕ + δσ12n−1(ū − P 1
x0

ū)∂2n∇
ε
σ̄,x0

ϕ

+
∑

deg(ρ)−h≤deg(σ̄)

(ū−P 1
x0

ū)h−1Xε
σ1,ū(ū−P 1

x0
ū)

∑

deg(µ1)+···deg(µk)≤k−1

deg(µk)≥0

Cρ,µi,σ̄,h

∏

1≤deg(µi)

∇ε
µ,ū(ū−P 1

x0
ū)∇ε

ρ,x0
ϕ+

+
∑

deg(ρ)−h≤deg(σ̄)

(ū−P 1
x0

ū)h
∑

deg(µ1)+···+deg(µk)≤k−1

deg(µk)≥0

Cρ,µi,σ̄,hXε
σ1,ū

( ∏

1≤deg(µi)

∇ε
µ,ū(ū−P 1

x0
ū)
)
∇ε

ρ,x0
ϕ+

+
∑

deg(ρ)−h≤deg(σ̄)

(ū−P 1
x0

ū)h
∑

deg(µ1)+···+deg(µk)≤k−1

deg(µk)≥0

Cρ,µi,σ̄,h

∏

1≤deg(µi)

∇ε
µ,ū(ū−P 1

x0
ū)Xε

σ1,x0

(
∇ε

ρ,x0
ϕ
)

=

+δσ1,2n−1

∑

deg(ρ)−h≤deg(σ̄)

(ū−P 1
x0

ū)h+1
∑

deg(µ1)+···+deg(µk)≤k−1

deg(µk)≥0

Cρ,µi,σ̄,h

∏

1≤deg(µi)

∇ε
µ,ū(ū−P 1

x0
ū) ∂2n∇

ε
ρ,x0

ϕ.

Note that the first term satisfies

Xε
σ1,x0

∇ε
σ̄,x0

ϕ = ∇ε
σ,x0

ϕ.

The second term is (ū − P 1
x0

ū)∂2n∇
ε
σ̄,x0

ϕ. It can be considered one of the term
listed in the thesis, with h = 1, while ∂2n∇

ε
σ̄,x0

= ∇ε
ρ,x0

, for a suitable ̺, of degree
deg(̺) = k + 2. Hence deg(̺) − h = k + 1. Similarly, all the other terms are in the
form, indicated in the thesis (in both case, σ1 6= 2n+1 or k ≥ 3 and σ1 = 2n+1). �

The vector fields Xε
i,x0

satisfy an Hörmander type condition, hence they define

a control distance dε,x0(x0, ξ). The corresponding metric balls Bε,x0(x, r) have
volume comparable to r2n+1, and we will call

(2.7) Q = 2n + 1

the homogeneous dimension of the space (R2n, dε,x0). Note that the homogeneous
dimension is the same as the Hausdorff dimension of (R2n, dū), defined in the in-
troduction. A simple modification of Proposition 2.4 in [16] yields the following
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relation between dε,x0 and the control distance dε,ū associated to the vector fields
Xε

i,ū :

Proposition 2.5. For every compact subset K of Ω, there exists a positive constant
C = C(K) such that for every x, x0, ∈ K

C−1dε,x0(x0, ξ) ≤ dε,ū(x0, ξ) ≤ Cdε,x0(x0, ξ),
dε,x0(x0, x) ≤ C(dε,x0(x0, ξ) + dε,ξ(ξ, x)),
dε,ū(x0, x) ≤ C(dε,ū(x0, ξ) + dε,ū(ξ, x)).

2.4. Linearized and frozen operator. In analogy with the definition of linear
vector fields, in terms of a fixed function ū, we can also define a linearization Lε,ū

of the operator Lε, written in terms of the linearized vector fields Xε
i,ū:

(2.8) Lε,ūu =

2n∑

i,j=1

aε
i,j(∇

ε
ūū)Xε

i,ūXε
j,ūu,

where aε
i,j are defined in (1.6). Since the function ū is fixed, the operator is a linear

non divergence type operator, whose coefficients have the regularity of the function
ū. In case ū is not smooth, it is natural to approximate it with a frozen operator,
defined in term of the vector fields Xε

i,x0
:

(2.9) Lε,x0u =

2n∑

i,j=1

aε
i,j(∇

ε
ūū(x0))X

ε
i,x0

Xε
j,x0

u,

where aε
ij are defined in (1.6). This is a divergence form uniformly subelliptic

operator with C∞ coefficients, which depends on ε. Hence it has a fundamental
solution Γε

x0
(see [3]), and its dependence on ε which can be handled as in [12].

Since Γε
x0

depends on many variables, the notation

Xε
i,x0

(x)Γε
x0

( · , ξ)

shall denote the Xε
i,x0

-derivative of Γε
x0

(s, ξ) with respect to the variable s, evaluated
at the point x.

Theorem 2.6. ([12] - Theorem 1.1) Let x0 ∈ Ω. For every compact set K ⊂ Ω
and for every p ∈ N there exist two positive constants C, Cp independent of ε, such
that

(2.10) |∇ε
σ,x0

(x)Γε
x0

(·, ξ)| ≤ Cp

d2−p
ε,x0

(x, ξ)

|Bε,x0(x, dε,x0(x, ξ))|
, deg(σ) = p

for every x, ξ ∈ K with x 6= ξ, where Bε,x0(x, r) denotes the ball with center x and
radius r of the distance dε,x0 . If p = 0 we mean that no derivative are applied on
Γε

x0
.

Remark 2.7. With the same notation as in preceding theorem, from Lemma 2.4,
and inequality (2.10) it follows that

(2.11) |∇ε
σ,ū(x)Γε

x0
(·, ξ)| ≤ Cp

d2−p
ε,x0

(x, ξ)

|Bε,x0(x, dε,x0(x, ξ))|
, deg(σ) = p

for every x, ξ ∈ K with x 6= ξ.

Hence, using Proposition 2.20 and 2.21 in ([16]) we have:
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Proposition 2.8. Let k ∈ N, 2 ≤ k ≤ 6. Let ū ∈ C
k−1,α
ū (Ω) and K be a compact

subset of Ω. There is a positive constant C independent of ε, such that
∣∣(∇ε

σ,ū(x) −∇ε
σ,ū(x0)

)
Γε

x0
(·, ξ)

∣∣

≤ C
(
dε,x0(x0, x)dε,x0(x0, ξ)

−Q−deg(σ)+1 + dε,x0(x0, x)αdε,x0(x0, ξ)
−Q−deg(σ)+2

)
,

(2.12)

and
∣∣∇ε

σ,ū(x)Γε
x(·, ξ) −∇ε

σ,ū(x)(x0)Γ
ε
x0

(·, ξ)
∣∣

≤ C
(
dε,x0(x0, x)dε,x0(x0, ξ)

−Q−deg(σ)+1 + dε,x0(x0, x)αdε,x0(x0, ξ)
−Q−deg(σ)+2

)
,

(2.13)

for every multi-index σ, deg(σ) = k, and for every x, x0 ∈ K and ξ such that
dε,x0(x0, ξ) ≥ Mdε,x0(x0, x), for suitable M > 0. The constant Q is the homoge-
neous dimension of the space, defined in (2.7).

Estimates of this type for the fundamental solution are the key elements used in
Proposition 3.9 in [16] to prove the following result:

Proposition 2.9. Let k ∈ N, 2 ≤ k ≤ 4. Assume that u is a function of class
Ck−1

ū (Ω) and that there are open sets Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ Ω such that for every
x ∈ Ω1 the function u admits the following representation

u(x) =

∫

Ω

Γε
x0

(x, ξ)N1(ξ, x0)dξ +

∫

Ω

Γε
x0

(x, ξ)N2,k(ξ, x0)dξ

+

2n∑

i=1

∫

Ω

Xε
i,x0

Γε
x0

(x, ξ)N2,ki(ξ, x0)dξ +

∫

Ω

Γε
x0

(x, ξ)N3,k(ξ, x0)dξ.

(2.14)

Also assume that for every x0 fixed ∈ Ω1, the kernels Ni(·, x0) are supported in
Ω3, as functions of their first variable and there exists a constant C1 such that the
kernels satisfy the following conditions:

(i) if x0 is fixed ∈ Ω1 the N1(·, x0) is supported in Ω3 − Ω2

(2.15) |N1(ξ, x0) − N1(ξ, x)| ≤ C1 dα
ε,x0

(x0, x);

(ii) N2,k(·, x0) and N2,ki(·, x0) are smooth functions and all derivatives are uni-
formly Hölder continuous in the variable x0, satisfying condition (2.15) with the
same constant C1 as N1;

(iii) for every ξ ∈ Ω3 and x, x0 ∈ Ω1

(2.16) |N3,k(ξ, x0)| ≤ C1d
k−2+α
ε,x0

(x0, ξ),

and

(2.17) |N3,k(ξ, x0) − N3,k(ξ, x)| ≤ C1d
α
ε,x0

(x0, x)dk−2
ε,x0

(x0, ξ).

