

Risk perception and differences in self-reported cycling behavior between electric- and conventional-bike riders in Denmark

Kira H. Janstrup*, Sergio A. Useche#, Mette Møller*, Felix W. Siebert*

*Department of Technology, Management and Economics Technical University of Denmark Bygningstorvet 116, 2800, Lyngby, Denmark email: kija@dtu.dk, mette@dtu.dk, felix@dtu.dk

Keywords: cycling behavior, risk perception, e-bikes.

*INTRAS (Research Institute on Traffic and Road Safety) University of Valencia Av. de Blasco Ibáñez, 13, 46022, Valencia, Spain email: sergio.useche@uv.es

1 INTRODUCTION

Electric bikes can contribute to the decrease of emissions and present a carbon-positive alternative to gaspowered forms of motorized transport [1][2]. Hence, the fact that both conventional and e-bike use have increased considerably during the Covid-19 pandemic can be considered as a positive development [3]. At the same time, studies find that e-bike riders are traveling with higher speeds [4], and report new types of safety incidents, that they did not experience during conventional cycling [5]. Risk related behavior of e-bike and cbike riders has frequently been linked to crash-risk and injury severity [6][7]. But little research has been conducted on the comparison of self-reported risk related behavior between e-bike and conventional bike (cbike) riders. Hence, in this study, the self-reported risk-related behavior of c-bike and e-bike riders was investigated.

2 METHOD

2.1 Sample

A total of 557 cyclists were recruited as a convenience sample through social media and a newsletter from the Danish cyclist federation for an online study on their behavior during everyday cycling. 316 participants were female (57%), and 241 male (43%). Mean age of participants was m=47 (SD=14). With 87% (n=483), most respondents used a c-bike as their main form of transportation, while 13% (n=74) used an e-bike.

2.2 Instruments

In this study, the Cycling Behavior Questionnaire (CBQ) was used to assess safety related behavior of e-bike and c-bike users [8]. It consists of 29 items which assess the frequency of cycling behavior on a five-point scale (0=never; 1=hardly ever; 2=sometimes; 3=frequently; 4=almost always). The CBQ items map to three factors, *violations* (e.g. "Going against the direction of traffic (wrong way)"), *errors* (e.g. "Fail to notice the presence of pedestrians crossing when turning"), and *positive behavior* (e.g. "I usually keep a safe distance from other cyclists or vehicles."). In addition, sociodemographic items, as well as questions on general cycle use (type of bike mainly used (c-bike/e-bike), frequency, usual trip length, purpose) were added. Single items on risk-perception and traffic law regulation were presented [9].

2.3 Analysis

First, sample characteristics (e.g., age, gender, trip length) for c-bike and e-bike riders are compared using $\chi 2$ -tests and *Aspin-Welch-Satterthwaite t-test*. To investigate possible latent cycling behavior, relating to either e-bike or c-bike use, a factor analysis is performed on the three scales of the CBQ. Analyses were performed with Varimax rotation and confirmed the three different scales of the CBQ: *Violations, Errors*, and *Positive behavior*. Cronbach's alpha was 0.70. All items have factor loadings above 0.43 and explained 42% of the variance. Finally, a structural equation model (SEM) is employed to identify latent cycling behavior and their relation to riders' demographic features, trip length, purpose and self-assessed risk perception and regulation knowledge to e-bike use.

3 RESULTS

Personal and trip characteristics for all respondents are presented in Table 1. It can be observed that e-bike users are more likely to be female and live in a smaller city, with less than 50,000 inhabitants. We also find e-bike users to be more likely to have retired but find no significant difference between age groups for e-bike and c-bike users (age of riders: e-bike, m=49, SD=14.0; c-bike, m=47, SD=14.5). No significant differences were found for number of hours biking during a normal week or duration of the most frequent trip. However, results show c-bike users to more often (45%, n=217) use their bike for exercise than e-bike users (31%, n=23).

		e-bike		c-bike			X ² -test,
Variable	category	Number	%	Number	%	total	p-value
Gender	Male	22	9	220	91	242	
	Female	52	16	264	84	316	< 0.01
Number of inhabitants in city	less than 50,000	27	21	102	79	129	
	between 50,000 and 200,000	20	11	163	89	183	
	Above 200,000	27	11	218	89	245	0.01
Occupation	Working (self-employed and others)	53	13	356	87	409	
	Retired	13	23	43	77	56	
	Unemployed, student and other	8	11	84	91	92	0.04
Bike use in a (normal) week	Less than 3 hours	16	14	96	86	112	
	between 3 and 5 hours	28	14	178	86	206	
	between 6 and 9 hours	20	14	127	86	148	
	10 hours or more	10	11	81	89	91	0.91
Time for most frequent trip	Less than 20 minutes	11	8	119	92	130	
	20-30 minutes	30	13	200	87	230	
	31-59 minutes	25	20	102	80	127	
	more than 60 minutes	8	11	62	89	70	0.06

Table 1: A comparison of person and trip characteristics between e-bike and c-bike users

Regarding cycling behavior assesses with the CBQ, we only found significant differences between e-bike and c-bike riders in the mean for the factor *Positive behaviors* (p=0.02) where a higher mean was found for e-bike users. For the factors *Traffic violations* (p=0.07) and *Errors* (p=0.92) we found no significant difference. For risk perception e-bike users reported a higher awareness of risks related to headphone or general mobile phone use while cycling (p<0.01) and for consequences of being involved in a traffic crash (p=0.04). Regarding traffic regulation e-bike users reported higher knowledge of traffic rules for other vehicles (p=0.01), knowledge of cycling safety regulations (p=0.04), and higher recognition of areas prohibited to traffic or bicycle parking (p=0.02).