Then u ∈ Ck
ū and for every σ such that deg(σ) = k
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∇ε
σ,ū(uϕ)(x0) =

∫

Ω

∇ε
σ,ū(x0)Γ

ε
x0

(·, ξ)N1(ξ, x0)dξ

+

∫

Ω

Γε
x0

(ξ, 0)∇ε
σ,ū(x0)

(
N2,k(x0 ◦ ξ−1, x0)

)
dξ

+

2n∑

i=1

∫

Ω

Xε
i,x0

(x0)Γ
ε
x0

(ξ, 0)∇ε
σ,ū(x0)

(
N2,ki(x0 ◦ ξ−1, x0)

)
dξ

+

∫

Ω

∇ε
σ,ū(x0)Γ

ε
x0

(x, ξ)N3,k(ξ, x0)dξ.

(2.18)

Besides, for any α′ < α, there exists a constant C only dependent on C1 and on
Cp in (2.10) such that

||u||
Ck,α′

ū

≤ C.

Remark 2.10. The derivatives ∇ε
σ,ū(x0) in (2.18) can be computed by Lemma 2.4

in term of the frozen derivatives ∇ε
σ′,x0

(x0). In particular the frozen derivatives

∇ε
σ,x0

(x0)(h(· ◦ ξ−1)) can be calculated by formula in Proposition 2.23 in [16].

Remark 2.11. It is not difficult to prove that the same result is still true, if u has
a more general representation

u(x) =

∫

Ω

Γε
x0

(x, ξ)N1(ξ, x0)dξ +

∫

Ω

Γε
x0

(x, ξ)N2,k(ξ, x0)dξ

+

2n∑

i=1

∫

Ω

Xε
i,x0

Γε
x0

(x, ξ)N2,ki(ξ, x0)dξ +

∫

Ω

Γε
x0

(x, ξ)N3,k(ξ, x0)dξ

+
2n∑

i=1

∫

Ω

Xε
i,x0

Γε
x0

(x, ξ)N4,ki(ξ, x0)dξ,

(2.19)

where the kernels N4,ki(ξ, x0) satisfy assumptions similar to N3,k :

for every ξ ∈ Ω3 and x, x0 ∈ Ω1

(2.20) |N4,ki(ξ, x0)| ≤ C1d
k−1+α
εx0

(x0, ξ),

and

(2.21) |N4,ki(ξ, x0) − N4,ki(ξ, x)| ≤ C1d
α
ε,x0

(x0, x)dk−1
ε,x0

(x0, ξ).

3. From Lip to C
1,α
ū .

Let us now start the first step in the proof of the regularity result. Using in full
strength the nonlinearity of the operator Lε, we prove here some Cacciopoli-type
inequalities for the intrinsic gradient of u, and for the derivative ∂2nu. The main
novelty of the proof is that putting together two intrinsic subelliptic Cacciopoli
inequalities we will end up with an Euclidean Cacciopoli inequality. In this way we
can obtain the Hölder-regularity of the gradient via a standard Moser procedure.
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We first observe that

∂2nXε
i,uu = −(Xε

i,u)∗∂2nu,

where (Xε
i,u)

∗
is the L2 adjoint of the differential operator Xε

i,u and
(3.1)
(Xε

i,u)
∗

= −Xε
i,u, if i = 1, ..., 2n−2, 2n, and (Xε

2n−1,u)
∗

= −Xε
2n−1,u−∂2nu.

We now prove that if u is a smooth solution of Lεu = 0 in Ω ⊂ R
2n then its

derivatives ∂2nu and Xε
k,uu are solution of a similar mean curvature type equation

with different right hand side:

Lemma 3.1. If u is a smooth solution of Lεu = 0 then ω = ∂2nu + 2||u||Lip is a
solution of the equation

(3.2)
∑

i,j

(Xε
i,u)∗

( aij(∇
ε
uu)√

1 + |∇ε
uu|2

(Xε
j,u)∗ω

)
= 0,

where aij are defined in (1.6).

Proof. Differentiating the equation Lεu = 0 with respect to ∂2n we obtain

∂2n

(
Xε

i,u

( Xε
i,uu

√
1 + |∇ε

uu|2

))
= 0

Using the previous remark

(Xε
i,u)∗

(
∂2n

( Xε
i,uu

√
1 + |∇ε

uu|2

))
= 0

Note that

∂2n

( Xε
i,uu

√
1 + |∇ε

uu|2

)
=

∂2nXε
i,uu

√
1 + |∇ε

uu|2
−

Xε
i,uu Xε

j,uu ∂2nXε
j,uu

(1 + |∇ε
uu|2)3/2

= −
(Xε

i,u)
∗
∂2nu

√
1 + |∇ε

uu|2
+

Xε
i,uu Xε

j,uu (Xε
j,u)

∗
∂2nu

(1 + |∇ε
uu|2)3/2

.

The result follows immediately. �

Differentiating the equation Lεu = 0 with respect to Xε
k,u we obtain

Lemma 3.2. If u is a smooth solution of Lεu = 0 then z = Xε
k,uu + 2||u||Lip with

k ≤ 2n − 1 is a solution of the equation

∑

i,j

Xε
i,u

( aij(∇
ε
uu)√

1 + |∇ε
uu|2

Xε
j,uz

)
=

(3.3) = −
∑

i

[Xε
k,u, Xε

i,u]
( Xε

i,uu
√

1 + |∇ε
uu|2

)
−
∑

i,j

Xε
i,u

( aij(∇
ε
uu)√

1 + |∇ε
uu|2

[Xε
k,u, Xε

j,u]u
)
,

where aij are defined in (1.6).
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Proof. Differentiating the equation Lεu = 0 with respect to Xε
k,u we obtain

Xε
k,u

(
Xε

i,u

( Xε
i,uu

√
1 + |∇ε

uu|2

))
= 0

[Xε
k,u, Xε

i,u]
( Xi,uu√

1 + |∇ε
uu|2

)
+ Xε

i,u

(
Xε

k,u

( Xε
i,uu

√
1 + |∇ε

uu|2

))
= 0

Note that

Xε
k,u

( Xε
i,uu

√
1 + |∇ε

uu|2

)
=

Xε
k,uXε

i,uu
√

1 + |∇ε
uu|2

−
Xε

i,uu Xε
j,uu Xε

k,uXε
j,uu

(1 + |∇ε
uu|2)3/2

=

=
aij(∇

ε
uu)

(1 + |∇ε
uu|2)1/2

([Xε
k,uXε

j,u]u + Xε
j,uz)

concluding the proof. �

Remark 3.3. It is useful to compute explicitly the commutators that appear in the
previous result.

If k ≤ n − 1 and i = k + n − 1 or i ≤ n − 1 and k = i + n − 1, then

[Xε
k,u, Xε

i,u] = sign(k − i)∂2n;

If i = 2n− 1 and k < 2n− 1, then

[Xε
k,u, Xε

i,u] = Xε
k,uu ∂2n;

If k = 2n − 1 and i 6= 2n− 1 then

[Xε
k,u, Xε

i,u] = −Xε
i,uu∂2n

If k = 2n and i = 2n− 1 then

[Xε
k,u, Xε

i,u] = Xε
k,uu ∂2n.

All other commutators vanish. As a consequence, if u is a smooth solution of
Lεu = 0 then |[Xε

k,u, Xε
i,u]| is always bounded by 1 + ||u||2Lip.

Proposition 3.4. (First Cacciopoli type inequality for Xε
k,uu ) If u is a smooth

solution of Lεu = 0 in Ω ⊂ R
2n, and z = Xε

k,uu + 2||u||Lip with k ≤ 2n then for
every p 6= 2 there exists a constant C, only dependent on the bounds on the spatial
gradient and on p such that for every ϕ ∈ C∞

0

∫
|∂2nz|2zp−2ϕ2 ≤ C

(∫
|∇ε

uz|2zp−2ϕ2 +

∫
zp(ϕ2 + |∇ε

uϕ|2)

)
.

The constant C is bounded if p is bounded away from 2. If p = 2 the inequality
holds in the form ∫

|∂2nz|2ϕ2 ≤ C

∫
zp(ϕ2 + |∇ε

uϕ|2).
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Proof. Calling ω = ∂2nu + 2||u||Lip, we have
∫

|∇ε
uω|2zp−2ϕ2 ≤ C

∫
aij(∇

ε
uu)√

1 + |∇ε
uu|2

Xε
i,uωXε

j,uωzp−2ϕ2 =

= −C

∫
aij(∇

ε
uu)√

1 + |∇ε
uu|2

(Xε
i,u)∗ω Xε

j,uω zp−2 ϕ2−C

∫
a2n−1 j(∇

ε
uu)√

1 + |∇ε
uu|2

Xε
j,uω ω∂2nu zp−2ϕ2 =

(integrating by parts Xε
j,u in the first integral )

= C

∫
(Xε

j,u)∗
( aij(∇

ε
uu)√

1 + |∇ε
uu|2

(Xε
i,u)∗ω

)
ωzp−2ϕ2+C

∫
a2n−1 j(∇

ε
uu)√

1 + |∇ε
uu|2

(Xε
i,u)∗ω ω∂2nu zp−2ϕ2

+C(p−2)

∫
aij(∇

ε
uu)√

1 + |∇ε
uu|2

(Xε
i,u)∗ω ωXε

j,uz zp−3ϕ2+2C

∫
aij(∇

ε
uu)√

1 + |∇ε
uu|2

(Xε
i,u)∗ω ωzp−2ϕXε

j,uϕ

−C

∫
a2n−1 j(∇

ε
uu)√

1 + |∇ε
uu|2

Xε
j,uω ω∂2nuzp−2ϕ2.

The first integral vanishes by Lemma 3.1. In the other integrals we can use the fact
that ∣∣∣

aij(∇
ε
uu)√

1 + |∇ε
uu|2

∣∣∣ ≤ 1 and |(Xε
i,u)∗ω| ≤ (1 + ||u||Lip)|∇

ε
uω|

where ||u||Lip is bounded uniformly in ε by assumption. Then
∫

|∇ε
uω|2zp−2ϕ2 ≤ C

( ∫
|∇ε

uω|zp−2(ϕ2 + |ϕ∇ε
uϕ|)+ (p−2)

∫
|∇ε

uω||∇ε
uz|zp−3ϕ2

)

(by Hölder inequality and the fact that z is bounded away from 0)

≤ δ

∫
|∇ε

uω|2zp−2ϕ2 + C(δ)

∫
|∇ε

uz|2zp−2ϕ2 + C(δ)

∫
zp(ϕ2 + |∇ε

uϕ|2).

For δ sufficiently small this implies that

(3.4)

∫
|∇ε

uω|2zp−2ϕ2 ≤ C

∫
|∇ε

uz|2zp−2ϕ2 + C

∫
zp(ϕ2 + |∇ε

uϕ|2)

The constant C above is bounded as long as p is away from 2. The special case
p = 2 follows along similar computations.

Note that, if k 6= 2n − 1, we have

|∂2nz| = |∂2nXε
k,uu| = |Xε

k,u∂2nu| ≤ |∇ε
uω|

If k = 2n − 1, we have

|∂2nz| = |∂2nXε
2n−1,uu| = |Xε

2n−1,u∂2nu| + |∂2nu|2 ≤ |∇ε
uω| + |∂2nu|2

Hence, using again the boundness of |∂2nu| and the fact that z is bounded from
below, together with inequality (3.4) we conclude the proof. �

Proposition 3.5. (Intrinsic Cacciopoli type inequality for Xε
k,uu ) If u is a smooth

solution of Lεu = 0 in Ω ⊂ R
2n and z = Xε

k,uu + 2||u||Lip, with k ≤ 2n, then for
every p 6= 1 there exists a constant C > 0, only dependent on the bounds on the
spatial gradient and on p such that for every ϕ ∈ C∞

0∫
|∇ε

uz|2zp−2ϕ2 ≤ C

∫
zp(ϕ2 + |∇ε

uϕ|2 + |ϕ∂2nϕ|).

The constant C is bounded if p is bounded away from the values 1 and 2.
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Proof. Multiplying the equation (3.2) by zp−1ϕ2 and integrating we obtain
∫

Xε
i,u

( aij(∇
ε
uu)√

1 + |∇ε
uu|2

Xε
j,uz

)
zp−1ϕ2 =

= −

∫
[Xε

k,u, Xε
i,u]
( Xε

i,uu
√

1 + |∇ε
uu|2

)
zp−1ϕ2−

∫
Xε

i,u

( aij(∇
ε
uu)√

1 + |∇ε
uu|2

[Xε
k,u, Xε

j,u]u
)
zp−1ϕ2.

We denote by I1 and I2 the integrals in the right hand side. Let us consider the
left hand side ∫

Xε
i,u

( aij(∇
ε
uu)√

1 + |∇ε
uu|2

Xε
j,uz

)
zp−1ϕ2 =

(since (Xε
i,u)∗ = −Xε

i,u − δi,2n−1∂2nu)

= −(p−1)

∫
aij(∇

ε
uu)√

1 + |∇ε
uu|2

Xε
j,uz Xε

i,uz zp−2 ϕ2−2

∫
aij(∇

ε
uu)√

1 + |∇ε
uu|2

Xε
j,uz zp−1 ϕXε

i,uϕ−

−

∫
a2n−1j(∇

ε
uu)√

1 + |∇ε
uu|2

Xε
j,uz ∂2nu zp−2 ϕ2.

Using the uniform ellipticity of aij and the boundeness of aij and ∂2nu, we obtain
∫

|∇ε
uz|2zp−2ϕ2 ≤ C

(
2

∫
|∇ε

uz| zp−1 ϕ |∇ε
uϕ| +

∫
|∇ε

uz| zp−2 ϕ2
)

+ |I1| + |I2|.

From here, using an Hölder inequality and the boundeness of z from below one has

(3.5)

∫
|∇ε

uz|2zp−2ϕ2 ≤ C

∫
zp−2 (ϕ2 + |∇ε

uϕ|2) + |I1| + |I2|.

Next we estimate separately the terms I1 and I2. We begin with the latter and
observe that integrating by parts the expression of I2, we have

I2 = (p − 1)

∫
aij(∇

ε
uu)√

1 + |∇ε
uu|2

[Xε
k,u, Xε

j,u]u Xε
i,uz zp−2 ϕ2

+2

∫
aij(∇

ε
uu)√

1 + |∇ε
uu|2

[Xε
k,u, Xε

j,u]u zp−1 ϕXi,uϕ

+

∫
a2n−1 j(∇

ε
uu)√

1 + |∇ε
uu|2

[Xε
k,u, Xε

j,u]u ∂2nu zp−1 ϕ2

(using the fact that both aij and the brakets, computed in Remark 3.3, are bounded)

≤ C

∫
|∇ε

uz|zp−2ϕ2 + C

∫
zp−1ϕ|∇ε

uϕ| + C

∫
zp−1ϕ2 ≤

(since z is bounded from below)

≤ δ

∫
|∇ε

uz|2zp−2ϕ2 + C(δ)

∫
zp(ϕ2 + |∇ε

uϕ|2),

for every δ > 0.
In order to estimate I1 we first consider separately the case k 6= 2n − 1. If

k ≤ n − 1 then by Remark 3.3

I1 = −sign(k − n)(1−δk,2n)

∫
∂2n

( Xε
k+n−1,uu

√
1 + |∇ε

uu|2

)
zp−1 ϕ2−

∫
Xε

k,uu∂2n

( Xε
2n−1,uu

√
1 + |∇ε

uu|2

)
zp−1ϕ2 ≤
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(integrating by parts, using the boundness of ∇ε
uu, and the fact that ∂2nXε

k,uu =

∂2nz )

≤ C

∫
|∂2nz|zp−2ϕ2 + C

∫
zp−1|ϕ∂2nϕ| + C

∫
|∂2nz|zp−1ϕ2 ≤

(using Hölder inequality and the fact that z is bounded away from 0)

≤ δ

∫
|∂2nz|2zp−2ϕ2 + C(δ)

∫
zp(|ϕ∂2nϕ| + ϕ2) ≤

(by Proposition 3.4)

≤ δ

∫
|∇ε

uz|2zp−2ϕ2 + C(δ)

∫
zp(|ϕ∂2nϕ| + ϕ2 + |∇ε

uϕ|2).

This estimate can be proved with a similar argument in the case n ≤ k ≤ 2n − 2
and k = 2n. Hence if k 6= 2n − 1 the conclusion follows by choosing δ sufficiently
small.

If k = 2n − 1, then Remark 3.3 yields

I1 = −

∫
Xε

i,uu∂2n

( Xε
i,uu

√
1 + |∇ε

uu|2

)
zp−1ϕ2 =

(directly computing the derivative with respect to ∂2n )

= −

∫
(Xε

i,uu)2∂2n

( 1√
1 + |∇ε

uu|2

)
zp−1ϕ2 −

∫
Xε

i,uu
∂2nXε

i,uu
√

1 + |∇ε
uu|2

zp−1ϕ2

(since
∑

i(X
ε
i,uu)2 = |∇ε

uu|2 )

= −

∫
|∇ε

uu|2∂2n

( 1√
1 + |∇ε

uu|2

)
zp−1ϕ2 −

1

2

∫
∂2n|∇

ε
uu|2√

1 + |∇ε
uu|2

zp−1ϕ2.