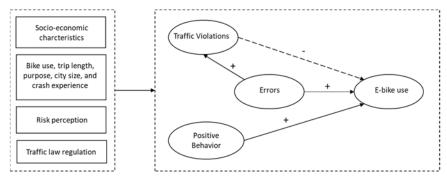


Figure 1: Structural Equation Model for study variables related to e-bike use.

The results of the structural equation model revealed e-bike use to be directly and positively related to *Errors* and *Positive Behavior* and negatively related to *Traffic Violations*, which are positively related to *Errors*. The most relevant factor for mainly cycling on an e-bike is *Positive Behavior* (Figure 1). We further find that the use of an e-bike is positively related to a higher reported awareness of increased crash risk in cities and when using headphones or mobile phone while cycling. A positive relation with e-bike use is also found for females, smaller cities (number of inhabitants below 50,000) and occupation.

4 DISCUSSION AND CONCLUSION

The results of this study revealed that female, retired people, and cyclist living outside the large cities were more likely to use an e-bike as main transport mode compared to a c-bike. Likewise, we found that using an e-bike as main transport mode is positively related to a higher crash risk awareness which may make e-bike riders more careful in traffic. This could be due to an increased focus in social media and news about the high crash risk when cycling on an e-bike, which is also supported by research on e-bike safety [5][6].

Regarding the cycling behavior assessed with the CBQ, we found that *Traffic Violations* were negatively related to the use of e-bikes which indicates that e-bike users are more careful in traffic than c-bike users. At the same time, the data suggests that a higher frequency of self-reported *Errors* is positively related to *Traffic Violations* for e-bike riders. This can indicate that cyclists' susceptibility to make errors (unconsciously), can contribute to traffic rule violations. *Positive Behavior* when cycling and a higher reporting of *Errors* were found to be positively related to the use of e-bikes. This could be interpreted as e-bike riders making more errors in traffic but could also indicate that they are just more aware of the errors they make than c-bike users (no causal inference can be derived from our study design). In general, our data suggests that e-bike riders have a safety-positive behavior when cycling and higher knowledge of the traffic rules compared to c-bike users.

REFERENCES

- [1] M. McQueen, J. MacArthur and C. Cherry. "The E-Bike Potential: Estimating regional e-bike impacts on greenhouse gas emissions", *Transportation Research Part D: Transport and Environment* 87, 102482.
- [2] M. Weiss, P. Dekker, A. Moro, H. Scholz and M.K. Patel. "On the electrification of road transportation—a review of the environmental, economic, and social performance of electric two-wheelers", *Transportation Research Part D: Transport and Environment* 41 (2015), pp. 348-366.
- [3] R. Buehler and J. Pucher. "COVID-19 impacts on cycling, 2019–2020", *Transport Reviews*, 41 (2021), 4, pp. 393-400.
- [4] T. Petzoldt, K. Schleinitz, S. Heilmann and T. Gehlert. "Traffic conflicts and their contextual factors when riding conventional vs. electric bicycles", *Transportation research part F: traffic psychology and behaviour* 46 (2017), pp. 477-490.
- [5] S. Haustein and M. Møller. "E-bike safety: individual-level factors and incident characteristics", *Journal of Transport & Health 3* (2016), 3, pp. 386-394.
- [6] T. Tang, Y. Guo, X. Zhou, S. Labi and S. Zhu. "Understanding electric bike riders' intention to violate traffic rules and accident proneness in China", *Travel behaviour and society* 23 (2021), pp. 25-38.
- [7] S.A. Useche, F. Alonso, L. Montoro and C. Esteban. "Explaining self-reported traffic crashes of cyclists: An empirical study based on age and road risky behaviors". *Safety science 113* (2019), pp. 105-114.
- [8] S.A. Useche, L. Montoro, J.M. Tomas and B. Cendales. "Validation of the Cycling Behavior Questionnaire: a tool for measuring cyclists' road behaviors". *Transportation research part F: traffic psychology and behaviour 58* (2018), pp. 1021-1030.
- [9] S.A. Useche, F. Alonso, L. Montoro and J.M. Tomas. "When age means safety: Data to assess trends and differences on rule knowledge, risk perception, aberrant and positive road behaviors, and traffic crashes of cyclists". *Data in brief 22* (2019), pp. 627-634.