If we set F (s) = 1√
1+s

, then one easily computes

∂2nF (|∇ε
uu|2) =

(
|∇ε

uu|2∂2n

( 1√
1 + |∇ε

uu|2

)
+

1

2

∂2n|∇
ε
uu|2√

1 + |∇ε
uu|2

)

so that the previous integral becomes:

I1 = −

∫
∂2nF (|∇ε

uu|2)zp−1ϕ2 =

(integrating by parts)

= (p − 1)

∫
F (|∇ε

uu|2)∂2nzzp−2ϕ2 + 2

∫
F (|∇ε

uu|2)zp−1ϕ∂2nϕ ≤

(using the fact that F is bounded)

≤ C

∫
|∂2nz|zp−2ϕ2 + C

∫
zp−1|ϕ∂2nϕ| ≤

(by Proposition 3.4 and an Hölder inequality)

≤ δ

∫
|∇ε

uz|2zp−2ϕ2 + C(δ)

∫
zp(|ϕ∂2nϕ| + ϕ2 + |∇ε

uϕ|2),

thus concluding the proof. �
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Next, we note that, from Propositions 3.4 and 3.5 one can derive a Euclidean
Cacciopoli type inequality for z = Xε

k,uu + 2||u||Lip, with k ≤ 2n. Here and in the

following ∇E denotes the Euclidean gradient in R
2n.

Proposition 3.6. (Euclidean Cacciopoli inequality) If u is a Lipschitz continuous
solution of Lεu = 0 in Ω ⊂ R

2n, and z = Xε
k,uu + 2||u||Lip, with k ≤ 2n, then for

every p 6= 1 there exists a constant C, only dependent on the bounds on the spatial
gradient and on p such that for every ϕ ∈ C∞

0

(3.6)

∫
|∇Ez|2zp−2ϕ2 ≤ C

∫
zp(ϕ2 + |∇Eϕ|2).

The constant C is bounded if p is bounded away from the values 1 and 2.

Proof. Observe that there exists C > 0 depending only on ||u||Lip and Ω such that
for all points in Ω,

|∇Ez|2 ≤ C
( ∑

k<2n

|Xε
k,uz|2 + |∂2nz|2

)
.

Hence using Propositions 3.4 and 3.5 and observing that

|∇ε
uϕ|2 + |∂2nϕ|2 ≤ C|∇Eϕ|2

we obtain (3.6). �

From Proposition 3.6, using the classical Moser procedure in the Euclidean set-
ting, we can immediately deduce the following regularity result:

Proposition 3.7. Let u be a solution of Lεu = 0 in Ω ⊂ R
2n and set z = Xε

k,uu +

2||u||Lip, with k ≤ 2n. For every compact set K ⊂⊂ Ω then there exist a real
number α and a constant C, only dependent on the bounds on the spatial gradient
and on the choice of the compact set such that

||z||Cα
u (K) ≤ C.

In particular we have the estimate

2n+1∑

i=1

2n∑

j=1

||Xε
i,uXε

j,uu||L2(K) + ||u||C1,α
u (K) ≤ C.

Proof. For p 6= 1, 2 and z as in the statement of the proposition define the function

w =

{
z

p
2 if p 6= 0;

ln z if p = 0.

If p 6= 0 then the Caccioppoli inequality (3.6) and the Euclidean Sobolev embedding
Theorem yield

(3.7)
(∫

|ϕw|2θ
) 1

θ

≤ Cp2

∫
w2|∇Eϕ|2,

for some θ > 1. Let 0 < r1 < r2 be sufficiently small so that the Euclidean ball Br2

is contained in Ω. With an appropriate choice of test function (3.7) implies
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(∫

Br1

|z|θp
) 1

pθ

≤
( Cp2

r2 − r1

) 2
p
( ∫

Br2

zp
) 1

p

if p > 0(3.8)

(∫

Br1

|z|θp
) 1

pθ
( Cp2

r2 − r1

) 2
|p|

≥
( ∫

Br2

zp
) 1

p

. if p < 0.(3.9)

If p = 0, (3.6) implies
∫

|ϕ∇Ew|2 ≤ C

∫
|∇Eϕ|2.

Let r > 0 sufficiently small so that the Euclidean ball Br ⊂ Ω. A standard choice
of test function and Hölder inequality yield

∫

Br

|∇Ew| ≤ CR2n+1.

Recalling that Ω ⊂ R
2n and using Poincare’ inequality we obtain w ∈ BMO(Ω).

At this point, using (3.8), the John-Nirenberg Lemma and following the standard
Moser iteration process (see for instance [25, Chapter 8]) we obtain the Hölder
regularity of z. �

4. From C
1,α
ū to C∞

ū .

In this section we will conclude the proof of the regularity result. The section
is organized in 3 steps. We fix a function ū, and study solutions of the linearized
equation

Lε,ūu =

2n∑

i,j=1

aε
i,j(∇

ε
ūū)Xε

i,ūXε
j,ūu, = 0

defined in (2.8), and represented in non-divergence form. The solutions u well be
represented in terms of the fundamental solution Γε

x0
of the approximating operator

Lε,x0, defined in (2.9):

Lε,x0u =

2n∑

i,j=1

aε
i,j(∇

ε
ūū(x0))X

ε
i,x0

Xε
j,x0

u,

where aε
ij are defined in (1.6). Since estimates of Γε

x0
uniform in ε are well known

(and have been recalled in section 2), from these representation formulas we will de-
duce a priori estimates for the solution u, in terms of the fixed solution ū. Choosing
ū = u we will obtain a priori estimates of the solutions of the non linear equation
Lεu = 0. Finally, letting ε go to 0, we will conclude the proof of the estimates of
the vanishing viscosity solutions of Lu = 0.

4.1. Representation formulas.

Lemma 4.1. The difference between the operator Lε,ū and its frozen operator can
be expressed as follows:
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(Lε,x0−Lε,ū)u(ξ) =

2n∑

ij=1

(
aε

ij(∇
ε
ūū(x0)) − aij(∇

ε
ūū(ξ))

)
Xε

i,ūXε
j,ūu(ξ)

−

2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))(ū(ξ) − P 1

x0
ū(ξ))∂2nXε

j,ūu(ξ)

−

2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))X

ε
j,x0

(
(ū(ξ) − P 1

x0
ū(ξ))∂2n

)
u(ξ).

(4.1)

Proof. Observe that

(Lε,x0 − Lε,ū)u(ξ) =

2n∑

ij=1

(
aε

ij(∇
ε
ūū(x0)) − aε

ij(∇
ε
ūū(ξ))

)
Xε

i,ūXε
j,ūu(ξ)−

−

2n∑

ij=1

aε
ij(∇

ε
ūū(x0))

(
Xε

i,ūXε
j,ū − Xε

i,x0
Xε

j,x0

)
u(ξ) =

=

2n∑

ij=1

(
aε

ij(∇
ε
ūū(x0)) − aε

ij(∇
ε
ūū(ξ))

)
Xε

i,ūXε
j,ūu(ξ)−

−

2n∑

ij=1

aε
ij(∇

ε
ūū(x0))

(
(Xε

i,ū − Xε
i,x0

)Xε
j,ū + Xε

i,x0
(Xε

j,ū − Xε
j,x0

)
)
u(ξ)

=
2n∑

ij=1

(
aε

ij(∇
ε
ūū(x0)) − aε

ij(∇
ε
ūū(ξ))

)
Xε

i,ūXε
j,ūu(ξ)−

−

2n∑

ij=1

aε
ij(∇

ε
ūū(x0))

(
δi,2n−1(ū(ξ)−P 1

x0
ū(ξ))∂2nXε

j,ū+Xε
i,x0

(δj,2n−1(ū(ξ)−P 1
x0

ū(ξ))∂2n)
)
u(ξ)

where δ is the Kroeneker function. From this the thesis immediately follows �

Let us first represent the solutions of the equation Lε,ūu = 0 it in terms of the
fundamental solution Γε

x0
of the operator Lε,x0 defined in (2.9).

Proposition 4.2. Let us assume that ū is a fixed function of class C∞(Ω), and
that u is a classical solution of Lε,ūu = g ∈ C∞(Ω), Then for any ϕ ∈ C∞

0 (Ω) the
function uϕ can be represented as

uϕ(x) =

∫

Ω

Γε
x0

(x, ξ)N1(ξ, x0)dξ +

∫

Ω

Γε
x0

(x, ξ)Lε,ūu(ξ)ϕ(ξ) dξ+

+
2n∑

ij=1

∫

Ω

Γε
x0

(x, ξ)
(
bε
ij(∇

ε
ūū(x0)) − bε

ij(∇
ε
ūū(ξ))

)
Xε

i,ūXε
j,ūu(ξ)ϕ(ξ)dξ

+
2n∑

ijs=1

∫

Ω

Xε
s,x0

Γε
x0

(x, ξ)(ū(ξ) − P 1
x0

ū(ξ))hsij(x0)X
ε
i,ūXε

j,ūu(ξ)ϕ(ξ)dξ.

(4.2)
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The expressions of N1, bij and hsij are the following:

N1(ξ, x0) = u(ξ)Lε,x0ϕ(ξ)+

+

2n∑

ij=1

aε
ij(∇

ε
ūū(x0))

(
Xε

i,ūu(ξ)Xε
j,x0

ϕ(ξ) + Xε
j,ūu(ξ)Xε

i,x0
ϕ(ξ)

)

−
2n∑

i=1

aε
i 2n−1(∇

ε
ūū(x0))(ū(ξ) − P 1

x0
ū(ξ))∂2nu(ξ)Xε

i,x0
ϕ(ξ)

+
2n∑

i=1

aε
i 2n−1(∇

ε
ūū(x0))(ū(ξ) − P 1

x0
ū(ξ))Xε

n,ūXε
i,ūu(ξ)Xε

1ūϕ(ξ)

−
2n∑

i=1

aε
i 2n−1(∇

ε
ūū(x0))(ū(ξ) − P 1

x0
ū(ξ))Xε

1,ūXε
i,ūu(ξ)Xε

n,ūϕ(ξ).

(4.3)

bij : R
2n → R,

(4.4) bi,j(p) = −δikakj(p) + a2n−1j(∇
ε
ūū(x0))p1δin − pnδi1a2n−1j(∇

ε
ūū(x0))

Finally hsij are real numbers, only dependent on x0, defined as
(4.5)
hsij(x0) = −aε

2n−1,s(∇
ε
ūū(x0))(δi1δjn − δinδj1)+aε

2n−1,j(∇
ε
ūū(x0))(δs1δin − δsnδi1).

Proof. By definition of fundamental solution, we have

uϕ(x) =

∫

Ω

Γε
x0

(x, ξ)Lε,x0(uϕ)(ξ)dξ

=

∫

Ω

Γε
x0

(x, ξ)



u Lε,x0ϕ +

2n∑

ij=1

aε
ij(∇

ε
ūū(x0))

(
Xε

i,x0
uXε

j,x0
ϕ + Xε

j,x0
uXε

i,x0
ϕ
)


 dξ

+

∫

Ω

Γε
x0

(x, ξ)Lε,ūu(ξ)ϕ(ξ)dξ +

∫

Ω

Γε
x0

(x, ξ)(Lε,x0 − Lε,ū)u(ξ)ϕ(ξ)dξ.

(4.6)

We can use the expression of Lε,x0 −Lε,ū computed in (4.1). Let us consider the
second term in the right hand side, multiplied by the fundamental solution. Since
∂2n = [Xε

1,x0
, Xε

n,x0
], it becomes:

(4.7)
2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Γε
x0

(x, ξ)(ū − P 1
x0

ū)∂2nXε
j,ūuϕdξ

=
2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Γε
x0

(x, ξ)(ū − P 1
x0

ū)[Xε
1,x0

, Xε
n,x0

]
(
Xε

j,ūu
)
ϕdξ =

(integrating by part and using the fact that Xε
1,x0

= Xε
1,ū and Xε

n,x0
= Xε

n,ū.)

= −
2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Xε
1x0

Γε
x0

(x, ξ)(ū(ξ) − P 1
x0

ū(ξ))Xε
n,ūXε

j,ūuϕdξ
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−

2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Γε
x0

(x, ξ)Xε
1,ū(ū(ξ) − P 1

x0
ū(ξ))Xε

n,ūXε
j,ūuϕdξ

−

2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Γε
x0

(x, ξ)(ū(ξ) − P 1
x0

ū(ξ))Xε
nūXε

j,ūuXε
1ūϕdξ

+

2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Xε
n,x0

Γε
x0

(x, ξ)(ū(ξ) − P 1
x0

ū(ξ))Xε
1,ūXε

j,ūuϕdξ

+

2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Γε
x0

(x, ξ)Xε
nū(ū(ξ) − P 1

x0
ū(ξ))Xε

1,ūXε
j,ūuϕdξ

+

2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Γε
x0

(x, ξ)(ū(ξ) − P 1
x0

ū(ξ))Xε
1,ūXε

j,ūuXε
n,ūϕdξ.

The third term in (4.1) becomes

2n∑

i=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Γε
x0

(x, ξ)Xε
j,x0

(
(ū(ξ) − P 1

x0
ū(ξ))∂2n

)
u(ξ)ϕ(ξ)dξ(4.8)

(integrating by part)

= −
2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Xε
j,x0

Γε
x0

(x, ξ) (ū(ξ) − P 1
x0

ū(ξ))∂2nu(ξ)ϕ(ξ)dξ

−

2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Γε
x0

(x, ξ) (ū(ξ) − P 1
x0

ū(ξ))∂2nu(ξ)Xε
j,x0

ϕ(ξ)dξ

(4.9)

Inserting (4.7) and (4.8) in (4.1) and using the expression of bij and hsij(x0), we
obtain

∫

Ω

Γε
x0

(x, ξ)(Lε,x0 − Lε,ū)u(ξ)ϕ(ξ)dξ

=

2n∑

ij=1

∫

Ω

Γε
x0

(x, ξ)
(
aε

ij(∇
ε
ūū(x0)) − aε

ij(∇
ε
ūū(ξ))

)
Xε

i,ūXε
j,ūu(ξ)ϕ(ξ)dξ

+
2n∑

ij=1

∫

Ω

Γε
x0

(x, ξ)
(
bε
ij(∇

ε
ūū(x0)) − bε

ij(∇
ε
ūū(ξ))

)
Xε

i,ūXε
j,ūu(ξ)ϕ(ξ)dξ

+
2n∑

ijs=1

∫

Ω

Xε
s,x0

Γε
x0

(x, ξ)(ū(ξ) − P 1
x0

ū(ξ))hsij(x0)X
ε
i,ūXε

j,ūu(ξ)ϕ(ξ)dξ

(4.10)
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−

2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Γε
x0

(x, ξ)(ū(ξ) − P 1
x0

ū(ξ))Xε
nūXε

j,ūuXε
1ūϕdξ

+

2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Γε
x0

(x, ξ)(ū(ξ) − P 1
x0

ū(ξ))Xε
1,ūXε

j,ūuXε
n,ūϕdξ

−

2n∑

j=1

aε
2n−1j(∇

ε
ūū(x0))

∫

Ω

Γε
x0

(x, ξ) (ū(ξ) − P 1
x0

ū(ξ))∂2nu(ξ)Xε
j,x0

ϕ(ξ)dξ

(4.11)

From this expression, equation (4.6), and the expression of N1 in (4.3) we obtain
the asserted representation formula. �

The following representation formula will be used to estimate higher order deriva-
tives of the solutions.

Proposition 4.3. Let us assume that ū is a fixed function of class C∞(Ω), and
assume that u is a classical solution of Lε,ūu = g ∈ C∞(Ω). Then for any ϕ ∈
C∞

0 (Ω) the function uϕ can be represented as

uϕ(x) =

∫

Ω

Γε
x0

(x, ξ)N1(ξ, x0)dξ +

∫

Ω

Γε
x0

(x, ξ)N2,k(ξ, x0)ϕ(ξ)dξ

+

2n∑

s=1

∫

Ω

Xε
s,x0

Γε
x0

(x, ξ)N2,ks(ξ, x0)dξ +

∫

Ω

Γε
x0

(x, ξ)N3,k(ξ, x0)dξ

+

2n∑

i=1

∫

Ω

Xε
i,x0

Γε
x0

(x, ξ)N4,ki(ξ, x0)dξ,

(4.12)

where N1(ξ, x0) is defined in (4.3). If bij is the function defined in (4.4), we call
bijū = bij(∇

ε
ūū), and the other kernel are expressed:

N2(ξ, x0) = P k−2
x0

g(ξ) +

2n∑

ij=1

(
P k−2

x0
bijū(ξ) − bijū(x0)

)
P k−3

x0
(Xε

i,ūXε
j,ūu)(ξ)

N2,ks(ξ, x0) =

2n∑

ij=1

(
P k−1

x0
ū(ξ) − P 1

x0
ū(ξ)

)
hsij(x0)P

k−3
x0

(Xε
i,ūXε

j,ūu)(ξ)

N3,k(ξ, x0) =
(
g(ξ) − P k−2

x0
g(ξ)

)
+

+
(
bijū(ξ) − bijū(x0)

)(
Xε

i,ūXε
j,ūu(ξ) − P k−3

x0
(Xε

i,ūXε
j,ūu)(ξ)

)
+

+
(
bijū(ξ) − P k−2

x0
bijū(ξ)

)
P k−3

x0
(Xε

i,ūXε
j,ūu)(ξ)

(4.13)

N4,ks(ξ, x0) =
(
ū(ξ) − P k−1

x0
ū(ξ)

)
hsij(x0)P

k−3
x0

(Xε
i,ūXε

j,ūu)(ξ)+

+
(
ū(ξ) − P 1

x0
ū(ξ)

)
hsij(x0)

(
Xε

i,ūXε
j,ūu(ξ) − P k−3

x0
(Xε

i,ūXε
j,ūu)(ξ)

)
.

(4.14)
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Proof. We represent uϕ as in formula (4.2), and we study each term separately.
Let us start with the second term in (4.2):

(4.15) g(ξ) = Lε,ūu(ξ) = P k−2
x0

g(ξ) + (g(ξ) − P k−2
x0

g(ξ))

The kernel in the third term of (4.2) will developed as follows:

(
bijū(ξ)−bijū(x0)

)
Xε

i,ūXε
j,ūu(ξ) =

=
(
P k−2

x0
bijū(ξ) − bijū(x0)

)
P k−3

x0
(Xε

i,ūXε
j,ūu)(ξ)+

+
(
bijū(ξ) − bijū(x0)

)(
Xε

i,ūXε
j,ūu(ξ) − P k−3

x0
(Xε

i,ūXε
j,ūu)(ξ)

)

+
(
bijū(ξ) − P k−2

x0
bijū(ξ)

)
P k−3

x0
(Xε

i,ūXε
j,ūu)(ξ).

(4.16)

The first terms in (4.15) and (4.16) define N2,k, the sum of the other terms defines
N3,k.

The kernel in the last term of (4.2) can be represented as

(
ū(ξ)−P 1

x0
ū(ξ)

)
hkij(x0)X

ε
i,ūXε

j,ūu(ξ) =

=
(
ū(ξ) − P 1

x0
ū(ξ)

)
hsij(x0)

(
Xε

i,ūXε
j,ūu(ξ) − P k−3

x0
(Xε

i,ūXε
j,ūu)(ξ)

)

+
(
ū(ξ) − P k−1

x0
ū(ξ)

)
hsij(x0)P

k−3
x0

(Xε
i,ūXε

j,ūu)(ξ)+

+
(
P k−1

x0
ū(ξ) − P 1

x0
ū(ξ)

)
hsij(x0)P

k−3
x0

(Xε
i,ūXε

j,ūu)(ξ).

(4.17)

The first two terms of this expression define N4,ks, the third defines N2,ks. �

4.2. A priori estimates of the solution of the linear operator.

Proposition 4.4. Assume that u and ū are of class C∞
ū (Ω) and that Lε,ūu = g ∈

C∞
ū (Ω). Also assume that there exists a compact set K ⊂ Ω and constant C0 such

that

||ū||C1,α
ū (K) + ||g||C1,α

ū (K) +
∑

deg(σ)≤2

||∇ε
σ,ūu||L∞(K) ≤ C0.

Then, for every compact set K1 ⊂⊂ K, for every α′ < α there exists a constant
C > 0 only dependent on C0, α and the compact sets, such that

(4.18)
∑

deg(σ)=2

||∇ε
σ,ūu||Cα′

ū (K1)
≤ C.

Moreover, for every choice of compact sets K2, K3 such that K1 ⊂⊂ K2 ⊂⊂ K3 ⊂⊂
K for every function ϕ ∈ C∞

0 (int(K)) such that ϕ ≡ 1 in K2, for every multi-index
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σ of length 2, we have the following representation

∇ε
σ,ū(uϕ)(x0) =

∫

Ω

∇ε
σ,ū(x0)Γ

ε
x0

(·, ξ)N1(ξ, x0)dξ

+

∫

Ω

Γε
x0

(ξ, 0)∇ε
σ,ū(x0)P

1
x0

g(ξ)ϕ(x0 ◦ ξ−1) dξ

+

∫

Ω

∇ε
σ,ū(x0)Γ

ε
x0

(·, ξ)
(
g(ξ) − P 1

x0
g(ξ)

)
ϕ(ξ)dξ

+

2n∑

ij=1

∫

Ω

∇ε
σ,ū(x0)Γ

ε
x0

(·, ξ)
(
bε
ij(∇

ε
ūū(x0)) − bε

ij(∇
ε
ūū(ξ))

)
Xε

i,ūXε
j,ūu(ξ)ϕ(ξ)dξ

+

2n∑

ijs=1

∫

Ω

∇ε
σ,ūXε

i,x0
(x0)Γ

ε
x0

(·, ξ)
(
ū(ξ) − P 1

x0
ū(ξ)

)
hsij(x0)X

ε
i,ūXε

j,ūu(ξ)ϕ(ξ)dξ.

(4.19)

where N1 is defined in Proposition 4.2.

Proof. By Proposition 4.2, we know that the function uϕ admits a representation
in terms of the fundamental solution of the frozen operator, and suitable kernels.
Let us verify that these kernels satisfy the assumptions of Lemma 2.9 with k = 2.

From the expression of N1 in (4.3), we see that N1 is a sum of derivatives of
the function ϕ. Since ϕ is constantly equal to 1 on the set K2, then N1 vanishes
on the same set. Hence the point (i) of Lemma 2.9 regarding the support of N1 is
satisfied. On the other side N1 depends on x0 only through the first derivatives of
ū, while it depends on ξ through the derivatives up to second order of the function
u. Hence it is Hölder continuous in x0 locally uniformly in ξ. Hence there exists a
constant C1 only depending on C0 such that

|N1(ξ, x0) − N1(ξ, x)| ≤ C1d
α
ε,x0

(x0, x),

for every x, x0 ∈ K1 and ξ ∈ K3 and this conclude the proof of assumption (2.15).
The second term in (4.2) is the convolution of the fundamental solution with the

function g(ξ) = Lε,ūu(ξ) = P 1
x0

g(ξ) +
(
g(ξ) − P 1

x0
g(ξ)

)
. The function P 1

x0
g(ξ)ϕ(ξ)

will play the role of the kernel N2 in Lemma 2.9. Since g is of class C
1,α
ū (K), its

first order Taylor polynomial is Hölder continuous in x0 locally uniformly in ξ and
there exists a constant C1 only depending on C0 such that

|P 1
x0

g(ξ)ϕ(ξ) − P 1
xg(ξ)ϕ(ξ)| ≤ C1d

α
ε,x0

(x0, x),

for every x, x0 ∈ K1 and ξ ∈ K3. And this conclude the proof of assumption (ii).
The function (g − P 1

x0
g)(ξ) satisfies the assumptions (2.16) and (2.17) of the

kernel N3,k, in the same lemma with k = 2. Indeed, from the definition (2.2) of
Taylor polynomial we deduce that

|(g − P 1
x0

g)(ξ)| ≤ C1d
1+α
ε,x0

(x0, ξ),

if x, x0 are fixed in K1 and ξ ∈ K3. Similarly, from (2.4) we deduce that
∣∣P 1

x0
g(ξ) − P 1

xg(ξ)
∣∣ ≤ C1dε,x0(x0, x)αdε,x0(x0, ξ),
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again with a constant C1, depending on the C
1,α
ū norm of g. This ensures that

(2.17) is satisfied.
In the same way, using the regularity properties of ū, we deduce that the function

(
bε
ij(∇

ε
ūū(x0)) − bε

ij(∇
ε
ūū(ξ))

)
Xε

i,ūXε
j,ūu(ξ)

satisfies the assumption of the kernel N3,k in Lemma 2.9.
Finally, from the property (2.4) of the Taylor polynomials, we deduce that the

function

(ū(ξ) − P 1
x0

ū(ξ))hsij(x0)X
ε
i,ūXε

j,ūu(ξ)ϕ(ξ)

satisfies the assumptions of the kernels N4,ks in Remark 2.11. �

In order to obtain an a-priori estimates of the second derivatives of the solution
u in terms of its Lp norms we need to improve slightly the previous result.

Lemma 4.5. Assume that u and ū are C∞ functions, and that u is a classical
solution of Lε,ūu = g ∈ C∞

ū (Ω). Also assume that there exist a compact K ⊂ Ω,
and real numbers p > 1, α < 1 and C0 > 0 such that

||ū||C1,α
ū (K) + ||g||C1,α

ū (K)+

(4.20) +||u||C1,α
ū (K) +

∑

deg(σ)=2

||∇ε
σ,ūu||Lp(K) ≤ C0.

• If Q−p α > 0, then, for every compact set K1 ⊂⊂ K there exists a constant
C > 0 only depending on C0 such that

(4.21)
∑

deg(σ)=2

||∇ε
σ,ūu||Lr(K1) ≤ C,

where r = Qp
Q−p α , and Q is the homogeneous dimension of the space, defined

in (2.7).
• If Q−p α < 0, then for every compact set K1 ⊂⊂ K there exists a constant

C > 0 only depending on C0 such that

(4.22)
∑

deg(σ)=2

||∇ε
σ,ūu||L∞(K1) ≤ C.

Proof. The proof follows from the representation of the derivatives of uϕ provided
in Proposition 4.4.

Let us consider the first integral in (4.19) We first note that, by the expression
(4.3) of N1, there exist constants C3 and C4 only dependent on C0 such that

|N1(ξ, x0)| ≤ C3 + C4

∑

ij

|XiūXiūu|

for any ξ, x0 ∈ K. On the other hand N1 is a sum of derivatives of the function ϕ,
constant in K2, the support of the kernel N1 is a subset of K3 − K2. This implies
that if x ∈ K1 and ξ ∈ supp(N1), then dε,ū(x, ξ) ≥ dε,ū(K1, K3 − K2) and the
function ∇ε

σ,ū(x0)Γ
ε
x0

(x, ξ), is bounded uniformly in ε, by condition (2.11). Then,
for every x0 ∈ K1
∣∣∣
∫

∇ε
σ,ūΓε(x, ξ)N1(ξ, x0)dξ

∣∣∣ ≤
∫

K3

|N1(ξ, x0)|dξ ≤ C
(
1+ ||XiūXiūu||L1(K)

)
≤ C1,
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where C only depends on C0.

The second term in (4.19) is the convolution of the fundamental solution with a
regular function,

∇ε
σ,ū(x0)

(
P 1

x0
g(ξ)ϕ(x0 ◦ ξ−1)

)

whose L∞ norm only depends on ||g||C1,α
ū

on the support K of the function ϕ.

In the third term of (4.19), using the property (2.2) of the Taylor polynomial,
and the estimate (2.10) of the fundamental solution, we obtain

∫

Ω

∣∣∣∇ε
σ,ū(x0)Γ

ε
x0

(·, ξ)
(
g(ξ) − P 1

x0
g(ξ)

)∣∣∣ϕ(ξ)dξ ≤ C

∫

K3

dα−Q
ε,x0

(x0, ξ)dξ ≤ C1

for a suitable constant C1 depending on ||g||C1,α
ū

, and on the compact set K. Con-

sequently, these terms belong to L∞
loc.

Using again (2.2) and (2.10) the last two terms in representation formula (4.19)
can be estimated by

(4.23)

∫

Ω

d−Q+α
ε,x0

(x0, ξ)|X
ε
i,ūXε

j,ūu(ξ)|dξ.

Thanks to Theorem 2.6, we can then apply the standard theory of singular integrals
and deduce that if |Xε

i,ūXε
j,ūu(ξ)| ∈ Lp(K), with Q − pα > 0 then (4.21) follows.

In order to prove (4.22) it suffices to apply Hölder inequality to (4.23) and use
the fact that Q− pα < 0. This immediately leads to the desired L∞ bounds on the
second derivatives of the solution. �

Proposition 4.6. Let us assume that ū is of class C∞(Ω) and that u is a classical
solution of Lε,ūu = g ∈ C∞

ū (Ω). Let us also assume that there exists a compact set
K ⊂ Ω and constant C0 such that assumption (4.5) is satisfied, and such that

||u||Ck−1,α
ū (K) + ||ū||Ck−1,α

ū (K) + ||g||Ck−2,α
ū (K) ≤ C0.

Then, for any 2 ≤ k ≤ 4, for every compact set K1 ⊂⊂ K there exists a constant
C > 0 depending only on the choice of the compact sets, C0, k and α such that

||u||Ck,α
ū (K1)

≤ C.

Proof. A direct computation shows that the kernel in representation formula in
Proposition 4.3 satisfy assumptions of Proposition 2.9. �

4.3. A priori estimates of the solution of the nonlinear operator. We start
with the follow iteration result:

Lemma 4.7. Assume that z is a smooth function satisfying

(4.24)
∑

ij

aij(∇
ε
ūū)Xε

iūXε
jūz + f0 = 0 in Ω

then the function vh = Xε
h,ūz satisfies the equation
∑

ij

aij(∇
ε
ūū)Xε

iūXε
jūvh + fh = 0,

on the same set Ω, where fh depends on ∇ε2
ū z, ∂2n∇

ε
ūz, Xε

h,ūf0, ∇
ε2
ū ū.
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Proof. Differentiating the equation (4.24) with respect to Xε
h,ū we obtain

0 = Xε
h,ū

(∑

ij

aij(∇
ε
ūū)Xε

iūXε
jūz
)

+ Xε
h,ūf0 =

=
∑

ijk

∂pk
aijX

ε
h,ūXε

kūūXε
iūXε

jūz +
∑

ij

aij(∇
ε
ūū)[Xε

h,ū, Xε
iū]Xε

jūz+

+
∑

ij

aij(∇
ε
ūū)Xε

iū[Xε
h,ū, Xε

jū]z +
∑

ij

aij(∇
ε
ūū)Xε

iūXε
jū(Xε

h,ūz) + Xh,ūf0.

Then ∑

ij

aij(∇
ε
ūu)Xε

iūXε
jūvh + fh = 0,

where

fh =
2n∑

ij

∂pk
aijX

ε
h,ūXε

kūū Xε
iūXε

jūz+

∑

ij

aij(∇
ε
ūu)
(
Xε

h,ūbi − Xε
i,ūbh

)
∂2nXε

jūz+

+
∑

ij

aij(∇
ε
ūu)Xε

iū

(
Xε

h,ūbj − Xε
j,ūbh

)
∂2nz+

+
∑

ij

aij(∇
ε
ūu)
(
Xε

h,ūbj − Xε
j,ūbh

)
∂2nXε

iūz

+
∑

ij

aij(∇
ε
ūu)
(
Xε

h,ūbj − Xε
j,ūbh

)
∂2nbi∂2nz + Xε

h,ūf0.

Here the function fh clearly depends on ∇ε2
ū z, ∂2n∇

ε
ūz, Xε

h,ūf0, ∇
ε2
ū ū. �

Lemma 4.8. Assume that z is a smooth function satisfying

(4.25)
∑

ij

aij(∇
ε
ūū)Xε

iūXε
jūz + f0 = 0 in Ω

then the function v = ∂2nz, satisfies
∑

ij

aij(∇
ε
ūu)Xε

iūXε
jūv + f = 0,

where f depends on ∇ε2
ū z, ∂2n∇

ε
ūz , ∂2nf0.

Proof. Differentiating the equation (4.25) with respect to ∂2n we obtain

0 = ∂2n

(∑

ij

aij(∇
ε
ūū)Xε

iūXε
jūz + f0

)
=

=
∑

ijk

∂pk
aij∂2nXε

kūūXε
iūXε

jūz +
∑

ij

aij(∇
ε
ūū)[∂2n, Xε

iū]Xε
jūz+

+
∑

ij

aij(∇
ε
ūū)Xε

iū[∂2n, Xε
jū]z +

∑

ij

aij(∇
ε
ūū)Xε

iūXε
jū(∂2nz) + ∂2nf0.

The latter can be rewritten as∑

ij

aij(∇
ε
ūu)Xε

iūXε
jūv + f = 0,
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where the function

f =
∑

ijk

∂pk
aij∂2nXε

kūūXε
iūXε

jūz +
∑

ij

aij(∇
ε
ūū)δi2n−1∂2nū∂2nXε

jūz+

+
∑

ij

aijδj2n−1(∇
ε
ūū)Xε

iū(∂2nū∂2nz) +
∑

ij

aij(∇
ε
ūu)Xε

iūXε
jūv + ∂2nf0

depends on ∇ε
ūv, ∇ε2

ū z, ∂2n∇
ε
ūz, ∇ε2

ū ū. �

In order to study of the nonlinear equation we apply the previous lemma with
u = ū,

Lemma 4.9. Let σ be a multi-index with all components smaller than 2n. Then
the function vσ = ∇ε

σ,uu satisfies
∑

ij

aij(∇
ε
uu)Xε

iuXε
juvσ + fσ = 0,

where fσ depends on ∇
ε(k+1)
u u, ∂2n∇

εk
u u with k = deg(σ).

Proof. By Lemma 4.7 the assertion is true for the derivatives of order one. Assume
that it is true for deg(σ) = k. Then, let us consider a multi-index σ of degree k +1.
By definition σ = (σ1, σ̃), with deg(σ̃) = k. Then by inductive assumption the
function z = ∇ε

eσ,uu satisfies

∑

ij

aij(∇
ε
uu)Xε

iuXε
juz + f0 = 0,

where f0 depends on ∇εk+1
u u, ∂2n∇

εk
u u. Applying Lemma 4.7 we deduce that the

function vσ = Xe
σ1uz is a solution of

∑

ij

aij(∇
ε
uu)Xε

iūXε
juvσ + fσ1 = 0,

where fσ1 depends on ∇ε2
u z, ∂2n∇

ε
ūz and Xσ1,uf0. Since f0 depends on ∇εk+1

u u,

∂2n∇
εk
u u, then Xσ1,uf0 depends on Xε

σ1,u∇
εk+1
u u and

Xε
σ1,u∂2n∇

εk
u u = δσ12n−1∂2nu∂2n∇

εk
u u + ∂2nXε

σ1,u∇
εk
u u.

�

Theorem 4.10. Let u be a smooth classical solution of the nonlinear equation
Lεu = 0. Let us fix a compact set K ⊂⊂ Ω and assume that there exist constants
α < 1, p > 1 and C0 > 0 such that

(4.26) ||u||C1,α
u (K) +

∑

deg(σ)=2

||∇ε
σ,uu||Lp(K) ≤ C0.

Then, for every β < 1, for every compact set K1 ⊂⊂ K there exists a constant C̃β

such that

||u||C3,β
u (K1)

+ ||∂2nu||C2,β
u (K1)

≤ C̃β .
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Proof. We first prove that for every r > 1 for every compact set K2 such that
K1 ⊂⊂ K2 ⊂⊂ K there exists a constant Cr, only depending on C0 and on the
choice of the compact sets, such that for every multi-index σ of degree 2, we have

(4.27) ||∇ε
σ,uu||Lr(K2) ≤ Cr.

Indeed, for every compact set K3 such that K2 ⊂⊂ K3 ⊂⊂ K we can apply the
first assertion of Lemma 4.5, with u = ū and we obtain

(4.28) ||∇ε
σ,uu||Lr1(K3) ≤ Cr1 ,

where r1 = n2
n−2 α > 2. If n − r1α > 0 we can apply again Lemma 4.5 on a new

compact set compact set K4 such that K2 ⊂⊂ K4 ⊂⊂ K3 and we have

(4.29) ||∇ε
σ,ūu||Lr2(K4) ≤ Cr2 ,

with

r2 =
nr1

n − r1 α
=

2n

n − 4 α
> r1.

For every fixed number r, after a finite number of iterations of this same argument,
we can prove the estimate (4.27).

Consequently by (4.22) we have ||∇ε
σ,ūu||L∞

loc
≤ C then for every compact set K5

such that K1 ⊂⊂ K2 and for every β < 1 there exists a constant C̃β such that

||∇ε
ūu||Cβ

ū (K5)
≤ C̃β .

As a consequence of Proposition 4.4 we deduce that for every β < 1 for every

compact set K6 such that K1 ⊂⊂ K6 ⊂⊂ K5 there exists a constant C̃β such that

||u||C2,β
ū (K6)

≤ C̃β .

By Proposition 4.6 we deduce that for every β < 1 and for every compact set K7

such that K1 ⊂⊂ K7 ⊂⊂ K6 there exists a constant C̃β such that

||u||C3,β
ū (K7)

≤ C̃β .

Applying again the same proposition with k = 4, we deduce that

||u||C4,β
ū (K1)

≤ C̃β ,

which implies in particular that there exists a constant C̃β such that

||u||C3,β
ū (K1)

+ ||∂2nu||C2,β
ū (K1)

≤ C̃β .

�

Theorem 4.11. Let u be a smooth classical solution of Lεu = 0. Let us also
assume that assumption (4.26) is satisfied. Then, for any compact set K1 ⊂⊂ K,

for every k ∈ N and α < 1, there exists a constant C > 0 depending only on C0, k, α

and K1 such that

||u||Ck,α
u (K1)

≤ C.

Proof. For every k ∈ N , for every σ with deg(σ) = k, and components in {1, . . . , 2n}
we prove by induction that

∇ε
σ,uu ∈ C3,α

u (Ω), ∂2n∇
ε
σ,uu ∈ C2,α

u (Ω),
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and that for every compact set K1 such that K1 ⊂⊂ K there exists a constant
C > 0 depending only on C0, k, α such that

||∇ε
σ,uu||C3,α

u (K1)
+ ||∂2n∇

ε
σ,uu||C2,α

u (K1)
≤ C.

The thesis is true for deg(σ) = 0 by Theorem 4.10.
We assume by induction that it is true for deg(σ) = k. Call z = ∇ε

σ,uu, then by

Lemma 4.9 the function z satisfies Lε,uz = fσ in Ω with fσ = fσ(∇
ε(k+1)
u u, ∂2n∇

εk
u u) ∈

C2,α
u (Ω), by inductive assumption. By Lemma 4.8, the function v = ∂2nz satisfies

Lε,uv = f, in Ω, where the function f = f(∇ε2
u z, ∂2n∇

ε
uz) ∈ C1,α

u (Ω).
It follows by Proposition 4.6 that v = ∂2nz ∈ C3,α

u (Ω), and if K2 is a compact set
such that K1 ⊂⊂ K2 ⊂⊂ K there exists a constant C depending only on C0, k, α

such that

||v||C3,α
u (K2)

≤ C1||f ||C1,α
u (K2)

= C2.

This argument, applied to any multi-index σ with deg(σ) = k, implies that ∂2n∇
εk
u u ∈

C3,α
u . Consequently ∂2n∇

εk+1
u u ∈ C2,α

u , and

||∂2n∇
εk
u u||C2,α

u (K2)
≤ C1,

for an other constant C1, only dependent on C0, k, α.
Moreover by Lemma 4.7 the function vh = Xε

huz satisfies Lvh = fh, with fh =
fh(∇ε2

u z, ∂2n∇
ε
uz) ∈ C1,α

u (Ω). Again Proposition 4.6 implies that Xε
hu∇

ε
σ,uu ∈

C3,α(Ω), and that

||∇ε(k+1)
u u||C3,α

u (K1)
≤ C2,

for a constant C2 dependent on C0, k, α. This concludes the proof. �

Proof of Theorem 1.2

Proof. Let (uε)ε be a smooth approximating sequence of u such that

Lεuε = 0 in Ω.

Let K1 be an arbitrary compact set in Ω. Then there exist compact sets K and K2

such that

K1 ⊂⊂ K2 ⊂⊂ K.

By assumption there exists a positive constant C0 such that

||∇Euε||L∞(K) ≤ C0,

for every ε. By proposition 3.7 there exists a constant C1 such that

||∇ε
uε

uε||C1,α
uε (K2)

+ ||∂2nuε||L∞(K2) + ||∇ε2
uε

uε||L2(K2) ≤ C1.

Then by Theorem 4.11 for every k there is Ck such that

||uε||C2k,α
uε (K1)

≤ Ck.

In particular,

||uε||Ck
E(K1) ≤ Ck.

Since all the constants are independent of ε, letting ε go to 0 we obtain estimates
of u in Ck

E for every k. Consequently u ∈ C∞
E . �
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[7] J.-H. Cheng, J.-F Hwang, P. Yang, Existence and Uniqueness for P-Area Minimizers in the

Heisenberg Group, Math. Ann. 337 (2007), no. 2, 253–293.
[8] J.-H. Cheng, J.-F. Hwang, A. Malchiodi, P. Yang, Minimal surfaces in pseudohermitian

geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4, 1, 2005, 129-177.
[9] M. Christ, A. Nagel, E .L. Stein, S. Wainger, Singular and maximal Radon transforms:

Analysis and geometry, Ann. Math. (2) 150, No.2, (1999), 489-577.
[10] G. Citti, Regularity of solutions of a quasilinear equation related to the Levi operator, Ann.

Scuola Norm. Sup. Pisa Cl. Sci. (4), 23, 1996, 483-529.
[11] G.Citti, A. Montanari, Regularity properties of solutions of a class of elliptic-parabolic non-

linear Levi type equations, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2819–2848.
[12] G. Citti, M. Manfredini Uniform Estimates of the fundamental solution for a family of

Hypoelliptic operators, Potential Analysis, 25, 2006, 147-164.
[13] G. Citti, M. Manfredini Implicit function theorem in Carnot-Caratheodory spaces, Comm. in

Cont. Math., vol. 8, 5, 2006, 657-680.
[14] G. Citti, N. Garofalo, E. Lanconelli, Harnack’s inequality for sum of squares of vector fields

plus a potential, Amer. Jour. Math.115 (1993), 699-734.
[15] G. Citti, G. Tomassini, Levi equation for almost complex structures, Rev. Mat. Iberoameri-

cana 20 (2004), no. 1, 151–182.
[16] G. Citti, A. Pascucci, S. Polidoro, On the regularity of solutions to a nonlinear ultraparabolic

equation arising in mathematical finance. Differential Integral Equations 14 (2001), no. 6,
701–738

[17] G.Citti, A. Pascucci, S. Polidoro, Regularity properties of viscosity solutions of a non-
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